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Abstract Nature images make up a significant proportion of the ever growing volume
of social media. In this context, automatic and rapid image enhancement is always
among the favorable techniques for photographers. Among the image representation
models, the Gaussian and Laplacian image pyramids based on isotropic Gaussian
kernels were once considered to be inappropriate for image enhancement tasks. The
recently proposed Local Laplacian Filter (LLF) updates this view by designing a
point-wise intensity remapping process. However, this model filters an image with a
consistent strength instead of a dynamical way which takes image contents into
account. In this paper, we propose a spatially guided LLF by extending the single-
value key parameter into a multi-value matrix that dynamically assigns filtering
strengths according to image contents. Since it is still very challenging to recognize
arbitrary image contents with machine learning methods, we propose a simple but
effective technique, which only approximates the richness of image details instead of
specific contents. This trade-off between concrete semantics and algorithm efficiency
enables filtering strengths to be spatially guided in the LLF process with little extra
computational cost. Experimental results validate our method in terms of visual effects
and a conditionally faster LLF implementation.
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1 Introduction

With the rapid development of Web 2.0 technologies and imaging devices, there are
more and more personal images available on the Internet. There would be hundreds or
even thousands of new photographs uploaded to social network websites just after a
single personal travel. Since most people are amateur photographers, it would be
attractive for them to develop techniques which are able to effectively enhance the
quality of their works. For example, before taking landscape pictures, a smart imaging
system automatically suggests the optimal scope of the visual field [14]. After taking
pictures, some post-processing technique enhances image details or generates special
effects [15]. In the process of sharing pictures onto social networks, an intelligent
system helps people to select best photos from all their works and provide intuitive
knowledge on photograph shooting [12]. In this paper, we primarily concern image
post-processing techniques such as detail enhancement.

As for detail enhancement, various image processing algorithms [1, 2, 9, 16, 17]
have been designed to achieve this goal such as anisotropic filtering, bilateral
filtering and their extensions. Generally, these methods consider the anisotropic
nature of image edges and bring about edge-preserving results. However, they often
have technical problems such as parameter tuning, edge halos, and optimization.
Different from the above-mentioned methods, Paris et al. [15] propose the Local
Laplacian Filter (LLF) and obtain promising results in editing image details or tones.
The LLF method distinguishes itself from other methods in the following aspects.
First, the backbones of LLF, i.e. Gaussian and Laplacian image pyramids, are based
on isotropic Gaussian kernels, which are opposed to the anisotropic nature of image
edges and were thought to be inappropriate for constructing edge-preserving
methods. In this sense, the LLF method makes contributions in enlarging the role
of Laplacian image pyramid in image processing. Second, the LLF can be simply
implemented with basic manipulations, e.g. convolution, resizing and linear
remapping, in a non-iterative style.

With in-depth exploration of LLF, we can further observe the following issues
about the method. First, the original LLF process is pixel-wise and each pixel
manipulation involves a whole-image remapping sub-process. Obviously, the compu-
tational cost would be very large (In the following sections, detailed analysis on the
complexity would be given). Second, the remapping process is solely determined by
pixel intensities, which totally ignores the spatial information of pixels and thereof
misses the spatial information of image contents. As for the first issue, Paris et al.
have proposed a fast version of LLF in their seminal research [15], where each
remapping is only conducted in a neighboring region. As for the second issue, it is
potentially helpful to borrow ideas from the fields such as image understanding or
content analysis.

In terms of image understanding, an image can be usually viewed as a spatial combination
of several semantic regions. For example, a scenery photograph often contains buildings, sky,
mountains, to name but a few. Ideally, our goal is to design a spatially guided remapping
function for the LLF model according to these semantic regions. Then we can dynamically
assign parameters to different image regions to achieve user-preferred effects. However, this
“classification and filtering” roadmap seems impossible due to some technical difficulties. As
the semantic gap always exists between low-level features and image contents [20], it is still a
very challenging task to have an image semantically partitioned. To bridge this gap, various
learning methods have been developed and achieved state-of-the-art results in image/video
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tagging [19, 22], index [6, 21], and 2D/3D object detection and searching [4, 5, 7, 11].
However, these methods are not suitable for our goal due to the following reasons. On one
hand, in terms of model training, as negative samples come from an infinite semantic space,
the trained model may be still unreliable to an ad hoc test image. On the other hand, from the
practical view, integrating these models may bring too much extra computational cost,
especially for the cases where images are expected to be post-processed in real time on
imaging devices.

One possible solution to the afore-mentioned problem could be a trade-off between
the efficiency of improved LLF and the concrete semantics of image contents. This
strategy is supported by the common observation that the image contents can be
divided into only two kinds, i.e. regions with rich image details and regions with few
details. Taking landscape images for example, they usually contain flat regions such
as the blue sky and texture-rich regions such as buildings or mountains. According to
the richness of image details, we can design a dynamical remapping function and
therefore improve the LLF model. In this roadmap, by proposing a simple technique
for approximating richness of image details, we construct a spatially guided
remapping function and embed it into the LLF model. Base on the low-level image
features directly from the Laplacian image pyramid, we use Chamfer distance trans-
form to realize this approximation. The contributions of our improved LLF method
are two-fold. On one hand, the filtering process can be spatially guided by the new
remapping function. In this way, we can assign different parameters to different
regions. For detail-absent regions, e.g. flat regions, it is reasonable to put small or,
practically, no filtering strength on them, which would structurally enhance the
efficiency of photo processing. On the other hand, the extra computational cost
brought from new remapping function is very low. Even when there is no flat region
throughout an image, the improved LLF simply degenerates to the original version
without introducing much computation cost.

1.1 Related research

As for research on image detail enhancement, Fattal et al. [3] propose a multi-scale
method based on the bilateral filter. As mentioned before, the bilateral filter can be
essentially viewed as a trade-off between edge-preserving and edge-smoothing. So
tuning the parameters to achieve an optimized result has to be taken into consider-
ation. Based on a psychophysical law, Gu et al. [8] propose a locally nonlinear model
to tune image tone mapping. Ling et al. [13] propose a detail enhancement frame-
work, including an energy optimization process, to preserve both tone and fidelity.
Different from these methods, our approach considers the image detail richness of
image contents and constructs a simple guiding map to spatially determine the
enhancing strength. In our method, estimating image detail richness is a key ingredi-
ent. Similarly, Hong et al. [10] utilize low-level image feature to approximate detail-
absent image regions, according to which movie captions are dynamically placed. Our
method is partially inspired by this idea but differentiates in that we directly utilize
image features from Laplacian image pyramid and thus introduce no extra feature
extracting process.

The rest of the paper is organized as follows. In Section 2, we demonstrate the principle of
original LLF and analyze its complexity. Then we present our spatially guided LLF version in
Section 3. Experiments for validating the effectiveness of our method are demonstrated in
Section 4. Finally, Section 5 concludes the paper and discusses possible future work.
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2 Local Laplacian Filter

In this section, we first introduce the principle of basic local Laplacian filter (LLF) and its
faster version. Then we analyze their complexities as well as the feasibility on further reducing
the complexity.

2.1 LLF principle

Here we assume that the size of an image I is N×N and its intensity is defined as a scalar
function I(x,y)∈[0,1] after normalization. As for color images, they can be simply viewed as
three independent channels (RGB) in the LLF model. With the target image, we can then
formulate the well-known Gaussian image pyramid and Laplacian image pyramid respectively,
i.e. {Gl}=CG(I) and {Ll}=CL({Gl}), where l∈0…n; n ¼ log2N . Equation 1 demonstrates
the relationship between these two pyramids:

Ll ¼ Gl −upsample Glþ1ð Þ l ¼ 1…n−1
Ln ¼ Gn l ¼ n

�
: ð1Þ

In this formulation, we observe that a Laplacian image pyramid can be derived
from a Gaussian image pyramid and they share a common spatial structure and a full
point-wise correspondence. Computationally, apart from the identical top layers in
{Gl} and {Ll}, the rest layers of {Ll} can be obtained by subtracting the upsampled
layer Gl+1 from Gl for l=0…n−1. With {Gl} and {Ll} at hand, an image in its
original resolution can be reconstructed through a recursive process I=Α({Ll}), i.e.
Gl=Ll+upsample(Gl+1) from the lth layer to the 0th layer.

LLF model defines a remapping function r(i,g) on the normalized image intensity:

r i; gð Þ ¼
g þ sign i−gð Þ

���i−g���=δr
� �α

if
���i−g��� ≤ δr

g þ sign i−gð Þ β
���i−g���−δr

� �
þ δr

� �
if
���i−g��� > δr

8<
: ; ð2Þ

r(i,g) is a scalar function and its input and output range are both between [0, 1].
The aim of this function is, given a center g, to remap i at the position of (xl,yl, l) in
{Gl} into r(i,g), where g and i are both scalar image intensities. Here α and β are
two key parameters that control the LLF effects. The former parameter α generates
effects of detail enhancing/smoothing while the later parameter β generates effects of
image tone mapping. In this paper, we primarily concern the detail manipulation and
set β=1. As for the parameter α, we can observe that the remapping functions
represent an “S” shape in Fig. 1, of which the geometry reveals the principles of
LLF detail manipulation. Specifically, when the parameter α is bigger than 1, the
intensity range near the center g are compressed into a smaller one. Since the image
edges can be perceived with bilateral contrast of imaging intensities, this inverted S-
shape mapping decreases this kind of contrast and thus eliminates many weak details.
In the contrary, when parameter α is smaller than 1, the remapping function produces
a detail-enhancing effect, i.e. the S-shape mapping enlarges subtle intensity differences
and thereof strengthens the image details. As is validated by the results in Fig. 2, we
can observe that remapping functions with smaller α produce more intensified detail
enhancing effects.

1532 Multimed Tools Appl (2016) 75:1529–1542



By embedding this remapping function into the image reconstruction process
I=Α({Ll}), the LLF can be summarized into the following process, which we call
as naïve LLF:

Inputs: Original image I, remapping function r(g,i), parameter δr
Output: Reconstructed image I '

Step1: {Gl}=CG(I),{L0l}=CL({Gl})
Step2: for all g=Gl (xl,yl)
Step3: Iremap=r (I,g)
Step4: {Gl}=CG (Iremap),{Ll}=CL({Gl})
Step5: L0l (xl,yl)=Ll (xl,yl)

Fig. 1 Two kinds of remapping function in detail smoothing (a) and enhancing (b) in LLF model

(a) the original image (b) =0.9 (c) =0.7

(d) =0.5 (e) =0.3 (f) =0.1

Fig. 2 Effects of LLF detail enhancement under different α a the original image b α=0.9 c α=0.7 d α=0.5 e
α=0.3 f α=0.1

Multimed Tools Appl (2016) 75:1529–1542 1533



Step6: end for
Step7: I ′=Α ({L0l})

2.2 Complexity analysis and our idea for improving LLF

From the above algorithm, we can conclude that the LLF method includes the following
process: image pyramids construction, point-wise remapping, and image reconstruction. It is
obvious that the main computation load comes from the remapping process. For a single point
in {Gl}, in the naïve LLF, the complexity of remapping function is CN2. And the whole

complexity of LLF can be approximated as CN 2 ∑
n−1

j¼0

1
4

� � j
N 2≈C1N4 , which is so expensive that

it is not practical in most image processing applications. To tackle this problem, Paris et al. [15]
propose an improved sub-region LLF. Instead of the whole image region, the spatial range for
each point-wise remapping can be reduced into a K×K sub-region (K=3(2l+1)), where the
image pyramids are built. Therefore, the complexity of sub-region LLF is reduced to

C1 ∑
n−1

j¼0

1
4

� � j
N2K2 , which can be further derived as C2N

2log2N
2.

The above LLF methods adopt a universal parameter α for all pixels in an image,
which is irrelevant to spatial location or, to some extent, image contents. In our
roadmap, we propose to improve LLF by spatially guiding the parameter value of α,
i.e. distributing different values of α to different image regions, according to the
richness of image details. In this way, we can extend the former universal filtering
process to a dynamical one. Also, the improved model under our model can be faster
than the sub-region LLF. For example, we can empirically assign no strength (α=1)
to the flat or detail-absent regions so that we can omit the C1K

2 remapping process
for these pixels. This would have the potential to structurally reduce the whole
complexity of the LLF process.

We then quasi-quantitatively analyze the feasibility for reducing the complexity.
Suppose the complexity of the sub-region LLF and the detail approximation process
are O1 and O2, the ratio of non-LLF region is η (η<1). To reduce the computation
cost, it should satisfy the following in equation (1−η)O1+O2<O1, i.e. O2/O1<η. This
means that, on one hand, given a fixed method on approximating αs for each pixel,
the lower bound for η, at which the computation cost can be saved, is O2/O1. On the
other hand, given an object image (η is fixed), it is demanded that the complexity of
introduced detail approximation method be as small as possible.

3 Content based Local Laplacian Filter

As the Laplacian operator is essentially the second order differential, it eliminates the
0th and first order intensity variation, i.e. producing zero response in flat regions and
gradually varying regions. Instead of supervised learning methods aiming at classify-
ing the image contents, we directly utilize the bottom layer of {Ll} to estimate the
richness of image details. This procedure produces an auxiliary matrix of the same
size as image I, which can be incorporated into the remapping function.
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We normalized the L0 layer as a scalar function f(x,y)=γ∈[0,1] defined on the
grids. The locations of the non-zero γs are the places where image details respond to
Laplacian filtering. However, it is inappropriate to only manipulate these discrete non-
zero dots or edges in the remapping process. Instead, we propose to estimate the
richness of image details by overlapping the impacts of these dots or edges.

To this end, we define a function h(f−1(γ)) that simulates the impact of γ -valued
points in L0, where they are regarded as electric charges in the image domain. So the
h(⋅) function simulates a truncated electric potential produced by these charges. Then
the auxiliary image can be represented as an integral of these h(⋅) functions:

map Ið Þ ¼
Z

τ
h f −1 γð Þð Þdγ; ð3Þ

where τ∈(0,1].
To achieve the discretization of the integral operator in Eq. 3, we divide the integrating

range into k intervals {Γi}={((i−1)Δ,iΔ]},i=1…k, where Δ is the length of an interval. We
use the Chamfer distance transform to approximate the electric potentials:

map Ið Þ ¼
Xk

i¼1
Cham f −1 Γ ið Þð Þ: ð4Þ

In practice, the Laplacian response image is decomposed and translated into a set of binary
images, i.e. f −1(Γi). The positions of zero-value pixels in a binary image are those whose
intensities in L0 fall into the interval Γi. The complexity of the conducting these Chamfer
distance transforms is kC0N

2=C3N
2. The distance transform, whose complexity is only

proportional to N2, i.e. the number of pixels of an image, comprises the main body for building
the auxiliary image.

Empirically, after accumulating the histogram of an image’s Laplacian response, e.g.
Fig. 3c, we observe that the non-zero responses in L0 layer distribute in a small range after
the normalization. Therefore, by reducing the number of intervals, i.e. k, we can further lower
the computation cost of Eq. 4. We choose a smaller k ′ so that the (0,k ′Δ] range includes 95 %
of the non-zero responses. As the value of k ′/k is usually much smaller than 1, we can thus
reduce the number of distance transforms.

With the constructed auxiliary images, e.g. the second column of Fig. 5, we can dynam-
ically assign non-single αs to different image regions. As the parameter α is inversely
proportional to the enhancing strength, we linearly map the values in an auxiliary image onto
the interval [αmin,αmax], of which the range can be determined by users. Then we can obtain a
parameter matrix αmap and incorporated into the sub-region LLF framework to construct the

(a) (b) (c)

Fig. 3 a The original image, b the L0 layer, and c the accumulation of (b)’s histogram
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spatially guided LLF. Usually, we can choose αmax=1 so that the detail-absent regions can be
omitted by the LLF process. Recall that the spatially guided LLF is able to save running time
on condition that the complexities satisfy O2/O1<η<1. Specifically, compared with sub-region
LLF, our LLF model achieves a faster implementation when the ratio between areas of detail-
absent region and the whole image region is larger than O2/O1=C3/(C2log2N

2). Although we
cannot give a precise value of this ratio, this condition could be easily satisfied for most images
due to a qualitative observation that the bound can be very small in most cases. The following
experiments also empirically validate this observation.

4 Experiments

In this section, we first analyze parameter selection of our algorithm. Then we validate our
proposed spatially guided LLF in the following two aspects, i.e. the qualitative visual quality
and the quantitative temporal costs. As for the experimental data, we choose three images used
in [15] with a resolution of 800*500 and three images collected from the Internet with a
resolution of 1800*1200. The algorithms were implemented with un-optimized codes and no
parallel techniques were used. Since the naïve LLF is obviously much more time-consuming,
we only compare our method with the sub-region LLF.

4.1 Parameter selection

In the sub-region LLF and our improved LLF, the main parameters are α, β, δr and k and k'. As for
the sub-region LLF, the parameter α is set to 0.4 in the experiments. As for our methods, the
dynamical range forα is set to [0.2,1]. The parameters β and δr for bothmethods are respectively set
to 1 and 0.2.

(a) k=256 (b) k=128 (c) k=64

(d) k=32 (e) k=16 (f) k=8

Fig. 4 Auxiliary images for guiding α values with different ks a k=256 b k=128 c k=64 d k=32 e k=16 f k=8
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In the following, we discuss the selection of parameter k. As we have chosen 8-bit digital
images as the experimental data, the pixel values are discretized from 0 to 255. In this context,

(a-1) olddome (a-2) map (a-3) spatially guided LLF (a-4) sub-region LLF[2]

(b-1) polin (b-2) map (b-3) spatially guided LLF (b-4) sub-region LLF[2]

(c-1) easter (c-2) map (c-3) spatially guided LLF (c-4) sub-region LLF[2]

(d-1) scence1 (d-2) map (d-3) spatially guided LLF (d-4) sub-region LLF[2]

(e-1) scence2 (e-2) map (e-3) spatially guided LLF (e-4) sub-region LLF[2]

(f-1) scence3 (f-2) map (f-3) spatially guided LLF (f-4) sub-region LLF[2]

Fig. 5 Visual comparisons between sub-region LLF and our method (The black frames in (a-1), (c-1), (d-1) and
(e-1) are for enlarged comparisons in Fig. 6) (a-1) olddome (a-2) αmap (a-3) spatially guided LLF (a-4) sub-
region LLF[2] (b-1) polin (b-2) αmap (b-3) spatially guided LLF (b-4) sub-region LLF[2] (c-1) easter (c-2) αmap

(c-3) spatially guided LLF (c-4) sub-region LLF[2] (d-1) scence1 (d-2) αmap (d-3) spatially guided LLF (d-4)
sub-region LLF[2] (e-1) scence2 (e-2) αmap (e-3) spatially guided LLF (e-4) sub-region LLF[2] (f-1) scence3 (f-
2) αmap (f-3) spatially guided LLF (f-4) sub-region LLF[2]
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the parameter k can be chosen as an integer which equally divides the range of image
intensities. The αmap based on the discretized Eq. 3 can be best approximated with k=256.
Practically, we can further decrease the number of intervals, i.e. k, to save the computational
cost. From Fig. 4, we observe that larger ks produce smoother maps, and small ones generate
block effects since less number of fields, which is generated by Chamfer distance transform,
are accumulated. In our method, we empirically choose k=64 as it generally keeps the
smoothly varied αs meanwhile further decreases the computational cost. With the determined
k in our experiments, the values of parameter k ′ fall around 16 in our experiments.

4.2 Comparison between sub-region LLF and spatially guided LLF

Figure 5 demonstrates the visual effects of the sub-region LLF and spatially guided LLF on the six
experimental images. Generally, these twomethods achieve similar effects of detail enhancement on
these images (both for grayscale images and color image), e.g. the enhanced distant mountains in

(a) Enlarged views of the original experimental images, i.e. olddome, easter, scence1 and scence2

(b)Enlarged views of the output images based on our spatially guided LLF

(c)Enlarged views of the output images based on the sub-region LLF[2]

Fig. 6 Enlarged sub-regions of several experimental images for visual comparisons between sub-region LLF
and our method a Enlarged views of the original experimental images, i.e. olddome, easter, scence1 and scence2
b Enlarged views of the output images based on our spatially guided LLF c Enlarged views of the output images
based on the sub-region LLF[2]

Table 1 Comparisons of running time between sub-region LLF and our method

olddome polin easter scence1 scence2 scence3

sub-region LLF (s) 3.51 3.46 1.39 22.19 22.35 22.46

spacially-guided LLF (s) 1.94 3.43 0.92 18.13 12.58 12.87

αmap (ms) 1.08 1.32 1.15 5.55 5.61 5.04
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“scence1” and “scence3”. Differently, our method does not bring too much turbulence for the flat
regions since it uses an auxiliary image to detect these regions and put no enhancing strength on
them. In contrast, the sub-region LLF puts a universal strength (in our experiments theα is set to 0.4
asmentioned above) on all pixels, whichwouldmistakenly exaggerate themicroscopic variations in
these regions. For the validation at a finer scale, we select some representative sub-regions from the
experimental images and enlarge the results of both methods for further comparison. From Fig. 6,
we can see that ourmethod generatesmuch less unnecessary turbulence than its counterpart 1) in flat
regions and 2) around salient boundaries. As for the former case, it is mainly due to the zero filtering
strength determined by our model; as for the later case, the distance transformmodeling contributes
to the descending filtering strength around salient boundaries. However, from the second column of
Figure 5, we have to note that our technique only roughly detect detail-absent regions so that an amap
is far from a precise image content partition. As is discussed in Section 1, this fast unsupervised
estimation is a trade-off between accuracy and efficiency. So we choose to distribute gradually
descending strengths near the true boundaries between detail-rich and detail-absent contents.

In terms of temporal costs, we can observe that our method can be “conditionally” faster
than the sub-region LLF from Table 1. On one hand, besides the second image “polin”, the
running time of our methods on all other five images shows impressive improvements over its
counterpart. Moreover, the time for computing αmap s only account for 0.1 % of the whole
algorithm, which satisfies the demand for detail richness approximation. On the other hand,
although this temporal advantage no longer exists for images with little or no flat regions, our
method is still able to dynamically assign the filtering strength with certain user preference,
without introducing much computational cost.

5 Conclusions

In this paper, we propose an improved local Laplacian filter that spatially guides the filtering strength
by approximating the richness of image details. This method endows the LLF with the ability to
dynamically assign appropriate parameter values to different image contents. We use a simple
distance transform technique to achieve the detail richness estimation, which introduces little
computation expense compared to the whole framework. Experimental results on some represen-
tative images validate the effectiveness of our method. Ourmethod is also extendable to other image
editing tasks such as LLF tone mapping. As for the future work, we can conduct parallel
implementation to further speed up the algorithm. Also, as our method is totally unsupervised, we
can consider a less supervised way to achieve better results by taking advantages of user-provided
interactions [18].
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