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Abstract Due to its compact binary codes and efficient search scheme, image hashing
method is suitable for large-scale image retrieval. In image hashing methods, Hamming
distance is used to measure similarity between two points. For K-bit binary codes, the
Hamming distance is an int and bounded by K . Therefore, there are many returned images
sharing the same Hamming distances with the query. In this paper, we propose two efficient
image ranking methods, which are distance weights based reranking method (DWR) and bit
importance based reranking method (BIR). DWR method aim to rerank PCA hash codes.
DWR averages Euclidean distance of equal hash bits to these bits with different values, so
as to obtain the weights of hash codes. BIR method is suitable for all type of binary codes.
Firstly, feedback technology is adopted to detect the importance of each binary bit, and then
big weights are assigned to important bits and small weights are assigned to minor bits. The
advantage of this proposed method is calculation efficiency. Evaluations on two large-scale
image data sets demonstrate the efficacy of our methods.

Keywords Large-scale image retrieval · Image hashing · Binary code reranking · Distance
weights based reranking method · Bit importance based reranking method

1 Introduction

In Web2.0 time, with the popularity of camera, mobile phone and iPad, people can take pho-
tos and share them on social websites anytime and anywhere. According to the research, 1.8
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ZB data has been created and duplicated in 2011, 75 % of which is unstructured data includ-
ing images, videos, and music files. Dealing with such large-scale data, how to quickly and
accurately obtain valuable information is essential. In these years, many methods proposed
to deal with image retrieval and 3D object retrieval [1, 2]. Gao utilizes both visual and
textual information to estimate the relevance of user tagged images [3]. In Ref. [4], a hyper-
graph analysis method is proposed to address 3D object retrieval by avoiding the estimation
of the distance between objects. Wang proposes a diverse relevance ranking scheme that is
able to take relevance and diversity into account by exploring the content of social images
and their associated tags [5].

When using traditional Nearest Neighbor search methods to deal with large-scale image
retrieval, it results in large memory cost and low retrieval speed owing to the curse of
dimensionality.

Due to the compact feature representation, small storage cost, and high retrieval speed,
image hashing technology has been widely applied to large scale Approximate Nearest
Neighbor (ANN) retrieval. Given a dataset, hashing method embeds high-dimensional data
to Hamming space, and generates a short binary sequence. Then, the efficient Hamming
distance is used to measure the similarity between two binary sequences.

Although image hashing has made great achievement, ranking of search results is not
optimal. Since the Hamming distance is discrete and bounded by the code length, in prac-
tice, there will be a lot of data points sharing the same Hamming distance to the query and
the ranking of these data points is ambiguous, which poses a critical issue for similarity
search. For K-bit binary code, there would be Ci

K different hash codes sharing Hamming
distance i (0 ≤ i ≤ K) with the query. How to rank the these points?

Previously, the research of hashing techniques has been concentrating on hashing
function. Recently, many researchers start to study binary code ranking method. Jiang
et al proposed QAIS image reranking method, which retains traditional hash retrieval
efficiency, and improves retrieval effect at the same time [6]. Zhang et al proposed
QsRank method, which uses the Euclidean distance between image visual features to gen-
erate the candidate set, so the time and space complexity is higher and retrieval efficiency
is lower [7].

In this paper, we propose two weighted Hamming distance methods to improve the ini-
tial Hamming retrieval results. For the PCA-based image hashing methods, we propose a
reranking method based on distance weight. By taking account of the relationship between
PCA projection and hashing quantization, we learn data-dependent weight to reduce the

In Section 2, classical image hashing methods are summarized, and an binary code
ranking method based on bit importance is described in Sections 4, and 5 describes our
experiments and Section 6 concludes this paper.

2 Image hashing methods

Given a dataset, hashing method generates binary code for each data point and approxi-
mates the similarity of two points by the Hamming distance between their binary codes.
In image hashing method, learning hashing functions to embed high-dimensional feature
to Hamming space is a key step for accuracy retrieval. Based on the style of hashing func-
tions learning, we divide the existing hashing methods into two groups: random hyperplane
hashing methods and compact hashing methods.

The representative method of random hyperplane hashing is Locality Sensitive Hashing
(LSH) method, which is the first image hashing method. The main idea of LSH is to insert
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data points into a hash table such that similar things fall in the same bucket, with high
probability [8–11]. In the early definitions of LSH, functions were designed to preserve a
given geometric distance, hash functions hk(·) of LSH should satisfy:

P {h(xi) = h(xj )} = sim(xi, xj ), (1)

where sim(xi, xj ) is the similarity function of data xi and xj , that is to say, the probability
that two point collide in one hash table is equal to their similarity. Since hashing functions
learning is based on randomized hyperplane mapping, one drawback of LSH is that in order
to preserve the locality of the data points, they have to generate long codewords, which need
large storage space and high computational cost.

Since the drawback of LSH-like methods, compact hashing methods attract researchers’
attention. Compact hashing methods include SH [16], ItQH [13], SSH, CH [14] etc., which
can produce compact binary codes that satisfy generic properties effectively. In compact
hashing methods, hashing functions are based on three requirements: binary codes should
(1) be easily computed for a novel input; (2) be a small number of bits; (3) map similar data
points to similar binary codes. Ignoring item (1), hashing functions should be uncorrelated
and each hashing function partitions the data points into two balanced parts.

Spectral hashing(SH) [16] generates binary codes by thresholding with nonlinear func-
tions along the principal directions of the data. Wang et al. [17] propose a semi-supervised
hashing (SSH)method by utilizing labeled data. In SSH, a pairwise label matrix is defined
to express the semantic similarity well. Under the SSH framework, Wang et al. also pro-
pose sequential projection learning hashing (SPLH) to correct the errors produced by the
previous hashing functions [15] . Zhou et al. propose a balance SSH(BSSH) method by
dividing image into several blocks [12]. In the BSSH, the supervised information is com-
pleted by combining the similarity of image pairs and label information. Gong et al. [13]
formulate the hashing functions learning in terms of directly minimizing the quantization
error of mapping the principal component analysis(PCA) projected data to vertices of the
binary hypercube. Xu et al. [14] propose complementary hashing(CH) to balance the preci-
sion and recall using multiple learned hash tables. Fu et al. adopt Boosting-based method to
generate inputs to learn hashing functions, and optimize the hashing functions with a loss
function by considering the relationship between samples [18].

Once binary codes are generated using hashing methods, Hamming distance is calculated
efficiently between binary codes to measure the similarity of data points. However, since
this distance metric is a finite int number, there are hundreds of images sharing the same
Hamming distance to a query, it would causes ambiguity for ranking. As shown in Fig. 1,
there are hundreds of images sharing the same Hamming distance to a query. How to rank
these images with the same Hamming distance? In the next section, the returned images are
reranked using weighted Hamming distance.

3 Reranking based on distance-based weight

PCA technical is widely used in compact hashing methods, e.g. SH, SSH, ItQH, CH and BH
method etc., whose objective functions can be transformed into eigenvectors calculation. In
this section, we propose a distance-weighted ranking algorithm (DWR) for these PCA-based
hashing methods, as shown in Fig. 2. We firstly analyze the data distribution in different
data space, and then learn weight for every binary code. Finally, the initial returned images
are reranked based on the weighted Hamming distance.
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Fig. 1 The average number of returned images to a query at each Hamming distance on the PI 100
dataset [19], with 32-bit ITQ hash codes

3.1 Motivation

Given the query point q and its two neighborhoods b and c. The distribution of
them in Euclidean space is shown in Fig. 3a. The Euclidean distance of q and b is
smaller than q and c. Since the PCA projection is orthogonal and preserves the
L2 distance, therefore, the ε-neighbors of query remain the same after the PCA
projection. That is to say, the distribution of projected data in the PCA space is
consistent with Euclidean space, as shown in Fig. 3b. If we quantize the PCA projection

Fig. 2 Image ranking based on distance-weighted Hamming distance
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(a) (b) (c)

Fig. 3 The distribution of query image q, image b and c in different space: a In the Euclidean
space, the distance of q and b is small than that of q and c; b In PCA projection space, the L2 distance is
preserved; c In the Hamming space, the distance between q and b′ is equal to the distance between q and
c′. When using weighted distance, b is moved to b′, and c is moved to c′. As a result, the space structure is
maintained

data into binary codes, the b and c are assigned to the vertex of the hypercube closest
to them in terms of Euclidean distance, as shown in Fig. 3c. In the Hamming space,
the distance of two points is approximated by Hamming distance. In Fig. 3c, the Hamming
distance of q and b is equal to q and c. Therefore, the Hamming distance is somewhat
ambiguous.

Based on the analysis above, we intend to assign weights to binary codes to keep the
trend of Euclidean distance in the Hamming space. With the weights, quantized point b and
c is moved to b′ and c′. In this case, the weighted Hamming distance is more discriminative.
Next, we describe how to calculate the weight for every binary bit.

3.2 Calculate the weight for binary code

The feature vector of query image q before quantization is denoted as Pq =
[p(1)

1 , p
(1)
2 , ..., p

(1)
K ], its K-bit binary code is denoted as Bq = [b(1)1 , b

(1)
2 , ..., b

(1)
K ]. Given

any image I , its K-dimensional feature vector before quantization and K-bit binary code
after quantization are denoted as PI = [p(2)

1 , p
(2)
2 , ..., p

(2)
K ] and BI = [b(2)1 , b

(2)
2 , ..., b

(2)
K ].

The Euclidean distance between Pq and PI is defined as

Ed(Pq, P I) = ‖Pq − PI‖2. (2)

From (2), each dimensional of feature contributes to the Euclidean distance.
The Hamming distance between Bq and BI is defined as

Hd(Bq,BI) = �K
i=1(|b(1)i − b

(2)
i |). (3)

Different from Euclidean distance, the Hamming distance counts the number of bits
with different binary value of two points.Therefore, Hamming distance has no rela-
tionship with the amplitude of Euclidean feature. For example, given three PCA
projected data Pa = [−2, 10, 100,−200], Pb = [10,−2, 10,−2] and Pc =
[100, 100,−20,−20]. The binary codes corresponding to them are Ba = [0, 1, 1, 0],
Bb = [1, 0, 1, 0] and Bc = [1, 1, 0, 0]. The Euclidean distance between a and
b is Ed(Pa, Pb) = 288, and between a and c is Ed(Pa, P c) = 24804, that is to
say Ed(Pa, Pb) < Ed(Pa, P c). However, the Hamming distance Hd(Ba,Bb) is equal
to Hd(Ba,Bc). Therefore, we intend to design weight for every binary code, thus the
weighted Hamming distance can reflect the difference of Euclidean distance.
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Algorithm 1: Distance-based weight calculation

Input:
Query image q, its PCA projection feature vector
Pq = [p(1)

1 , p
(1)
2 , ..., p

(1)
K ]its binary code

Bq =
{
b
(1)
1 , ..., b

(1)
K

}
Any image I , its PCA projection feature vector

PI = [p(2)
1 , p

(2)
2 , ..., p

(2)
K ]its binary code BI = [b(2)1 , ..., b

(2)
K ].

Output:The weight {wi} = {w1, ..., wK } of I corresponding to BI .
(1) Let S = {S1, S2, ..., Sm} be the bits with same binary codes in Bq and BI .
(2) Let D = {D1,D2, ..., Dn} be the bits with different binary codes in Bq and BI .
(3) Calculate constant parameter C in (6).
(4) Calculate the weight ω using (4).

Let S = {s1, s2, ..., sm} be the bits where b
(1)
si = b

(2)
si , and D = {d1, d2, ..., dn} be the

bits where b(1)di
�= b

(2)
di

, andm+n = K . Let ω = {ω1, ..., ωK } be the weights corresponding
to BI .

Section 3.2 suberizes the algorithm of distance-based weight calculation. Given a query,
the weight ω in (4) is corresponding to the initial returned image, and is defined as:

wi =
∥∥∥p(1)

i − p
(2)
i

∥∥∥
2

∑
j∈{S∪D}

∥∥∥p(1)
j

∥∥∥
2
+ C, i ∈ D, (4)

where C is a constant, and is calculated as following:

C = 1

n

1∑
j∈{S∪D} ‖ p

(1)
j ‖2

∑
i∈S

‖ p
(1)
i − p

(2)
i ‖2 . (5)

The weighted Hamming distance are calculated with ω in (6), and the returned images
are reranked based on the weighted Hamming distance.

d̂(Hq,HIi) =
∑

K
k=1(wk|Hq(k) −HI

(k)
i |). (6)

4 Reranking based on bit importance weight

Distance-based weight calculation is suitable for PCA-like hashing method. For LSH-like
or others, which don’t satisfy the data distribution assumption, DWR result is unsatisfactory.
In this section, we propose a reranking method based on bit importance weight which is
suitable for all types of hashing methods.

For many hashing methods, for example, LSH, SH, ItQH, etc., K hashing functions
are independent with each other. Each hashing function generates one bit of binary code.
Therefore, K-bit binary codes are also independent with each other. For these K-bit binary
codes, we don’t decide which binary is more important than the other. So, equal weight is
assigned to each bit when calculating Hamming distance.

Actually, each hashing functions can be seen as a two-class classifier, the binary code is
the label of class. During the classification, parts of images are classified as +1, correspond-
ing to binary code 1; and others are -1, corresponding to binary code 0. For one hashing
function, if most of similar images have the same label with the query, then this hashing
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function is more efficient. Therefore, we may assign large weight to the binary code corre-
sponding to this hashing function. In the next sections, we describe how to determine the
importance of every bit of binary code.

4.1 Motivation

In this section, we compare the binary code of similar returned images and query image to
determine which bit is more important. Table 1 shows an example about K-bit binary code
of query image q and other five images {Ii}5i=1, whose Hamming distances with query are
all equal to 2. NS is the number of images that have the same binary code with query in the
given bit, and ω = {ω1, ...., ωK } is the weight of query.

From Table 1, We can find that in some bits more images share same hash code value
with query image, e.g. the b4 bit, but in some bits less images share same hash value with
query, e.g. the b1 bit. Since NS = 4 in b4 bit, NS = 3 in b3 bit, NS = 2 in b2 bit, and
NS = 1 in b1 bit, so we think that b4 bit is more important than b3, b2 and b1. Therefore,
ω4 > ω3 > ω2 > ω1 .

Reranking method based on bit importance is showed in Fig. 4. For the query image,
feedback technique is applied to find similar images from the returned images. Firstly, we
search image dataset based on Hamming distance and return images with small Hamming
distance to the query. Then we choose images that are really similar to query, these images
are used to design weight of hash code. In the next section, we describe the how to assign
weight for every hashing bit.

4.2 Calculate the weight

Let query image be q, its top m similar images are selected using feedback technique
according to the Hamming distance. These m(m << N) images can be shown in the
concentric based on their Hamming distance, and the center of concentric are query
image and images with Hamming distance equal to 0. The binary codes of m images are

H = {H1, ..., Hm}, whereHi =
{
H

(1)
i , H

(2)
i , ..., H

(K)
i

}
, the binary code of query image is

Hq =
{
H

(1)
q , ..., H

(K)
q

}
The weight of query image’s K-bit hash code is ω = {ω1, ..., ωK },

whose initial value is ωk = 1.
In this section, we compare Hi and Hq bit-by-bit. For the binary code of kth bit H(k)

q , if

H
(k)
i = H

(k)
q , then ωk is increased, otherwise is decreased. We update ω interactively, the

iterative times are m. For the j iteration, the expression of ωi is as following:

ωk =
{

eωk ifHq(k) �= H
(k)
i

(1+ e)wk otherwise
, 0 < e < 1, (7)

Table 1 Master codes and minor codes

bit q I1 I2 I3 I4 I5 NS ω

b1 0 1 1 1 0 1 1 ω1

b2 1 0 1 0 0 1 2 ω2

b3 1 1 0 1 1 0 3 ω3

b4 0 0 0 0 1 0 4 ω4
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Fig. 4 Image reranking based on relevance weighted method

where ε is a parameter, whose value will be discussed in experiment section. The ω is to
wide the distance between important bits and minor bits. After m iterations, we obtain the
weight ω and use it to compute the weighted Hamming distance, and then sort the weighted
Hamming distance to rerank the returned images in dataset. The calculation of weight based
on bit importance is summarized in Algorithm 2.

Algorithm 2: Bit importance based weight calculation

Input:
The binary code of query Hq = {

hq(1), ..., hq(K)
}
; The top m

similar images with query based on initial Hamming distance. The binary code of the ith

returned image is Hi =
{
H

(1)
i , ..., H

(K)
i

}
;

Parameter ε;
Output: The weight {ω} = {ω1, ..., ωK } of Hq.

(1) Initial the weight {ωk} = {1, ..., 1}
(2) for i=1:m
(3) for k=1:K
(4) Whether the kth-bit binary code of Hq and Hi is same?

if yes, ωk = (1+ ε)ωk

otherwise, ωk = εωk

(5) end for
(6) end for
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5 Experiment results

To evaluate the performance of proposed methods, we conduct experiments on two widely
used datasets : CIFAR10 and MNIST. To get the best results, we firstly conduct experiments
to select the optimal parameters for each method. Then with the optimal parameters,we
compare our methods with some art-of-state methods quantitatively and qualitatively.

5.1 Experimental setup

Datasets: CIFAR10 is an international public image dataset, which includes 60000 images
of size of 32 × 32. These images contain ten categories with different natural scenery or
objects. We randomly select 100 samples per category, 1000 images in total as test, and
the remaining 59000 images are as training. In experiment, each image is represented as a
320-dimensional GIST feature.

MNIST is a manuscript dataset, which includes 70000 images of ten Arabic numerals.
We randomly select 100 samples per category, 1000 images in total as the query and the
remaining 69000 images as training. For each image, we use 784-dimensional pixel-value
feature to describe the image.

Baseline methods: We use the binary code learnt with ITQ hashing method in the exper-
iment. The bit length of the hash code are 16, 32, 48 and 64 respectively. With the hash
code, the proposed DWR method and BIR method are compared with two image ranking
methods:

1. Directly Hamming Reranking: Rank the images based on initial Hamming distance of
the ITQ binary codes.

2. QsRank: The method firstly locates the hashing pool of query image to select the
images to be reranked based on the first k bits of the hash code of query image. Then
rerank the selected images based on all bits of the hash code. As for the consistency of
experiments, we use all bits of hash code to select the image set to be reranked.

Evaluation criteria: We evaluate these methods quantitatively and qualitatively: (1)
average precision of top n reranked images. (2) We show the top 20 images in the reranked
results to reflect the performance of different methods visually.

5.2 Experimental results on CIFAR10 dataset

To get the best performance, we conduct experiments to determin the optimal
parameters for QsRank and BIR. For different bits of hash code, the average reranking pre-
cision is showed in Fig. 5, when ε in QsRank changes from 0.1 to 1. We find the precision
reaches the maximum when ε = 0.2. So in the following experiment, we set ε = 0.2 in
QsRank.

There are two parameters in BIR method: m and ε. We select the optimal values accord-
ing to the reranking results. Figure 6 shows the precision of top 5 reranked images with
different bit when ε changes between 0.1 and 1, m with value 10, 20, . . . . . . , 60. Figure 6a
is the result with 16-bit binary code. As it is shown, when m = 20, the precision reaches
the maximum, and when ε = 0.2 and ε = 0.3, the precision is much better than other ε
value. Figure 6b and d show the results with 32-bit and 64-bit binary code. As is shown, the
precision is the best when m = 30 , and the precision changes little with ε changing. Figure
6c shows the case of 48-bit, the precision changes little with ε changing. Therefore, we set
m = 30 and ε = 0.3 in BIR.
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Fig. 5 QsRank method: Average precision for different epsilon

With the selected values for different parameters (ε = 0.2 in QsRank, and
m = 30, ε = 0.3 in BIR), we compare these four reranking methods. The top
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Fig. 6 For CIFAR10 dataset, the reranking precision of BIR method for different hashing bits with different
m and ε: a 16-bit; eranking precision of BIRb 32-bit; c 48-bit; d 64-bit
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Fig. 7 For CIFAR10 dataset, the reranking precision of 4 methods for the top 1000 images returned by
Hamming distance: a 16-bit; b 32-bit; c 48-bit; d 64-bit

1000 images with small Hamming distance is chose to be reranked, and the reranking
precision of top n images are calculated, as shown in Fig. 7. In Fig. 7a, BIR performs
better than the other methods with 16-bit binary code. In detail, the precision
of top 5 reranked images of BIR are 6 % higher than QsRank, 10 % higher than
Directly Hamming Reranking. In Fig. 7b–d, BIR also performs the best, followed
by DWR and QsRank. The precision of BIR in the top 5 reranked images with 32-bit is
23 % higher than QsRank and 25 % higher than Directly Hamming Reranking. Besides,
BIR methods perporms better with the length of bits increasing. In 48-bit case, precision
of BIR is 25 % higher than QsRank. In 64-bit case, BIR has absolute advantage over other
methods.

In addition to evaluating quantitatively, we show some reranked results for query images
in Fig. 8. The 5 query images come from categories of bird, frog and truck since the
space is limited, and the top 20 reranked images are shown. In Fig. 8, the first column is
query images, the second to fifth columns are results of BIR, DWR, QsRank and Hamming
ranking method.

We sign the false classified images with red box. If there are many wrong classified
images, we sign correct images with green box.In CIFAR10 dataset, BIR performs the best
than other methods;
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Fig. 8 For CIFAR10 dataset, the reranking results of different methods for 64-bit hashing code

5.3 Experiment result of MNIST

The same with CIFAR10 dataset, We first need to set parameters of QsRank method. For
the top 1000 returned images based on Hamming distance retrieval, the precision of top 5
reranked images using QsRank method with ε = {0.1, 0.2, 0.3, ..., 5}. Figure 9 shows the
curve between ε and the precision corresponding to different hash bits. As can be seen from
the figure, in some case of a specific bit, when ε < 1, precision grows fast with ε increases;
when ε > 1, precision is relatively stable; When ε is fixed, precision increases with hash
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Fig. 9 Average precision of QsRank method with different epsilon in MNIST dataset
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Fig. 10 For MNIST dataset, reranking precision of BIR method for different hashing bits with different m
and ε: a 16-bit; b 32-bit; c 48-bit; d 64-bit
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bits increase. Especially, precision increases greatly when hash bits are greater than or equal
to 32-bits compared with 16-bits. Considering the number of hash bits and the precision of
each hash bits, we set ε = 3 in QsRank.

In MNIST dataset, parameters m and ε in BIR method are also to be set. For the top
1000 returned images based on Hamming distance retrieval, the precision of top 5 reranked
images with different values of m and ε is calculated. Figure 10 shows the reranking
precision of BIR with 16-bit, 32-bit, 48-bit and 64-bit in MNIST dataset.

In Fig. 10, the range of ε is in 0.05, 0.1, 0.15, 0.2, ..., 0.95, 1, and the range of m is in
110, 120, ..., 180. Figure 10a shows the reranking results for the initial search results in 16-
bit. The precision of the top 5 images changes little when m and ε change. The precision is
about 83.75 % with 0.5 % variation. Figure 10b shows the results for 32-bit, the reranking
precision decreases with the increase of ε . When ε < 0.7, the precision decreases slowly
but when 0.7 < ε < 1, it decreases fast. When m = {150, 160}, the precision is the highest.
Figure 10c shows the results for 48-bit, the precision changes more smoothly compared
with that of 32-bit. Whenm >= 140, the precision changes little if ε < 0.7, but it decreases
with the increase of ε between 0.7 and 1. When m = 150, the precision is highest for 48-
bit. Figure 10d shows the result for 64-bit, in this case, the range of the reranking precision
changes slightly with m and ε changing (about 2 %). Based on the above four cases, we set
m = 150, ε = 0.1 in the MNIST database Fig. 11.
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Fig. 11 For SIFT1M dataset, the reranking precision of 4 methods for the top 1000 images returned by
Hamming distance: a 16-bit; b 32-bit; c 48-bit; d 64-bit
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With the above parameters, we compare the reranking precision of BIR, DWR,
QsRank and Hamming ranking. Figure 11 shows the average reranking precision. From
the figures, in 16-bit case, the precision of BIR is the highest, which exceeds QsRank
nearly 10 % and exceeds Hamming Ranking about 14 %. For 32-bit, 48-bit and 64-bit, BIR
is better than the other three methods. Especially, when the number of returned images is

BIR DWR QsRank Hamming

Precision=20/20 Precision=19/20 Precision=17/20 Precision=16/20

Precision=16/20 Precision=9/20 Precision=8/20 Precision=7/20
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Precision=15/20 Precision=8/20 Precision=2/20 Precision=2/20

Precision=20/20 Precision=16/20 Precision=19/20 Precision=17/20

Fig. 12 For MNIST dataset, the reranking results of different methods for 64-bit hashing code
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between 100 and 700, BIR method is absolutely ahead of the other methods. For 64-bit
binary code, when the number of reranked images is less than 20, the precision of BIR
exceeds 99 %.

As with CIFAR10, for part of query images, we apply four methods to rerank the Ham-
ming returned images. The reranking results are showed in Fig. 12. Images in first column
belong to digital number 4,9,5,8,3. The next four columns are the top 20 images reranked
images of BIR, DWR, QsRank and Hamming methods. The false classified images are
signed with red box if the number of false classified images are less. Oppositely, correct
classified images are signed with green box.

The figure shows that the BIR, DWR and QsRank method all increase the precision of
Hamming distance ranking at some extent. For the query images of digital number 4,5,3,
the top 20 images are correct after reranking using BIR method. The precision of Hamming
Ranking of these three queries are nearly 80 %. For query images of digital number 9 and 8,
the precision is greatly (nearly 80 %) after reranking using BIR method, the precision can
also increase by nearly 40 % using QsRank method.

6 Conclusion

Although image hashing has made great achievement, traditional Hamming distance per-
forms poorly, since there are many results sharing the same Hamming distance to the query.
In this paper, we propose two reranking methods to overcome this problem.

DWR method is suitable to PCA-like hashing methods.The motivation of DWR
method is that, the weights are assigned to make weighted Hamming distance approach
Euclidean distance. In the BIR method, high weights are assigned to important bits and
small weights are assigned to less important bits. The initial returned images based on Ham-
ming distance are as benchmark, we compare bit difference between returned images and
query image to determine which bits are more importance. Compared with DWR, the weight
of BIR is corresponding to query, and the weight of DWR is corresponding to images in
dataset.

In the experiment section, we test the two proposed methods on two large-scale datasets:
CIFAR10 and MNIST dataset. In general, BIR performances better than the other three
methods in each dataset, DWR performances better than QsRank and Hamming Ranking,
Hamming Ranking is the worst method. The experiments also verify the necessity of hash
reranking.
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