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Abstract This paper proposes an efficient algorithm for detecting occlusions in a video
sequences of ground vehicles using color information. The proposed method uses a rectan-
gular window to track a target vehicle, and the window is horizontally divided into several
sub-regions of equal width. Each region is determined to be occluded or not based on the
color histogram similarity to the corresponding region of the target. The occlusion detection
results are used in likelihood computation of the conventional tracking algorithm based on
particle filtering. Experimental results in real scenes show that the proposed method finds
the occluded region successfully and improves the performance of the conventional trackers.

Keywords Computer vision · Object tracking · Particle filters · Occlusion detection ·
Histogram similarity

1 Introduction

Tracking a moving object in a sequence of visual scenes is essential in a variety of appli-
cations such as image-based traffic surveillance systems, car safety alarms, and unmanned
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ground vehicles (UGV) [6, 8, 23, 37, 38, 40]. Video images contain measurement noise
due to a variety of reasons, such as image sensor noise, vehicle movement, and other obsta-
cles in the scene. Therefore, statistical approaches are usually adopted in solving the object
tracking problems. One of the popular methods is a Kalman filter [5, 14, 20, 28, 30, 41].
It is assumed that the equations for the object location change are linear functions and
their distributions are Gaussian, with additive, independent Gaussian noise. A state-space
model is exploited to predict the object location in the observation from the past ones [28],
and the prediction error is used to adaptively update the model. It has been applied to
stereo camera-based object tracking [5]. However, a critical drawback of Kalman filters is
that it fails to predict the observation when the change of movement is nonlinear and has
non-Gaussian distribution. Particle filters based on Sequential Monte Carlo (SMC) meth-
ods were shown to be quite efficient in tracking visual objects [3, 25, 26, 29, 32, 33, 42],
even when the dynamics of trajectories are non-linear and non-Gaussian. In particle filter-
ing, the distribution of the position change vector is modeled by an ensemble of particles,
and the object location is predicted by maximum a posteriori (MAP) estimation. The parti-
cles are usually updated by importance sampling where the importance is measured by the
posterior probability given the observations [17, 18, 24]. Unlike Kalman filtering, the distri-
bution is a non-parametric model stored in a set of particles, so any non-Gaussian dynamics
can be properly approximated. Another type of popular methods is mean-shift algorithm
[7, 9, 11, 27, 36]. A vincinity of the mean target location from the previous state is explored
to predict the most likely object location. The observation is used to update the mean
target location. Color histogram is usually employed to find the distance betwen the pre-
diction and the observation. A joint, spatial color histogram is used in mean-shift tracking
[10, 12, 38]. The advantage of mean-shift is that the search space is reduced, yielding a
relatively fast tracking.

Those statistical approaches are very flexible and applicable to many realistic situations,
but sometimes fail to track the target object especially when the target is occluded or clut-
tered. In the situations where the objects are completely occluded by other objects, they are
handled by dynamic models such as a linear velocity model [5], and a nonlinear dynamic
model [18]. In the cases of partial occlusion, the occluded regions or parts of contours are
actively detection, and only reliable regions or contours are used in tracking. The shape
priors of the target contours are given ahead of time using PCA (principal component analy-
sis) [13], or constructed online [39]. Other methods include hierarchical decomposition [1],
using a priori object shape information [16, 31, 34, 35], and learning the similarity patterns
of occluded objects [21]. Although these methods have been shown effective, complicated
parametric models and training data are usually required.

This paper proposes a novel method for identifying occluded part of the target object
in an instantaneous scene for particle filtering-based visual object tracking. Particles, if
modeled well, correspond to candidates for the next movement of the target object. In the
proposed method they are defined by rectangular windows [25]. The proposed method is
composed of two stages: occlusion detection in particles and occlusion pattern reasoning. In
the first stage, the rectangular window obtained by each sample of the particle ensemble is
divided horizontally into several non-overlapping, equi-sized sub-windows. The histogram
distance of each sub-window to the corresponding part of the target window is computed,
and used in determining if each sub-window is totally occluded. In the second stage, the
sample occlusion detection results are combined to derive the most likely occlusion pattern.
For each pixel of the current image in the sequence, the probability that the pixel belongs
to the occluded region is computed by accumulating the sample occlusion detection results.
The computed pixel occlusion probabilities are combined to identify which part of the target
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object is likely to be occluded by other objects. The occluded parts are excluded in comput-
ing the matching probability of each sample. The proposed method is well mingled in the
particle filtering framework so that the tracking performance is not degraded even if there
is no occlusion.

The paper is organized as follows. Section 2 describes the proposed method, Section 3
shows the experimental results in real car tracking examples, and Section 4 summarizes our
findings and future research issues.

2 Method

2.1 Particle filter formulation

The particle filter is generally described by a standard state space model that has a set of
unknown, hidden states linked to an observation process. There is the first-order Markovian
assumption that the hidden state at time t is affected by the state at t − 1 only. Given the
observation sequence from the initial time 0 to t , denoted by z0:t

.= [z0 . . . zt ], target state
st is a random vector whose behavior can only be described by a posterior probability
given the observations, p(st |z0:t ), which is obtained by the following recursive probabilistic
generation [25]:

p(st |z0:t ) ∝
p(zt |st )

∫
p(st |st−1)p(st−1|z0:t−1)dst−1 , (1)

The conditional state density p(st |z0:t ) is then approximated by a set of M samples,{
smt |m = 1 . . .M

}
. The samples are called particles and the recursive derivation process in

(1) within a sequential Monte Carlo framework is called particle filtering. To ignore sam-
ples with very low probabilities, an additional sampling based on some importance measure
is generally employed [38].

2.2 Sample window segmentation for occlusion detection

In visual object tracking, a tracker is usually modeled by a rectangular region in the observed
image, called a window. Assuming that the initial target position is known, the spatial infor-
mation of the window is usually defined by a vector of center coordinate and scale from
the initial window [25, 38]. Those constitute a sample in the particle filtering. The similar-
ity of the target and each sample of particle filters can be measured by the resemblance of
the color histograms. If other interfering objects blocks the target object partly or entirely,
it may disrupt the histogram of the sample and lower the similarity significantly.

To identify which part of the target is occluded, we horizontally divide each sample win-
dow into several sub-windows with equal width. As shown in Fig. 1, the candidate tracking
window is horizontally divided into N non-overlapping sub-windows,

W(smt ) =
N⋃
i=1

Wi (smt ). (2)

The color information of each sub-window is extracted by 110 histogram bins using the
hue-saturation-value (HSV) color space [19, 25], then only 80 % bins out of 110 are chosen
based on the probabilistic palette model [15]. Let qi(k; smt ) and q∗i (k) be functions returning
the relative frequency at histogram bin k measured from Wi (smt ) and the same sub-window
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Fig. 1 Division of a sample window into five horizontal sub-windows

in the initial target image, respectively, then the distance from the initial target is calculated
by the Bhattacharyya distance [11]:

Di(smt ) =
[

1 −
K∑
k=1

√
q∗i (k)qi(k; smt )

]1/2

, (3)

where K is the total number of histogram bins. Because motor vehicles move on the ground,
an interfering object intrudes from the side and passes by the target, so horizontal division
is likely to find the various patterns of partial occlusions.

Between every pair of adjacent sub-windows, the forward difference for the sub-window
distance is computed:

ΔDi = Di+1 −Di , i = 1, . . . , N − 1, (4)

where the argument smt in (3) is omitted for a compact notation. The value of ΔDi represents
the magnitude and direction of the local change in the histogram distance from Wi to Wi+1.
A positive, large ΔDi is observed when there is a big distance leap between adjacent sub-
windows, which is the case that Wi+1 is occluded and Wi is not. A negative ΔDi leads to
the opposite situation. The use of forward difference instead of absolute distance enables
eliminating the effect of the overall distance elevation due to illumination change or other
color-influencing factors.

Figure 2a–d illustrate the horizontal window segmentation for occlusion detection. The
rectangles around the target vehicles are tracking windows divided by five sub-windows.
The first bar graphs below the images represent the histogram distances of sub-windows,
and the second bar graphs display their forward differences. In Fig. 2a and b, the target is
the white vehicle, and a motorcycle blocks the target in different regions. In Fig. 2a the sub-
window distances D3 ∼ D5 are much larger than D1 and D2, resulting in the largest ΔD2.
In this case, the indices of the occluded sub-windows are {3, 4, 5}. In Fig. 2b, the occluded
region is identified by {1, 2} because the magnitude of ΔD2 is large enough to the negative
side. From these, the left occlusion boundary may be found by sub-window i if ΔDi is
negatively large enough, and the right boundary is found by i + 1 if ΔDi is positively large
enough. Figure 2c has both left and right boundaries at i = 2 and 3, so the occluded sub-
window indices are {2, 3}. Figure 2d also has both at sub-windows 4 and 1, but there are
two interfering objects from the outside because the left index is larger than the right one.

In Table 1, we propose an algorithm to classify various occlusion patterns using the
forward difference of sub-window histogram distances. The output of the algorithm is, for
each sample, a set of integers in [1, N] for the indices of the occluded sub-windows. Out of
ΔD1 ∼ ΔDN−1, only the maximum and the minimum are considered to prevent unreliable
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occlusion in the right side occlusion in the left side

occlusion in the center occlusion in both ends

a b

c d

Fig. 2 Various occlusion patterns found by horizontal split. The indices of occluded sub-windows are: a
{3, 4, 5}. b {1, 2}. a {2, 3}. a {1, 4, 5}

occlusion boundaries. In lines 7–10, the left and right occlusion boundaries are found by i+
and i−. With an appropriate choice of θΔD, the occlusion patterns of individual samples are
correctly identified. Lines 12 and 14 correspond to the cases of Fig. 2c and d, respectively.
However, when i+ = 1 and i− = N , it can be either total or no occlusion. The two cases are
distinguished by comparing the average histogram distance with a threshold θD as shown in
line 17. The range of the Bhattacharyya distance is [0, 1], so 0.5 was a good start for θΔD

and θD.

2.3 Finding a global occlusion pattern

Figure 3 illustrates is overall finding global occlusion pattern method. In A, the occluded
sub-window indices are found by Table 1. Let T (x, y, smt ) be a function whose value
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Table 1 Occlusion pattern reasoning for individual samples

a cb

Fig. 3 Process of detecting occlusion region using the occlusion map

is 1 when a pixel (x, y) belongs to a window defined by a sample smt in (2), such
that

T (x, y, smt ) =
{

1 if (x, y)∈W(smt ),
0 otherwise

. (5)

The score function that a pixel (x, y) belongs to the target region at time t is obtained by
averaging T (x, y, smt ) over all the samples,

T (x, y, t) = 1

M

M∑
m=1

T (x, y, smt ) . (6)
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Similarly, let O(x,y, smt ) be an indicator function that a pixel (x, y) belongs to any
occluded sub-window defined by sample smt :

O(x, y, smt ) =
{

1 if (x, y)∈Wi(smt ) , ∃i∈Io(smt )
0 otherwise

, (7)

where a set of indexes of the occluded sub-windows, IO(smt ), is defined by the algorithm in
Table 1.

The score function that a pixel (x, y) is occluded is obtained by averaging O(x, y, smt )
over all the samples, such that

O(x,y, t) = 1

M

M∑
m=1

O(x, y, smt ) . (8)

Using the score function, an object target region and occluded parts can be found by
simple thresholding. Let RT (t) be a target object region and RO(t) be an occlusion region
obtained by

RT (t) = {(x, y)|T (x, y, t) > θT } , (9)

RO(t) = {(x, y)|O(x,y, t) > θO} , (10)

where θT and θO ∈ [0, 1] are fixed threshold values. Please note that O(x, y, smt ) is always
less than or equal to T (x, y, smt ), so O(x,y, t) ≤ T (x, y, t) for any pixel (x, y). Therefore,
we enforce θO > θT to make RO(t) ⊂ RT (t).

The procedure in (2)–(10) is illustrated in Fig. 3A and B. The region surrounded by the
outside contour is the target region, RT (t), and the lightly colored region inside the contour
is the global occlusion region, RO(t). Then, for a practical reason, the free-form occlusion
pattern RO(t) is converted to a sub-window-form occlusion patterns. In Fig. 3C, a window
W∗(t) is found by a smallest rectangle to surround all RT (t), and it is divided horizontally
in the same way as (2), W∗(t) = ⋃

i W∗
i (t).

Each sub-window W∗
i (t) is determined to be occluded or not individually. The ratio of

the number of pixels in the occlusion area to that in the target area, written by

γ (t, i) = A(RO(t) ∩W∗
i (t))

A(RT (t) ∩W∗
i (t))

, (11)

where A(·) is an area function of image regions. Then, let I∗t be a index set of sub-windows
of the target region that are likely to be unoccluded, which is given by

I∗t = {i|γ (t, i) ≤ 0.5}. (12)

The global occlusion pattern is combined results of occluded sub-windows. This process
expressed in the bottom of Fig. 3C.

The distance of sample smt from the initial target is updated by I∗t :

D(I∗t , smt ) =
∑

i∈I∗t Di(smt )

N
. (13)

Finally, the likelihood of a single sample in (1) is obtained by

p(zt |smt ) ∝ exp
[
−λ{D2(I∗t , smt )}

]
, (14)

where λ is a positive contant that is empirically determined.
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Fig. 4 Comparison of the tracking performances for motorcycle occlusion sequence. a ours, b L1 tracker, c
conventional particle filtering, and d mean-shift

3 Experimental results

The performance of the proposed method is compared with the conventional particle fil-
tering [26], L1 tracker [4] and mean-shift tracking algorithm [7, 11, 27, 36]. We test three
video sequences capturing real ground vehicles with occlusions. The videos include various
types of occlusions that usually happen with motor vehicles and pedestrians.

3.1 Evaluation method

To compare the performances quantitatively, we used the normalized intersection ratio
[22, 29] and the tracking error measure [29]. The normalized intersection ratio is computed
by the ratio of overlapped are between hand-labeled ground truth and the tracking window
from the tracker state, given by

accuracy = |G ∩ T |
|G ∪ T | , (15)

where G and T are sets of pixels within ground truth and tracker output regions, respectively,
and the cardinality operator | · | returns the number of pixels in a set [22].

We added another performance measure for measuring the general tracking error, com-
puted by the Euclidean distance between the center points of ground truth and the tracking
window from the tracker state [29].



Multimed Tools Appl (2015) 74:227–243 235

3.2 Occlusion between cars and motorcycles

Figure 4 shows the tracking results of the proposed method and the conventional methods.
The scene is from a downtown area, and the target is the white vehicle in the center, which
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Fig. 5 Comparison of the tracking performances for motorcycle occlusion sequence. a intersection ratio, b
tracking error by centroid distance between ground truth and the tracker window
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Fig. 6 Comparison of the tracking performances for the “TUD-Crossing” sequence. a ours, b L1 tracker, c
conventional particle filtering, and d mean-shift

is occluded by two motorcycles. The motorcycles move very fast and partly block the target
vehicle in the video sequences while passing through the gap between the target and the
observer. The first column, Fig. 4a, shows the tracker windows by yellow boxes for the
proposed method. The other columns, Fig. 4b–d, show the results of L1 tracker [4], basic
particle filtering [26], and mean-shift tracking [11], respectively. In the first row (frame
10), there no occlusion, and the four methods successfully tracks the target. In the second
row (frame 40), a motorcycle driver blocks the target to the right. The proposed method
and L1 tracker keep track of the target including the occluded area. However, the particle
filters is shifted to the left due to the occlusion, and mean-shift tracker is enlarged because
of the uncertainty added by the occlusion. In the third row (frame 80), although there is no
occlusion, all three conventional methods exhibit incorrect tracking windows, enlarged to
include the target. This is because of the tracking error accumulated from the past frames. At
frame 100, another motorcycle hugely occluded the target, and this time even the proposed
method failed to correctly track the target. Unlike the other 3 methods, the particle filters
totally loses the target due to the occlusion. At frame 130, a little occlusion by another
car from the right-bottom corner, and the proposed method restored to a correct position,
L1 and mean shift trackers track the target with enlarged tracking windows. However, the
particle filters cannot restore the error, so it perfectly lost the target. When occlusion occurs,
the likelihood of the target is decreased, so the uncertainly grows. Generally L1 and mean-
shift trackers extend the tracking window to recover the uncertainty. The proposed method
actively finds the uncertain parts due to the occlusion and subtracts from the likelihood
calculation, so even the occluded part of the target was able to be tracked.
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Fig. 7 Comparison of the tracking performances for the “TUD-Crossing” sequence. a intersection ratio, b
tracking error by centroid distance between ground truth and the tracker window

A quantitative evaluation was carried out using intersection ratio and tracking error by
the center positions introduced in Section 3.1. The evaluation results are shown in Fig. 5.
The top graph shows the intersection ratios, ranging from 0 (no intersection) to 1 (perfect
match). Larger the number, better the tracking result is. A few frames before 40, occlusion
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Fig. 8 Comparison of the tracking performances for a single pedestrian crossing sequence. a ours, b L1
tracker, c conventional particle filtering, and d mean-shift

occurs as shown in the second row of Fig. 4. The tracking errors are accumulated until
frame 50, and the proposed method recovered the intersection ratio to larger than 0.8 around
frame 60, while the others could not recover and have the intersection ratio below 0.4.
Another huge occlusion occurs around frame 100, and the particle filters completely lost the
target, and the intersection ratio became 0. L1 and mean-shift tracker kept enlarged tracking
window and the ratio value stayed almost the same. The proposed method was affected
by the occlusion at frames 95–100, the ratio value being below 0.6, but quickly recovers
to 0.8. The same phenomena were observed in the centroid distance error measure. The
quantitative comparison proves that the proposed method remarkably improved the tracking
performance when occlusion occurs.

3.3 Occlusion by pedestrians

Two more vehicle tracking scenarios containing occlusions were also tried. The images in
Fig. 6 are from “TUD-Crossing” dataset [2], where a lot of pedestrians pass before the
target vehicle. Figure 7a and b are the quantitative comparison by the intersection ratios and
centroid distances. In Fig. 6a, the proposed method successfully tracks the target vehicle
even when pedestrians block the target. Especially at frames 90–120, 3 pedestrians pass
before the target, and the tracking performance is not affected. In Fig. 6c, particle filtering
without occlusion detection, the pedestrians hugely affected the tracker, and the target is
lost perfectly at frame 120. Figure 6b and d shows the results of L1 and mean-shift trackers.
Although they keep track of the target even with the occlusion, the performance is greatly
decreased due to the pedestrian occlusion.
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Fig. 9 Comparison of the tracking performances for a single pedestrian crossing sequence. a intersection
ratio, b tracking error by centroid distance between ground truth and the tracker window

Figure 8 is another pedestrian-vehicle case. The tracking windows are drawn by yellow
rectangles, and the quantitative performance comparison is done in Fig. 9. Similarly to the
previous results, the proposed method outperformed the conventional methods a lot.
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4 Conclusions

This paper proposes a practical algorithm for detecting occlusions in a color image sequence
of ground vehicles based on matching color histograms of horizontally segmented rectangu-
lar windows. The proposed method divides the tracking windows into a number of vertical
windows, and each sub-window is determined to be occluded or not to find a unified occlu-
sion pattern. The unified occlusion pattern is then used to update the likelihood of the current
tracking window and the target window, and the target can be tracked including the occluded
region, while other methods cannot include the occluded region in the tracking windows.
Performance comparison on three images sequences of vehicles and pedestrians shows the
validity of the proposed method. Future work include applying other types of image descrip-
tors based on the shape of the target to improve the performance of the proposed occlusion
detection.
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