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Abstract Covariance tracking has achieved impressive successes in recent years due to its
competent region covariance-based feature descriptor. Although adopt fast integral image
computation, covariance tracking’s brute-force search strategy is still inefficient and it pos-
sibly leads to inconsecutive tracking trajectory and distraction. In this work, a generalized,
adaptive covariance tracking approach with novel integral region computation and occlusion
detection is proposed. The integral region is much faster than integral image and adaptive
to the tracking target and tracking condition. The adaptive search window can be adjusted
dynamically by simple occlusion detection. The integral image and the global covariance
tracking can be seen just a special case of integral region and the proposed approach, respec-
tively. The proposed approach unifies the local and global search strategies in an elegant
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way and smoothly switches between them according to the tracking conditions (i.e. occlu-
sion distraction or sudden motion) which are judged by occlusion detector. It gets much
better efficiency, robustness of distraction, and stable trajectory by local search in normal
steady state, while obtains more abilities for occlusion and re-identification by enlarged
search window (until to global search) in abnormal situation at the same time. Our approach
shows excellent target representation ability, faster speed, and more robustness, which has
been verified on some video sequences.

Keywords Integral region · Covariance tracking · Symmetric positive definite matrix ·
Occlusion detection

1 Introduction

Object tracking is a challenging problem in computer vision, which tries to determine the
position of an object in the image plane as it moves around a scene. One challenge lies in
handling the appearance variability of a target, such as pose change, shape deformation,
illumination change, camera viewpoint change, occlusion, background clutter, distraction,
etc. Consequently, it is imperative for a robust tracking algorithm to model such appearance
variations while ensuring real-time and accurate performance at the same time.

There have been many approaches for object tracking in recent years [2, 6, 12, 14–17,
21, 22, 27, 33, 35, 42–44, 46–49]. A detailed summary before 2006 can be found in [45]
and an object tracking benchmark including many latest tracking algorithm is proposed
recently[40]. Consequently, one representative approach is covariance tracking [31], which
represents targets by covariance matrices. The covariance matrix offers competent, compact,
informative, and empirically beneficial feature descriptors, which fuses multiple modalities
and features in a natural and elegant way and captures both statistical and spatial proper-
ties of the object appearance. Due to its global nature, the algorithm can recover from full
occlusions or large movements. Although an integral image-based method [34] is used to
improve the speed, it is still time consuming due to the global brute-force searching strat-
egy. Meanwhile, it is possibly leads to inconsecutive tracking trajectory and susceptible to
background clutter, false positives, and outliers distraction.

This strategy of global search to find the best matching image patch (to the model covari-
ance matrix) is slow for many real-time applications and does not scale well to larger images
and higher dimensional lattices (e.g., 3D tracking). Moreover, searching the entire image is
prone to errors that can be caused by distractions from similar objects present in the scene.

On the other hand, based on the continuity assumption of the moving object in video,
some local search-based tracking algorithms also attracted a lot of attention, such as Mean
Shift (MS) [10, 11]. MS tracking is very fast due to its local searching strategy. However, it
suffers from a number of weaknesses: it is prone to failure when there exist large motions or
occlusions for the target since only local searching is carried out; it is prone to be distracted
by other objects similar to the target and it lacks a mechanism for encoding the spatial layout
of the object’s colors. The tracking approaches based on the different two types of search
strategies obviously have their merits and drawbacks respectively. Based on the simple idea
that: a simple and efficient local search strategy should be used in normal steady situation
while a global search strategy should be utilized for abnormal, difficult situation such as
long-term occlusion, sudden or fast motion. We try to find a way to naturally fuse and
uniform these two.
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Therefore, motivated by the previous works in [31, 34], a generalized, adaptive covari-
ance tracking approach with integral region computation and occlusion detection is pro-
posed in this paper. The size of integral region is adaptive to the tracking target’s size
and tracking condition. The integral image can be seen a special case of integral region.
The search window in the proposed approach is adaptive and flexible, which is adjusted
by occlusion detection. Our approach takes advantage of the two types of search strate-
gies, i.e. global and local, for tracking. Local covariance tracking is used in normal steady
state, which results to fast computation and robustness for distraction and stable trajectory,
while the search window can be dynamically enlarged (until to global search) by occlu-
sion degree and time in occlusion condition, which gives more abilities for occlusion and
re-identification. The two strategies are unified in the proposed approach in an elegant way
and smoothly switched by the occlusion detector. Moreover, the new integral region method
is much faster for the computation of regional covariance and adapts to the local search
mode which is different from the integral image method used in [31]. Our approach obtains
excellent target representation ability, faster speed, and more robustness.

The proposed approach simultaneously utilizes the discriminative ability of covariance
descriptor and the fast computation of local search mode, robustness of the adaptive covari-
ance tracking. The contributions of this paper are: 1) propose a novel fast region covariance
computation based on integral region, different from the integral image; 2) generalize
covariance tracking to adapt to different size of regions, which can regress into the global
covariance tracking; 3) smoothly switch between the global and the local methods with
occlusion detector.

The remainder of the paper is organized as follows. The related work is presented in
Section 2. We describe our proposed approach in Section 3. We propose an experimental
evaluation for different tracking algorithms. Finally, we summarize and give concluding
remarks.

2 Related work

There have been lots of state-of-art visual tracking methods in recent years, such as
Viola-Jones [36], Struct [14], GMCP [46],OpenTLD [18], VTD[20], L1[24], Online Boost
Learning [13], P-N Learning [19], Multiple Instance Learning [5], Incrental Visual Learn-
ing [32], Part-based Tracking [1, 33], etc. A detailed survey on object tracking before 2006
can be found in [45] and an object tracking benchmark including many latest tracking algo-
rithm is proposed in [40]. Tracking algorithms can be broadly classified as either filtering
and data association or target representation and localization methods [35]. Kalman and
particle filters belong to the former class.

Mean shift tracking [10, 11] is a class of localization-based tracking algorithm, which has
got popularity due to its computational efficiency and ease of implementation. The mean-
shift algorithm is a robust non-parametric probability density gradient estimation method
[9]. Mean-shift tracking [10, 11] tries to find the region of a video frame that is locally most
similar to a previously initialized object model. The target model and the target candidate
region to be tracked are represented by appearance histograms. A gradient ascent proce-
dure is used to move the tracker to the location that maximizes a similarity score between
the model and the current image region. Similarity between the histograms is evaluated
as the Bhattacharyya coefficient between the two distributions. However, the basic mean
shift tracking algorithm assumes that the target representation is sufficiently discriminative
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against the background. This assumption is not always true especially when the tracking is
carried out in a dynamic background such as surveillance with a moving camera.

Moreover, one limitation of these localization-based methods is that the inter-frame dis-
placement of the object must be small; otherwise, the tracker will lose its target. Collins [8]
proposed an explicit scale-space approach for tracking objects to resolve the unreliable scale
change issue. Nguyen et al. [25] recovered the scale of the object by an expectation maxi-
mization algorithm. Porikli and Tuzel [30] initialized multiple trackers around the expected
location of the object to overcome the difficulty. Some others used multiple-part models
and background exclusion histograms [23, 26, 41] as the target and candidate models to
alleviate the lack of spatial structure, and improve the discriminative ability of the object
representations.

More recently, the covariance region descriptor proposed in [34] has been proven to be
robust and versatile. The use of covariance features as target representation for tracking was
firstly proposed by [31]. Consequently, it is widely used in tracking [7, 37–39]. The covari-
ance matrix of features extracted from an image patch enables a compact representation of
both the spatial and the statistical properties of the object, and its dimensionality is small.
The tracker performs an exhaustive search in the image by comparing the given covariance
model to the covariance matrix at each location using an appropriately defined distance met-
ric. The location whose covariance matrix is most similar to the target model is assigned
to be the new target position in the image. The computational cost is high because the tar-
get localization process is formulated as an expensive exhaustive searching. Moreover, the
similarity measure in [31] is adopted from [28], which is an affine invariant metric. Using
the covariance descriptor is time consuming, computationally inefficient, easily affected by
background clutter, and ineffective over occlusions.

The objective of our approach in this paper is to take advantage of the two types of search
strategies, i.e. global and local, for tracking to get a better accurate, robust and efficient
tracking.

3 The proposed approach

In the following, we first introduce the region covariance and how to compute it quickly by
integral region; then describe the manifold distance for the covariance matrices, which is
different from the usual Euclidean distance; therefore, give the occlusion detector and how
to switch between local and global search; finally, describe the adaptive covariance tracking
approach.

3.1 Fast region covariance computation based on integral region

Using covariance matrix (CM) as a region descriptor is an elegant and simple solution to
integrate multiple image features. It has many advantages, namely: 1) CM indicates both
spatial and statistical properties of the objects; 2) it provides an elegant means to combine
multiple modalities and features; 3) it is capable of relating regions of different sizes.

For fast calculation of region covariance, reference [34] proposed an integral image
method. Here, based on the local assumption, we follow a similar idea to define an integral
region for the calculation of region covariance, which is much faster generally. Moreover, it
can be regressed into integral image at certain condition, i.e. integral image is a special case
of integral region.
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Let I be a one dimensional intensity or three dimensional color image, and F be the
H × W × d dimensional feature image extracted from I , F(x, y) = φ(I, x, y), where φ

can be any mapping such as color, texture, shape, gradients, filter responses, etc. Let {fi}Ni=1
be the d-dimensional feature points inside a given rectangular region R of F . Region R is
represented by the d × d covariance matrix of the feature points, i. e.

CR = 1

N − 1

N∑

i=1

(fi − u)(fi − u)T (1)

where N is the number of pixels in region R and u is the mean of the feature points. Ele-
ments (i, j) of CR represents the correlation between features i and j . When the extracted
d-dimensional feature includes the pixels coordinate, the covariance descriptor encodes the
spatial information of features. With the help of integral region, the covariance descriptor
can be calculated efficiently.

Let P be the (x1 − x0 + 1) × (y1 − y0 + 1) × d tensor of the integral regions and Q be
the (x1 − x0 + 1) × (y1 − y0 + 1) × d × d tensor of the second-order integral regions.

P (x ′, y ′, i) =
∑

x0≤x≤x0+x ′+1,y0≤y≤y0+y ′+1

F(x, y, i) (2)

Q(x ′, y ′, i, j ) =
∑

x0≤x≤x0+x ′+1,y0≤y≤y0+y ′+1

F(x, y, i)F (x, y, j) (3)

where i = 1 . . . d, 1 ≤ x ′ ≤ (x1 − x0 + 1), 1 ≤ y ′ ≤ (y1 − y0 + 1). Here we take P (x, y)

as d-dimensional vector and Q(x, y) as d × d dimensional matrix.

P (x, y) = [P (x, y, 1) . . . P (x, y, d)]T (4)

Q(x, y) =
⎛

⎝
Q(x, y, 1, 1) . . . Q(x, y, 1, d)

. . . . . . . . .

Q(x, y, d, 1) . . . Q(x, y, d, d)

⎞

⎠ (5)

The Q(x, y) is a symmetric matrix.
Let R(x ′, y ′; x ′′, y ′′) be the rectangular region, where (x ′, y ′) is the upper left coordinate

and (x ′′, y ′′) is the lower right coordinate, as shown in Fig. 1. The covariance of the region
the region R(x ′, y ′; x ′′, y ′′) can be computed as

CR(x ′, y ′; x ′′, y ′′) = 1

n
(Q(x ′′ − x0 + 1, y ′′ − y0 + 1) + Q(x ′ − x0 + 1, y ′ − y0)

−Q(x ′′ − x0 + 1, y ′ − y0) − Q(x ′ − x0, y ′′ − y0 + 1)

− 1

n − 1
((P (x ′′ − x0 + 1, y ′′ − y0 + 1) + P (x ′ − x0, y ′ − y0)

−P (x ′′ − x0 + 1, y ′ − y0) − P (x ′ − x0, y
′′ − y0 + 1))

·(P (x ′′ − x0 + 1, y ′′ − y0 + 1) + P (x ′ − x0, y ′ − y0)

−P (x ′′ − x0 + 1, y ′ − y0) − P (x ′ − x0, y
′′ − y0 + 1))T )) (6)

where n = (x1−x0+1)×(y1−y0+1), 1 ≤ x ′, x ′′ ≤ (x1−x0+1), 1 ≤ y ′, y ′′ ≤ (y1−y0+1).
Therefore, after constructing integral region, the covariance of any rectangular region in the
scope of (x0, y0) and (x1, y1) can be computed very fast.

In most of cases, the tracking object is far smaller than the whole image, and its cor-
responding integral region is much smaller than the integral image of the image, thus the
computation of constructing the integral region is much lower than that of constructing the
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Fig. 1 Integral region. The integral region is the rectangle defined by (x0, y0) and (x1, y1). The covariance
of rectangle R(x′, y′; x′′, y′′) is computed within the integral region

integral image. Moreover, when (x0, y0) is equal to (1, 1) and (x1, y1) is equal to (H,W),
the integral region regresses into integral image. In short, the integral region can be seen
a generalized integral image. It adapts to local search mode with dynamic regions, and
dramatically reduces the time cost in constructing the integral.

3.2 Manifold distance for covariance matrices

Covariance matrices are typical symmetric positive definite (SPD) matrices which do not
conform to Euclidean geometry, but rather forms a Riemannian manifold. Therefore, it
makes defining similarity measures between covariance matrices non-trivial.

Since the Affine Invariant Riemannian Metric (AIRM)[28] used in [31] is computation-
ally expensive, we apply the efficient Log-Euclidean Riemannian Metric (LERM) [3] in the
manifold.

Let U · S · UT be the singular value decomposition of a n × n SPD (i.e.Symn+). If
X ∈ Symn+, then the matrix logarithm is

log(X) = U · log(S) · UT (7)

where the log acts on element-by-element along the diagonal of S. Since the singular values
of a SPD matrix are always positive, the log can act along the diagonal. Similarly, let X be
a symmetric matrix with SVD given X = U · D · UT . The matrix exponential becomes

exp(X) = U · exp(D) · UT (8)

where the exp acts element-by-element along the diagonal of D. It is easy to see that this
form of the exponential is defined for any symmetric matrix and the result is a SPD matrix.

Therefore, according to [4], the manifold logarithm operator for two n×n SPD matrices
X and Y is

logX(Y ) = log(Y ) − log(X) (9)

Given a tangent �, the manifold exponential operator is

expX(�) = exp(log(X) + �) (10)
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Finally, the manifold distance between SPD matrices X and Y is given by

d2(X, Y ) =‖ log(Y ) − log(X) ‖2 (11)

We build the mapping between the manifold space Symn+ and tangent vector space by
the manifold log operator and the exp operator.

3.3 Occlusion detection and switch criteria

For occlusion detection, we investigate the return distances in the tracking. The distance
becomes much larger when the tracking region cannot be matched well with the target
model. We threshold the distance based on the statistical computation of the distances in
previous tracking frames without occlusion. We assume it is a normal distribution (u, σ 2),
then the threshold is T = u + 3σ (according to the 3σ principle of normal distribution).
If the distance is larger than T , we conclude that there is possibly an occlusion for current
frame. Therefore, we further compare the target in current frame ft and the target in latest
L-th non-occluded frame ft−L to decide whether the target in ft is occluded or not. This is
achieved by checking the difference between pixel values of ft and ft−L at the same pixel
is greater than a threshold (e.g. 30) or not. This procedure is described in the following
equation.

Ot,i =
{

1 if |ft,i − ft−L,i | < ε

0 otherwise
(12)

where ft,i is the gray value at location i in frame ft , and ft−L,i is similar, and i is the
location within the target. Ot,i is a binary map with target size. We perform a morphological
closing with the structuring element in (13) on the binary map,

⎛

⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 1 0 0
0 1 1 1 0
0 0 1 0 0
0 0 0 0 0

⎞

⎟⎟⎟⎟⎠
(13)

and find the largest connected area in the map. Finally, we decide the target is occluded if
the maximum area is greater than 1/4 of the target area. The occlusion detection is simple
and false positive is possibly happens, but it does not matter because we just enlarge search
window in the following search in case of bad situation. In the occlusion period, we predict
the new object location based on the object dynamics (velocity).we keep the object win-
dow moving at the same speed and direction as before, and enlarge the search window for
tracking. We use a simple adaptive velocity model. It is an average velocity of the last k

instants,

vt = 1

k

t∑

n=t−k

|xn − xn−1| (14)

where k is the number of the latest non-occlusion frames, xn is the pixel location of the
target center in n-th frame.

In addition, when an occlusion is detected, it will not go away for a certain period of
time. For example, when the target is occluded by an object, and the object is moving away
from the target, the occlusion is becoming smaller before it goes away. In our occlusion
detection method, we jump over the next 2 frames after an occlusion is detected, which is
used as a compensation for the added computation due to the larger search window.

When the return distance is normal again, we assume the occlusion is over, and the size
of search window is also restored.
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In addition, it is dangerous to update the target model when tracking is in an unsteady
state. Therefore different from [31], the target model does not be updated when current
frame is labeled to be occluded in case of contaminating the target model.

3.4 Generalized adaptive covariance tracking

Generalized adaptive covariance tracking is a flexible tracking approach. It assumes the
object will appear again in the neighbor of the location of disappearing. When the neighbor
is same as the whole image, it regresses into global covariance tracking. Therefore, the pro-
posed approach can be seen a generalized covariance tracking. The size of search window
can be tuned differently according to the tasks need.

We generally enlarge the search window to deal with these problems including occlu-
sions, sudden motions and distractions, when they are detected during the tracking.
Meanwhile, we simply set the search window to be same as the target region in normal
steady state.

Assume the target center in current frame to be initialized at (x̄, ȳ), and the size to be
(W1,H1) , where W1 is width of the target and H1 is the height. The search range, i.e. search
window, which is the range of the all candidate target center, is represented by (W2,H2).
Therefore, we need to define region R(x0, y0; x1, y1) to construct integral region, i.e.

(x0, y0) = (x̄, ȳ) − (W2, H2)

2
− (W1,H1)

2
(15)

(x1, y1) = (x̄, ȳ) + (W2, H2)

2
+ (W1,H1)

2
(16)

We define a scale factor (sW , sH ) for the search widow, i.e.

(W2,H2) = (sW ∗ W1, sH ∗ H1) (17)

When our approach runs at steady state for tracking, the search range, i.e. search window,
is same as the target region, i.e. (sw, sH ) = (1, 1). However, when we need to cope with
abnormal condition, we can adjust the search window in our approach. When we enlarge
the search window, it is helpful to re-identify the object after the occlusion. Therefore, when
occlusion is detected we set

sW = 1 + s · max(2 · avg(�x)L, max(�x)L)

W1
(18)

sH = 1 + s · max(2 · avg(�y)L, max(�y)L)

H1
(19)

where avg(�x)L and avg(�y)L are the average x and y offsets of the target center in the
latest L non-occluded frames, max(�x)L and max(�y)L are the maximum x and y offsets
of the target center in the latest L non-occluded frames, s is an increasing factor for sH and
sW . If s is larger, the search window enlarges faster when there is an occlusion. Otherwise,
the search window enlarges slower. Base on the scale factor, we make sure that: if the target
re-appears at the last target window it disappeared, we can found it, and if the target moves
forwards at its fastest speed, we also can find it. This is because the new search window will
include these possible positions. In addition, obviously, we need to keep R(x0, y0; x1, y1)

to be in image range, and search window to be in R(x0, y0; x1, y1).
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The adaptive covariance tracking approach is shown in Algorithm 1.

In other words, the proposed integral region and adaptive covariance tracking approach
are dynamic based on the tracking condition. In normal steady state, sW = 1 and sH = 1,
and the size of the search window is equal to that of the target window in the previous frame.
Therefore, our approach regresses into local search-based covariance tracking. However,
when an occlusion is detected, sW and sH are bigger, and the search window and the integral
region are accordingly enlarged. If the occlusion is continuously detected, sW and sH are
bigger and bigger, until the search window is equal to the whole image, then the integral
region is equal to integral image. Therefore, our approach is equal to the traditional global
search-based covariance tracking in this case.

4 Experiments

We evaluate the proposed adaptive covariance tracking approach (AdaCov) in comparison to
the standard histogram-based Mean Shift tracking algorithm (HistMS) [10, 11], the original
covariance tracking algorithm (GlobalCov) [31], the local covariance tracking (LocalCov)
with fixed search window, the color-based particle filter tracking algorithm (ColorPF)
[29], and the gradient descent covariance tracking algorithm (GradientCov) [35]. The algo-
rithms are compared for three aspects including accuracy, robustness, and computational
efficiency.

In our experiments, the target is manually initialized. The tracking parameters are
tuned on one sequence and applied to all the other sequences. Except for HistMS and
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ColorPF, during the visual tracking, a 7 − D feature vector is extracted for each pixel, i.e.
(x, y,R, G,B, Ix, Iy), where (x, y) is the pixel location; R,G,B are the RGB color val-
ues; and Ix and Iy are the intensity derivatives. Consequently, the covariance descriptor of
a color image region is a 7 × 7 symmetric matrix.

For ColorPF, we adopt the source code from reference [29], which describes the object by
HSV color. For HistMS, we used a joint histogram of color-gradient features extracted from
the image. At each pixel, a five dimensional feature (R, G,B, Ix, Iy) vector is extracted to
form the Bin5-dimensional quantized histogram, here we set Bin = 16.

The dataset is from [1, 31], including “Jogging”, “Pool Player”, “Subway”, “Running
Dog”, “Race”, “Crowd”, “Woman” and “Face” sequences. These sequences have been
widely used before in visual tracking experiments and have ground truth data for convenient
comparison. There are full occlusions in “Jogging” sequence and size changes in “Race”
sequence. In “Pool Player” and ”Running Dog” sequences, the camera and objects are mov-
ing and the appearances are changing. In “Subway” and “Crowd” sequences, the objects
have indistinctive color and insignificant texture information. There are partial occlusions
in “Face” sequence, and there are partial occlusions, illumination changes and distractions
in “Woman” sequence.

4.1 Accuracy

First we compared the tracking accuracy of the six approaches. Figure 2 shows the tracking
pixel error produced by each approach on the different sequences with respect to the ground
truth.

It can be seen from Fig. 2 that HistMS, GradientCov and LocalCov are good to some
sequences while bad to some other sequences. The reason lies in they are local search-based
methods and they generally can not catch the target again in case of losing the target, which
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often leads to very high pixel error. They can possibly get good results only if the target
does not get out of the local search window. LocalCov and GradientCov result in some high
tracking pixel errors (e.g. “Subway” and “Crowd” sequences) and some low tracking pixel
errors (e.g. “Pool Player”,“Woman” and “Running Dog” sequences). The reason lies in
their exploiting the spatiotemporal locality constraint. HistMS is not good in pixel error in
most of cases due to its local search strategy and relative weak feature descriptor. However,
there is an exception for HistMs on “Face” sequence where it gets the best result among all
approaches. On the other hand, GlobalCov and AdaCov have the ability to overcome the
full occlusion, and catch the target again even if they lose the target temporarily. GlobalCov
searches the matched target in whole image, and hence it can recover from lost track and
also maybe gets distracted due to similar objects, thus resulting in discontinuous tracking
trajectory. ColorPF is normal in pixel error in most of cases. It can be easily distracted due
to its weak feature descriptor while also can be recovered from lost track due to its search
strategy. Obviously, our approach (i.e. AdaCov) has got the lowest pixel error due to its
thoughtful balance of both local and global search strategy. Overall, AdaCov has the best
tracking accuracy among these approaches.

We investigated the six approaches on “Woman” sequence in more detail. The woman
sequence is a typical sequence with some partial occlusions, illumination changes and pos-
sible distractions. For local search-based methods, i.e. HistMS, GradientCov and LocalCov,
we take a re-initialization. Centroid distance metric is used to further evaluate the tracking
accuracy at each frame on “Woman” sequence for different approaches.

Figure 3 shows the normalized average centroid distance for “Woman” sequence. Glob-
alCov has some frames with large centroid distances due to distractions. It is distracted by
some regions in the image which are far from the really objects. But it can catch the object
again and need not re-initialization at all. ColorPF frequently loses the target due to its
weak descriptor and distraction while it can recover from lost track. HistMS loses its track
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frequently, so we have to re-initialization to keep it can track the really object again. Even
we have adopt re-initialization operation (68 times), it still have higher average centroid dis-
tance. In fact, HistMS is the worsts due to its overall bad performance while GlobalCov is
just a few frames jumping far away due to distraction. LocalCov, GradientCov and AdaCov
are better. They are actually gets almost similar results because the whole sequence only has
partial occlusion, without full occlusion, but AdaCov is still the best. It also means AdaCov
has the smoothest tracking trajectory.

Table 1 further shows the average pixel error and re-initialization number for “Woman”
sequence. GlobalCov, ColorPF and AdaCov have the ability to re-locate the object by them-
selves. Therefore, they need not to set re-initialization operation. ColorPF is the worst in
spite of its recover ability. HistMS is the sub-worst, which not only has the highest re-
initialization number, but also have the sub-highest average pixel error. LocalCov also need
a few re-initialization operations, but it has small average pixel errors. AdaCov has the
minimum average pixel error and need not re-initialization operation.

Obviously, AdaCov has the best performance on this sequence. Except for “Face”
sequences, we also get similar result with other sequences without full occlusion.

4.2 Robustness

For the sequence with full occlusion, we evaluate its lost track value. Table 2 show the lost
track number and rate for Jogging sequence.

It can be seen from Table 2 that the lost track rates of the HistMS, GradientCov and
LocalCov are very high because they lose the target early from frame 63, and then they
never re-locate the object anymore. GlobalCov loses some frame due to the distraction. It
loses 14 frames in the procedure. However, GlobalCov can re-locate the object even after
losing track due to its global nature. ColorPF loses a lot of frames due to distraction and
its weak feature descriptor, although it can recover from lost track sometimes. AdaCov is
good at dealing with the lost track problem because it trades off the anti-distraction and
re-location abilities.

Figure 4 shows the situations for full occlusion in “Jogging” sequence. The first row
is HistMS with frames (46, 62, 66, 87). It loses its track when occlusion occurs and then
cannot catch the object anymore. The second row is GlobalCov with frames (46, 52, 56,
57). It also loses its track when occlusion occurs, and is distracted by other objects, but it
catches the object again when the occlusion disappears. Therefore, the tracking trajectory of
the object is not steady. The third row is LocalCov with the frames (46, 55, 57, 69) and the
fourth row is GridentCov with frames (46,55,58,64). they lose their track when occlusion
happens and do not capture the target anymore, similar to HistMS. The fifth row is ColorPF
with frames (46,49,62,250), it lose its track from frame 62 and then catches the target again

Table 1 Average Pixel Error and re-initialization number

Tracker vs. dataset Average pixel error Re-initialization number

GlobalCov 32.44 0

HistMS 36.76 68

LocalCov 9.49 8

ColorPF 42.32 0

GradientCov 9.42 8

AdaCov 9.00 0
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Table 2 Lost track number and rate

Tracker vs. dataset Number Rate

GlobalCov 14 0.045

HistMS 244 0.794

LocalCov 244 0.794

ColorPF 268 0.876

GradientCov 244 0.794

AdaCov 0 0

after a long time. The last row is AdaCov with frames (46, 48, 56, 58), and the bigger yellow
window is the enlarged search window. It detects the occlusion situation, then enlarges the
search window and keeps the inertia speed for moving, and catches the target again when
it appears. Obviously, AdaCov reasonably handles the full occlusion and keeps the tracking
trajectory stable. Its enlarged search window makes sure of detecting the target again when
occlusion disappears.

Figure 5 shows the situations for part occlusions, distractions and illumination changes
in “Woman” sequence without re-initialization. The first row is HistMS with frames
(104,123,126,178,300), which loses the target from frame 123 and never catches it again.
The second row is GlobalCov with frames (90,93,101,184,265), which loses the target at
frames 93 and 184 while catches them again at frames 101 and 265, respectively. The
third row is LocalCov with frames (104,178,211,233,300) and the fourth row is GridentCov
with frames (104,178,211,233,300). Both of them lose the track from frame 178 and never
catch it again. The fifth row is ColorPF with frames (104,125,250,261,332), which loses
the target for a lot frames and catch it again lately. The last row is AdaCov with frames
(104,128,149,209,286), and the bigger yellow window is the enlarged search window.

The sudden motions or fast movements are almost similar to the full or partial occlusion
situation as shown above. Therefore, our approach also can cope with the sudden motion or
fast movement.

4.3 Computational efficiency

Computational efficiency is very important to a tracking approach. We implemented our
own versions for these six approaches to compare their execution times. The baseline is
GlobalCov approach [31] which is used to calculate the speedups obtained by the enhanced
approaches. GlobalCov tracker [31] claims to obtain tracking times of about 600 msec per
frame for 320 × 240 images using various optimizations including integral images. We
define the speedup as the ratio of the execution time of the GlobalCov to that of the given
algorithm. Using this information and the relative speedup factors we can estimate the run-
ning times per frame for each tracking algorithm. The execution time per 320 × 240 frame
is given by (600 ÷ speedup) msec.

Table 3 reports the speedup factors (relative to the GlobalCov approach) and the esti-
mated execution times per frame obtained by other tracking approaches. The proposed
enhancement to the covariance tracker, i.e. AdaCov, results in much faster than GlobalCov
while still keeps good accuracy and robustness. Of course, the speedup times is related to the
ratio of target region size and image size. Generally, the target region size is much smaller
than the whole image (most of them are about 1/40 of image size). Therefore, the speedup
is significant.
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Fig. 4 Full occlusion in Jogging sequence. The first row is HistMS with frames (46, 62, 66, 87); The second
row is GlobalCov with frames (46, 52, 56, 57); The third row is LocalCov with frames (46, 55, 57, 69); the
fourth row is GridentCov with frames (46,55,58,64); the fifth row is ColorPF with frames (46,49,62,250);
The last row is AdaCov with frames (46, 48, 56, 58), and the bigger yellow window is the enlarged search
window

It can be seen from Table 3 that the area of target region is about 1/45.56 of the area
of the whole image. HistMS gets the best speedup, but it is totally different from the other
three covariance-based trackers. LocaCov also gets a good speedup by decreasing the search
range. GradientCov is fast due to optimizing by gradient ascent technique and local search
strategy. AdaCov is not the fastest, but it also gets a great improvement due to its smaller
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Fig. 5 Tracking Pictures in Woman sequence. The first row is HistMS with frames (104,123,126,178,300);
The second row is GlobalCov with frames (90,93,101,184,265); The third row is LocalCov with frames
(104,178,211,233,300); the fourth row is GridentCov with frames (104,278,211,233,300); the fifth row is
ColorPF with frames (104,125,250,261,332); The last row is AdaCov with frames (104,128,149,209,286),
and the bigger yellow window is the enlarged search window

search window and fast integral region computation, which is approximate to real-time
video processing.

For AdaCov, the construction of integral region instead of integral image helps a lot
for the speedup. Assume the target region is 1/n of the whole image, we can see that the
time of integral region construction decreases dramatically with bigger n. Generally, the
object region is far smaller than whole image, therefore it is very helpful to decrease the
computation time. Of course, when the target region is very large, the time of integral region
construction will approach to that of the integral image. In fact, integral region will regress
into integral image when the region becomes bigger and bigger. Figure 6 shows the relative
construction time of the integral image and the different size of integral region.

There are W ×H times to compute the P (x ′, y ′, i) and Q(x ′, y ′, i, j ) for Integral Image
while (W2 + W1) × (H2 + H1) = (sW + 1)W1 × (sH + 1)H1 times for Integral Region.
Meanwhile, there are (W − W1) × (H − H1) times to search in the whole image while
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Table 3 Tracking time comparison (unit: ms/frame). The jogging sequences with 352*288 image size, and
object region size is about 1/45.56 of image size

Tracker Speedup (times) Execution time per frame (msec)

GlobalCov 1 792

HistMS 343.433 2.306

LocalCov 13.862 57.135

ColorPF 75.242 10.526

GradientCov 88.531 8.946

AdaCov 17.253 45.905

W2 × H2 = sW · W1 × sH · H1 times to search in the search region (i.e. search window).
As we said before, sW = 1 and sH = 1 in the normal steady state, and sW and sH will
be larger when there are occlusions possibly detected by the occlusion detector. Therefore,
there is a remarkable speedup when the size of target window is much smaller than that of
the whole image. For Example, the size of the white girl in Jogging sequence is about 1/45
(about 1/3 of height and 1/15 of width) to that of the whole image. therefore, the speedup of
the construction of Integral is about W×H

(W2+W1)×(H2+H1)
= 45

(sW +1)×(sH +1)
while the speedup

of the searching is about (W−W1)×(H−H1)
W2×H2

= 28
sH ·sW . In normal steady state, i.e. sW = 1 and

sH = 1, the speedups are 11.25 and 28 relatively for Integral and searching. In occlusion
condition (assume sW = 2 and sH = 2), there are also speedups of 6 and 7 for Integral and
searching relatively. In most of cases, the tracking target is much smaller than the whole
image and the tracking process is in normal condition (without occlusion). Therefore, the
proposed approach is valuable for speedup.
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Fig. 6 The relative time of integral region construction for different target region (1/n of image size)
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4.4 Discussion

From the previous experiments, we can see that: HistMS is the fastest, but it has the worst
accuracy (e.g. maximum average centroid distance) and robustness (e.g. maximum re-
initialization number and lost track) due to its low discriminative ability of feature and fixed
local range; GlobalCov has good robustness (e.g. it can handling full occlusion and need not
re-initialization) and normal accuracy, but it is easy to be affected by distractions and has
the slowest processing time due to its global nature and brute-force strategy; LocalCov and
GradientCov have better accuracy in steady states and faster processing time, but it is not
robust for occlusion and need re-initialization due to their local mode. ColorPF’s accuracy
is not very good, but its speed is promising and it has recover ability. AdaCov has the best
accuracy, computational efficiency and robustness, because it makes full use of the advan-
tage of the global and local mode and has discriminative feature descriptor. It is adaptive to
different situation by occlusion detection. AdaCov is more like to LocalCov and Gradient-
Cov when the tracking is in steady states, while it regresses into GlobalCov gradually when
the tracking is in abnormal situations.

Our approach is based on the traditional covariance tracking (i.e. GlobalCov in the
manuscript). It inherits the merits of GlobalCov, i.e. solving the occlusion and sudden
motion problems. Meanwhile, it also gets the advantage of the Local covariance track-
ing (i.e. LocalCov), e.g. the fast speed, less distraction, more stable tracking trajectory. It
smoothly switches between these two by a simple occlusion detector. Moreover, AdaCov
gets a good tradeoff between the accuracy and speed.

5 Conclusion

We have described a novel generalized, adaptive covariance tracking approach named Ada-
Cov in the pursuit of accurate, robust and efficient tracking. The proposed approach takes
the advantages of local and global tracking strategies and switches smoothly by occlusion
detection. The proposed tracking algorithm is efficient because local searching strategy is
adopted for most of the frames. It can deal with occlusions and large motions by switching
from local to global matching. Moreover, the integral region generalizes the integral image
and is adaptive to different regions with much faster computation. We will further improve
the accuracy of occlusion detector and try to put the AdaCov into particle filtering tracking
framework in near future.
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