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Optimization of a robot-served cart capacity
using the three-dimensional single bin packing problem
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Abstract Given a set of rectangular-shaped items such as dishes, cups, saucers, or forks
and a rectangular tray of a cart, the three-dimensional single bin packing problem (3D-
BPP) involves orthogonally packing a subset of the items within the tray. If the value of
an item is given by its volume, the objective is to maximize the covered volume of the
tray. Thus, this paper aims to optimize the transport capacity of a serving robot carry-
ing a cart. This experiment, the first of its type, proves the feasibility of this endeavor
efficiently.

Keywords Three-dimensional single bin packing problem · Three-dimensional knapsack
problem · Serving robot · Optimization · Cart · Tray

1 Introduction

James Kuffner at Google introduced the term “Cloud Robotics” to describe a new approach
to robotics that takes advantage of the Internet as a resource for massively parallel com-
putation and sharing of vast data resources [4]. The robot specialized company, Willow
Garage, is funded from Google, has received attention to introduce “Cloud Robotics”, is
exploiting the cloud resource of Google, for the services such as the context-awareness
and the object manipulation that are required to process enormous data. This paper,
based on the concept of Cloud Robotics, would rather focus on optimizing the task plan-
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Fig. 1 World’s first tea serving robot: Karakuri (leftside) and world’s best universal serving robot: ASIMO
(rightside)

ning in order to serve effectively dishes by using a cart or tray than do simple motion
planning [7].

When we have dinner at a corner table in a crowded restaurant, we want to be served by
a kind and experienced waiter/waitress. This person should also be strong, as he/she serves
dinner on a heavy dish cart or a tray filled with the ordered food, which can reduce the
waiting time as a result. This mechanism can also be applied to a serving robot. If a stronger
serving robot carries twice the number of dishes compared to other normal serving robots,
it will be able to save time when multiple dishes of food are served. The longer the time
taken and the greater the distance covered, the more important storage efficiency becomes
when a robot serves in this manner.

Thus, this paper formulates this problem as a three-dimensional finite bin packing prob-
lem (3D-BPP) and aims to optimize the amount of a dish cart capacity which the serving
robot can carry at one time. The rest of the paper is composed as follows. Sections 1.1 and
1.2 introduce the existing works related to the contribution of this paper: serving robots
and 3D-BPP. In Section 2, we formulate the optimization problem of a cart storage using
the 3D-BPP. Section 3 describes the structure of the ONEBIN algorithm [2, 5, 6] for find-
ing possible positions for placing items. The experiments in Section 4 are performed to
demonstrate the feasibility of the proposed scheme in Sections 2 and 3. The empirical and
theoretical analyses follow to investigate its characteristics. Concluding remarks follow in
Section 5.

Fig. 2 PR2 can reach for a variety of bottles, grasp, and places them on a cart using its ‘Pick and Place’
operation based on the cloud resources
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Fig. 3 PR2 is clearing up tables with a cart (leftside: stacked homogeneous plates and rightside: stacked
heterogeneous plates, bowls, and cups)

1.1 Paradigm shift of serving robot

The world’s first serving robot is the fascinating Karakuri, which serves tea as shown in
Fig. 1. It was designed nearly four centuries ago and today remains a remarkable example of
Japan’s keen sense of robotics [9]. Currently, the all-new ASIMO, developed by Honda, can
perform serving tasks, such as carrying a dish cart, picking up a glass bottle and twisting off
the cap, or gently holding a soft paper cup while pouring a liquid into it, with great dexterity
[1].

While the ASIMO is a kind of standalone robot, the PR2 [7, 8], developed by Willow
Garage is a representative cloud robot which performs the dexterous tasks similar to the
ASIMO’s as shown in Figs. 2, 3 and 4. Thus while state-of-the art serving robots focus only
on mobility, manipulability, and types of foods to be served, we aim to increase the transport
or storage capacity of the dish cart carried by a serving robot. Hence, it is formulated as a
three-dimensional finite bin packing problem (3D-BPP) in order to optimize the amount of
dish cart storage which the serving robot can carry at one time in the following section.

1.2 Three-dimensional single bin packing problem

Figure 3 shows the examples of how a serving robot can take advantage of the 3D-BPP
concept. Here each item is considered as a rectangular-shaped item. For the detail, the next
section describes the 3D-BPP and models a cart problem using it. The Three-Dimensional

Fig. 4 A serving robot carrying
a dish cart. The depth of the
tallest item(s) becomes D
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Table 1 Item Q3list

j 3D shape wj hj dj Description

1 5 32 99 FORK

2 25 25 3 PLATE

3 4 22 99 KNIFE

4 16 16 99 SAUCERCUP

5 3 12 99 TEASPOON

6 10 7 99 BOWL

7 7 7 99 CAN

8 6 6 8 COCKTAILGLASS

9 8 8 99 COLACUP
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Table 2 Parameters and lower bounds for 3D-BPP

Index Par. Description

1 I Instance defined by item j and all the pieces

currently assigned to bin i

2 i Bin index

3 n Number of items or rectangular pieces

4 J {1, · · · , n} A set of items

5 j Item index or item name

6 W Bin (tray) width

7 H Bin (tray) height

8 D Bin (tray) depth

9 wj Width of item j

10 hj Height of item j

11 hj Depth of item j

12 I ′ Instance defined by the unassigned items and

all the pieces currently assigned to active bins

13 c Number of currently closed bins

14 L0 L0 = �
∑n

j=1 hjwj dj

HWD
�

15 LWH
1 Refer to [6]

16 LWH
2 Refer to [6]

17 L1 max
{
LWH

1 , LWD
1 , LHD

1

}

18 L2 max
{
LWH

2 , LWD
2 , LHD

2

}

19 z∗ Best incumbent solution value

20 C(I) Resulting corner points

21 Ĉ(I ) Set of corner points of the envelope

22 S(I ) {(x, y, z) : ∀i ∈ x ≥ xi + wi or y ≥ yi + hi or z ≥ zi + di}
23 Ŝ(I ) Feasible S(I )

Bin Packing Problem (3D-BPP) is a feasible enumeration of Two-Dimensional Bin Packing
Problem (2D-BPP). 3D-BPP is NP-hard in the strong sense [6].

2 Modeling a dish cart problem with a 3D-BPP

We model a dish cart capacity filing problem (DCCP) with a three-dimensional single bin
packing problem (3D-BPP) [6]. This 3D-BPP consists of orthogonally packing into one bin
as many items as possible. The aim is to find a feasible packing of a subset of the items
on the cart (tray) that maximizes the total volume of the packed items. We assume that the
origin of the coordinate system is in the left-bottom-back corner of the bin. We are given
a set of rectangular-shaped items, each characterized by width wj ≤ W , height hj ≤ H ,
and depth dj ≤ D (j ∈ J = {1, · · · , n}), and one three-dimensional bin (container) having
width W, height H, and depth D. The items such as dishes, cups, forks, and knifes are
different from shapes, styles, and materials as listed in Table 1. While the depths of other
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Fig. 5 Algorithm 2D-CORNERS

items are equal to 99, the depths of PLATE and COCKTAILGLASS are equal to 3 (d2 = 3)
and 8 (d8 = 8), respectively. It means that only both items can be stacked.

In this study, we use an enumerative algorithm for the exact and approximate solution of
3D-BPP that Martello, Pisinger, and Vigo [6] proposed. Therefore, the parameters including
lower bounds, in Table 2 can be followed directly. The detailed theorems and proofs can be
referred in [6].

Especially, the worst-case performance ratio of continuous lower bound L0 is 1/8 if rota-
tion of the pieces (by any angles) is allowed. It is intuitively easy to understand. L0 and
L1 do not dominate each other, while L2 dominates L0 and L1. L1 and L2 are valid lower
bounds of WH, WD, and HD planes of the bin volume by B = WHD for 3D-Bin packing
problem. They are described in Table 2 and can be referred in [6].

Fig. 6 Two-dimensional single
bin filling (The envelop
associated with the placed items
is marked by a dashed line, and
black points indicate corner
points in Ĉ(I ))
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Fig. 7 Three-dimensional single
bin filling (Corner points C(I)
are found by applying algorithm
2D-CORNERS six times on for
each value of z′k i.e., such that (1,
2, 3, 4)→(5, 6, 7)→(8, 9)→(10,
11, 12)→(13, 14)→ (15))

x

y

z

.

:True corner point
:False corner point
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3 Exact algorithm for filling a single bin and approximation algorithms for optimal
3D-bin packing

This section describes the algorithm called ONEBIN [6] for finding the best filling of a
single bin using items from a given set J̄ (refer to Sections 3.1 and 3.2). And two different
heuristic algorithms called Approximation Algorithms are described for optimally packing
three dimensional bin packing (refer to Section 3.3).

Initially, the bin volume is B = WHD and no item is placed, so C(0) = {(0, 0, 0)} as
shown in Fig. 4. At each iteration, given the set I ⊂ J̄ , currently packed items, set C(I) is

Fig. 8 Algorithm 3D-CORNERS
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Fig. 9 Maximum packing for 36 SAUCERCUPs (leftside: top view, right side: 3D view)

determined through 3D-CORNERS together with the corresponding volume V (I). If F is
the total volume achieved by the current best filling, we may backtrack whenever

∑

i∈I
vi + (B − V (I)) ≤ F (1)

If no more items fit into the bin (i.e., if C(I) = 0), we possibly update F
and backtrack. Otherwise, for each position (xj , yj , zj ) ∈ C(I) and for each item
(xj , yj , zj ) ∈ C(I) we assign the item j ∈ J̄\I to this position and call the procedure
recursively.

3.1 Algorithm 2D-CORNERS: determining the corner points in 2D single bin

Given an item set I, it is quite easy to find, in two dimensions, the set Ĉ(I ) of cor-
ner points of the envelope associated with the feasible region Ŝ(I ) defined by the x − y

faces of the items in I. There are two preconditions. First, any packing of a bin can be
replaced by an equivalent packing where no item may be moved leftward, downward,
or backward. Second, an ordering of the items in an optimal solution exists such that,
if i < j , xi + wi ≤ xj or yi + hi ≤ yj or zi + di ≤ zj . Following these, let
us order the items according to their end points (xj + wj , yj + hj ) so that the values
of yj + hj are nonincreasing, breaking ties by the largest value of xj + wj . The fol-
lowing algorithm (refer to Fig. 5) for determining the corner points set consists of three
phases.

Consider the example in Fig. 6. The extreme items are 2, 3, and 6, and the resulting
corner points are indicated by black dots; Phase 3 could remove some of the first and/or
last corner points. The time complexity of 2D-CORNERS is O(|I |), plus O(|I |log|I |) for
the initial item sorting, i.e., plus O(n) plus O(nlogn) . Assume that the resulting corner
points are Ĉ(I ) = {(

x ′1, y
′
1

)
, · · · , (x ′l , y ′l

)} �= 0. Then the area occupied by the envelope
is

A(I) = x ′1H +
t∑

i=2

(
x ′i − x ′i−1

)
y ′i−1 +

(
W − x ′l

)
y ′l (2)
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Fig. 10 Maximum packing for each item from FORK to COLACUP (Table 1) using 2D-BPP

where the first (resp. last) term is nonzero whenever the first (resp. last) corner point found
in Phase 2 has been removed in Phase 3. In the special case where ĉ(I ) = 0, we obviously
set A(I) = WE.

3.2 Algorithm 3D-CORNERS: finding possible positions for placing an item

Algorithm 2D-CORNERS set C(I) of corner points in three dimensions, where I is the set
of three-dimensional items currently packed into the bin. One may apply the algorithm for
z = 0 and for each distinct z coordinate where an item of I ends, by increasing 2 values. For
each such coordinate z′, 2D-CORNERS can be applied to the subset of those items i ∈ I

that end after z′, i.e., such that zi+di > z′ adding the resulting corner points to C(I) . How-
ever, as shown in Fig. 7, some false corner points like 6, 7, 9, and 14 can be obtained because
they are corner points in the two-dimensional cases. To remove such points, the following
3D-CORNER algorithm (Fig. 8) is used such that no corner point will be generated inside
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Fig. 11 Maximum packing for 16 PLATEs by 2D-BPP

Fig. 12 Maximum packing for 48 PLATEs by 3D-BPP

Fig. 13 Optimal packing for 48 COCKTAILGLASS by 2D-BPP
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Fig. 14 Maximum packing for 300 COCKTAILGLASS by 3D-BPP

the three-dimensional envelope. The volume V (I) occupied by the envelope associated
with I is

V (I) =
k∗∑

k=2

(
z′k − z′k−1

)
A(Ik−1)+

(
D − z′k∗

)
A(Ik∗) (3)

where the last term is nonzero whenever k∗ < r .

3.3 Approximation algorithm: optimal 3D-BPP

To obtain a good upper bound at the root node of the branching tree and to limit the number
of executions of ONEBIN, two complementary heuristics are used. The first heuristic, H1,
is based on a layer building principle derived from shelf approaches used by several authors
for 2D-BPP [2, 3]. The second heuristic, H2, repeatedly fills a single bin. Let J̄ be the set of
items to be packed [6]. Heuristic H2 initializes a set T to J̄ and sorts it by nondecreasking
volume. Then H2 iteratively applies ONEBIN to T and removes the packed items from it
until T becomes empty.

4 Experiments

The experiments are performed to demonstrate the feasibility of the proposed scheme. In
these test problems, the sizes of the pieces to be packed were varied and the bin sizes (tray)
were always same as W ×H ×D = 100 cm× 100 cm× 100 cm = 1000000 cm3. Accord-
ingly, all experiments in this paper are measured in cm. The experiment was implemented
in visual C++ 2008, OpenGL 2.0, and WinXP. It works well on an Intel PC with core i7
3.0 GHZ CPU and 8 GB RAM. We verify three classes of experiments in the following.

The first experiment is to pack a two-dimensional bin (tray) with each single item
as shown in Figs. 9 and 10. The goal is to find a feasible arrangement of a subset of
the items (totally 9 kinds of items) on the tray that maximizes the total value of the
packed item using 2D-BPP. For example, the 2D tray is tightly packed with SAUCERCUPs
(j = 4) in Fig. 9 and they are optimally maximizing the covered area of the tray. Figure 10
shows that there are 68 FORKs (0.13 s), 16 PLATES (0.001 s), 100 KNIFES (0.02 s), 36
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Fig. 15 Maximum packing for 48 PLATEs by 3D-BPP. The size of PLATE is equal to wj = 30, hj =
30, dj = 3

SAUCERCUPs (0.001 s), 264 TEASPOONs (0.02 s), 140 BOWLs (0.01 s), 196 CANs
(0.01 s), 256 COCKTAILGLASSes (0.02 s), and 144 COLARCUPs (0.01 s) and they are
optimized at each finite bin. As like taken 0.13 s, 0.001 s, · · · , 0.06 s for each item, it is
feasible for a serving robot to plan the real-time task in various situation optimally.

The goal of the second experiment is to verify that the 3D-BPP is definitely superior to
the 2D-BPP. Figures 11, 12, 13 and 14 show the 3D-BPP would allow a serving robot to
effectively serve lots of stackable items such as PLATEs and COCKTAILGLASSes at once.

Finally, the third experiment makes a change in the item size or the tray size. The 3D-
BPP shows a stable and high performance in spite of the bigger PLATEs (refer to Fig. 15)
than the previous ones in Fig. 12. Likewise, it can cope with large numbers of stackable
items and different size of trays as shown in Fig. 16.

Fig. 16 Maximum packing for 200 COCKTAILGLASS by 3D-BPP. The bin size is equal to W ×H ×D =
50 × 50 × 50 = 125000
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Fig. 17 Maximum packing for leftside: 40 items-2D-BPP and rightside: 48-items-3D-BPP

Figure 17 shows general cases of randomly generated problem instances having differ-
ent combinations of items. Compared to the 2D-BPP result, the 3D-BPP result shows less
covered area of the tray in spite of larger numbers of items because PLATEs were stacked.

By using the proposed mechanism, we show that limited cart capacity can be filled with
various items. Hence, both serving and cleaning time by serving robot can be shortened.

5 Conclusions

We presented the world’s first 3D-BPP applied to the situation of the maximization of the
capacity of a cart for a serving robot. By using this concept, more effective service can be
offered by various types of serving robots. For the future works, if evolutionary knapsack
algorithms or more expert systems of bin packing problem are applied and quantitatively
compared to the hybrid 3D-BPP, more feasible and realistic solution can be expected.

Acknowledgments This research was supported by the National Research Foundation of Korea Grant
funded by the Korean Government (NRF-2013-S1A5A8020988).

References

1. ASIMO. http://world.honda.com/ASIMO
2. Berkey JO, Wang PY (1987) Two dimensional finite bin packing algorithms. J Oper Res Soc 38:423–429
3. Chung FKR, Garey MR, Johnson DS (1982) On packing two-dimensional bins. SIAM J Algebr Discret

Methods 3:66–76
4. Kuffner JJ (2010) Cloud-enabled robots. In: IEEE-RAS international conference on humanoid robots.

Nashville
5. Martello S, Vigo D (1998) Exact solution of the two-dimensional finite bin packing problem. Manag Sci

44:388
6. Martello S, Pisinger D, Vigo D (2000) The three-dimensional bin packing problem. Oper Res 48:256–267
7. PR2 Cleans Up with a Cart. http://www.willowgarage.com/pages/pr2/overview
8. The 2012 PR2 Workshop in Freiburg. http://www.youtube.com/watch?v=kvahil80ayw
9. 400 year old tea-serving robot kit. http://www.boingboing.net/2005/10/29/400-year-old-teaserv.html

197Multimed Tools Appl (2015) 74:185–198

http://world.honda.com/ASIMO
http://www.willowgarage.com/pages/pr2/overview
http://www.youtube.com/watch?v=kvahil80ayw
http://www.boingboing.net/2005/10/29/400-year-old-teaserv.html


A-Ra Khil received the B.S. degree in Computer Science from Ewha Women’s University in 1987, the M.S.
and PhD degrees in Computer Science from Korea Advanced Institute of Science and Technology (KAIST),
Daejeon, Korea, in 1990 and 1997, respectively. Since 1995, she has been a Senior Engineer in Serome
Ltd., Korea. Since 2003, she has been a member of Board of Directors in Dialpad Ltd., USA. Since 1997,
she is with School of Computer Science and Engineering, Soongsil University, Seoul, Korea. Her current
research interests include the real-time Systems, emotional robotics, ubiquitous communications, wireless
sensor networks, and embedded Operating system. Contact her at ara@ssu.ac.kr.

Kang-Hee Lee received the B.S., M.S. and PhD degrees in Electrical Engineering and Computer Science
from Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea, in 1999, 2001, and
2006, respectively. Since 2006, he has been a Senior Engineer in Digital Media & Communication Research
Center, Samsung Electronics Company, Ltd., Korea. He has been a dispatched researcher in the Robotics
Institute, Carnegie Mellon University in 2008. Since moving to Soongsil University in 2009, he is with
Global School of Media, Soongsil University, Seoul, Korea. His current research interests include the areas
of ubiquitous robotics, evolutionary robotics, emotional robotics, media robotics, cognitive task planning
system, and knowledge-based reasoning system. Contact him at kanghee.lee@ssu.ac.kr.

198 Multimed Tools Appl (2015) 74:185–198


	Optimization of a robot-served cart capacity using the three-dimensional single bin packing problem
	Abstract
	Introduction
	Paradigm shift of serving robot
	Three-dimensional single bin packing problem

	Modeling a dish cart problem with a 3D-BPP
	Exact algorithm for filling a single bin and approximation algorithms for optimal 3D-bin packing
	Algorithm 2D-CORNERS: determining the corner points in 2D single bin
	Algorithm 3D-CORNERS: finding possible positions for placing an item
	Approximation algorithm: optimal 3D-BPP

	Experiments
	Conclusions
	Acknowledgments
	References


