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Abstract Music tends to have a distinct structure consisting of repetition and variation of
components such as verse and chorus. Understanding such a music structure and its pattern
has become increasingly important for music information retrieval (MIR). Thus far, many
different methods for music segmentation and structure analysis have been proposed; however,
each method has its advantages and disadvantages. By considering the significant variations in
timbre, articulation and tempo of music, this is still a challenging task. In this paper, we propose a
novel method for music segmentation and its structure analysis. For this, we first extract the
timbre feature from the acoustic music signal and construct a self-similarity matrix that shows the
similarities among the features within the music clip. Further, we determine the candidate
boundaries for music segmentation by tracking the standard deviation in the matrix.
Furthermore, we perform two-stage categorization: (i) categorization of the segments in a music
clip on the basis of the timbre feature and (ii) categorization of segments in the same category on
the basis of the successive chromagram features. In this way, each music clip is represented by a
sequence of states where each state represents a certain category defined by two-stage catego-
rization. We show the performance of our proposed method through experiments.

Keywords Music structure .Music segmentation . Signal processing . Self-similaritymatrix

1 Introduction

With the immense popularity of music streaming services and easier accessibility to large
repositories of digital music clips, efficient methods for music segmentation and structure
analysis have been of demand in many music-related applications such as music understand-
ing, retrieval, and recommendation.
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For instance, many works have been proposed for content-based music retrieval and
browsing. In content-based music retrieval, music clips are usually retrieved on the basis of
the acoustic similarity in the music signals. Feature vectors representing acoustic characteris-
tics of music are constructed for measuring the similarity in the music clips. Typical digital
music clips are recorded for 3–5 min at 44,100 sampling rate, and a large amount of storage
space is required for extracting multidimensional feature vectors from each sample or sampling
window within a music clip. Moreover, searching through the music clips by measuring the
similarities in the feature vectors requires unacceptable computational time.

One simple method to solve these problems is to use the average of the feature vectors for
reducing the dimensionality and computation time. However, this can lead to poor perfor-
mance in terms of precision and recall because the music features that are distinct depending
on the sampling point could disappear during the averaging step [8]. Another method is to
determine the most distinct segment of a music clip and consider its feature vector as a
representation of the music clip. Such a segment can be used as a summary of the music clip
because it is the most representative part of the music clip. Determination of such segments can
be automatically performed by analyzing the music structure.

Music structure analysis (discovery) segments music clips and structuralizes them using signal
analysis. In [15], Peeters classified the approaches for music structure analysis into two categories:
in the sequence-based approach, the music audio signal is considered as a repetition of sequences
of events. Most studies in this category employ the self-similarity matrix on the music clip, which
was proposed in [4]. Sequence is defined as a set of successive times. The notion of sequence is
closely related to the notion of melody (sequence of notes) or chord succession in popular music.
The sequence can be observed by tracking the diagonal lines in the self-similarity matrix. In the
state-based approach, the audio signal is considered as a succession of states. This approach relies
mainly on the clustering algorithms. By clustering the checkerboard patterns in the self-similarity
matrix, the candidates for the structural boundary are detected. The music clips are structuralized
by applying a clustering algorithm on the music segments.

In our previous work [7], we constructed a self-similarity matrix of music clips
using a constant-size window, on the basis of which music segmentation and catego-
rization are performed. Even though its overall performance is good, we observe that
there is still room for improvement depending on the music genre. Therefore, in this
work, we revise our method to improve the accuracy of music segmentation and
structure analysis. The main contributions of this paper are to use a beat-scale window
for constructing a self-similarity matrix and to perform two-stage segment grouping
for more accurate categorization.

The rest of this paper is organized as follows. In Section 2, we present a brief overview on
the techniques used for music structure analysis. Sections 3 and 4 present the methods to
generate a self-similarity matrix and segment music on the basis of its self-similarity matrix,
respectively. In Section 5, a segment categorization method is presented. Section 6 describes
the experiments we performed and shows some of the results. In the last section, we conclude
the paper and provide some future direction.

2 Related work

Most works on music structure analysis and segmentation are involved with acoustic signal
analysis. In the acoustic signal analysis, the acoustic features are extracted from the signal to
represent its temporal characteristic. By analyzing the pattern of the features within a music
clip, we can identify its structural property such as repetition of motives or melodies.
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Themusic structure can be analyzedmore effectively by constructing its self-similarity matrix.
The self-similarity matrix, which was initially presented by Foote [4], is a very useful tool for
observing the time structure of music and audio. This matrix can be obtained in a 2D domain by
measuring the cosine similarities between the successive music signals. The checkerboard
patterns in thematrix indicate the repetitive similarities, and themusic structure can be determined
by tracking those patterns. In [5], automatic audio segmentation methods were presented using
the self-similarity matrix. For speech and music segmentation in a mixed source, the segment
boundaries are extracted by applying the proposed checkerboard kernel and audio novelty score.

In [2], Cooper et al. proposed a scheme for automatically summarizing the music clips. The
scheme determines the most representative segment of music clip by summing the self-
similarity matrix over the segments. Furthermore, in [3], they presented a framework for
summarizing music by structural analysis. For music summarization, a self-similarity matrix of
the music clip is calculated, and the segment boundaries are detected by correlating a
checkerboard kernel. In addition, those segments are clustered by matrix decomposition on
the basis of the spectral statistics of each segment.

Lu et al. [12] proposed an effective approach for analyzing the structure of acoustic music
data and discovering repeating patterns. They focused on the chroma-based features rather than
on the timbre feature because the note information is used for the structural analysis. For the
representation of accurate melody similarity, they used the constant Q transform in feature
extraction and proposed a new similarity measure between the musical features.

In [13], Maddage et al. presented a method for music structure analysis using beat space
segmentation. This method can detect the music chord and vocal/instrumental boundary as well.
For this, the regions with similar melody are determined by matching the subchord patterns. In
addition, the regions with similar content are determined on the basis of their vocal content. The
regions with similar melody and content are used for identifying the music structures.

Peeters [16] presented a method for automatically estimating the structure of music tracks.
The author constructed a higher order similarity matrix on the basis of the timbre and pitch-
related features. The music segments are detected from the matrix, and a maximum-likelihood
approach is used to simultaneously derive its sequence representation and the most-
representative segment of each sequence.

Wang et al. [20] presented a method for recognizing the repeating patterns in
acoustic music signals. Their approach is based on the constant Q transform, which
is used to extract the musical note information. By measuring the melody/note
similarity and applying adaptive the threshold setting method, noticeable repeating
patterns can be recognized.

In [14], Paulus et al. proposed a method for describing the music structure by segmenting a
music clip, grouping the repetition segments, and assigning musically meaningful labels.
Three acoustic features were used for describing the different aspects of the acoustic signal,
and a probabilistic fitness function was used to select the feature with the highest matching
score to the input pieces. The musicological model consisting of N-grams was employed for
labeling the segment groups.

Kaiser et al. [9] presented a method for automatically extracting musical structures of popular
music. In order to segment a music clip into regions of acoustically similar frames, non-negative
factorization (NMF) was applied to its self-similarity matrix. Based on the observation that
structural parts can be easily modeled over the dimensions of the NMF decomposition, they
presented a clustering algorithm that can explain the structure of the music clip.

In [18], Serrà et al. proposed an unsupervised method for detecting music boundaries by
using time series structure features. Structure features were obtained by considering temporal
lag information and estimating a bivariate probability density with Gaussian kernels.
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Calculation of differences between consecutive structure features yields a novelty curve whose
peaks indicate boundary estimates.

3 Self-similarity matrix

3.1 Musical features

For music segmentation and its structure analysis, the musical features should be identified and
analyzed. For that purpose, we use two musical features in this work.

& Timbre: Timbre, also known as tone color, is a unique quality of sound that enables
people to distinguish the musical instruments in a music clip. In this work, we use the mel-
frequency cepstral coefficients (MFCC) to represent the timbre feature of the music clip.
MFCC is one of the most important features used in speech recognition and music
information retrieval (MIR) [11, 17, 19]. It is generally used with other acoustic features
in diverse applications such as genre classification and audio similarity measurement.
Particularly, we use the first five MFCC coefficients over the texture window (excluding
the coefficient corresponding to the DC component) as was performed in [19].

& Chromagram: Chromagram, also known as pitch class profile, is a 12-dimensional vector,
which represents the intensities of the 12-semitone pitch classes [6]. The energies of all the
semitones over all the octaves are integrated into a single band called pitch class. This
chromagram is effective in generating high-level music description such as melody and
chord progression; therefore, it can be used in music structural analysis, particularly for
detecting the music repetition. In this work, we use this feature to distinguish the segments
with similar timbres.

3.2 Preprocessing

When generating a self-similarity matrix, an appropriate window size is very important. For
instance, a small window size is effective in capturing the delicate feature transitions as
required in the sequence-based structure analysis. On the other hand, state-based structure
analysis prefers a large window size because it requires feature transition on a larger scale. In
addition, the window size has a very close relationship with the time for generating and
calculating a self-similarity matrix. For example, a smaller window size results in a larger self-
similarity matrix, as shown in Fig. 1. Music tempo is another crucial factor in selecting the
appropriate window size. Generally, songs with faster tempo undergo timbre transition in a
shorter time period. Therefore, a smaller size window should be used for songs with faster
tempo to capture the feature transition more accurately.

Generally, the window size is defined in the time domain. However, in the case of music,
the same window size can cover different music ranges according to its tempo. Therefore, for
performing consistent feature transition analysis, we define the window size on the basis of the
number of beats using Eq. (1). In this equation, bpm represents the number of beats per minute
of a music clip, and it is calculated using the tempo extraction algorithm described in [10]. In
this paper, the window size is 2 beats.

window size ¼ 60

bpm
� # of beats� sampling rate ð1Þ
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The self-similarity matrix is generated on the basis of the feature similarities within
a song. Particularly, for generating a more distinct self-similarity matrix, we apply the
principal component analysis (PCA) to the music feature, which leads to maximized
feature difference in songs. More specifically, we calculate the PCA coefficients and
the mean vector using the MFCC feature of 210 songs. Those songs were collected
from Allmusic.com [1] and cover seven popular genres (blues, electronic, jazz, new
age, rap, R&B, and rock). Simultaneously, PCA reduces the dimensionality of the
feature vectors from 5 to 3. Figure 2 shows the comparison of the original self-
similarity matrix and the PCA-applied self-similarity matrix. As shown in this figure,
the PCA-applied self-similarity matrix is clearer than the original self-similarity
matrix.

Fig. 1 Self-similarity matrices of different window sizes

Multimed Tools Appl (2015) 74:287–302 291



3.3 Self-similarity measurement

As mentioned earlier, the self-similarity matrix can be used to determine the boundaries where
the timbre features significantly vary within a music clip. In this work, we construct the matrix
by calculating the cosine similarity in all the feature vector pairs within the music clip. Each
entry in the matrix, ssm, is calculated using the following cosine similarity equation

ssm i; jð Þ ¼ similarity vi; v j
� � ¼ vi⋅v j

vik k � v j
�� �� ð2Þ

where vi and vj are the feature vectors within the music clip. In some cases, it is difficult for the
matrix to recognize owing to quick and wide transition within the matrix. For instance, the
matrix for a song of vocal or acoustic instruments tends to show rough transitions. In order to
intenerate the matrix, we have applied a two-dimensional median filter to the self-similarity
matrix. Figure 3(a) and (b) show the self-similarity matrix before and after filtering,
respectively.

4 Music segmentation

4.1 Sum of row-wise standard deviations

For capturing the significant changes in successive checkerboard pattern in the self-
similarity matrix, we use a sliding window whose size is up to 20 samples and
compute the summation of its standard deviation. Figure 4 shows an example of the
sliding window and its standard deviation. The standard deviation for a vector x is
defined as follows:

SD xð Þ ¼ 1

n

Xn

i¼1
xi−x

� �2
� �1

2

ð3Þ

Fig. 2 PCA effect on the self-similarity matrices
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In addition, the sum of the row-wise standard deviations (SRSD) in the m-th window is
calculated as follows:

SRSD mð Þ ¼
XN

i¼1
SD rv m; ið Þð Þ ð4Þ

Here, N is the length of the matrix, and rv(m,i) is defined as

rv m; ið Þ ¼ ssm i;mð Þ; ssm i;mþ 1ð Þ;⋯; ssm i;mþ L−1ð Þf g ð5Þ
where L denotes the window length, and we set it to 20 to cover sufficient transitions between
the segments.

Fig. 3 Filtering effect on the self-similarity matrices

Self-similarity matrix 20-samples window std

Fig. 4 Sliding window and its standard deviation
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4.2 Segmentation

For music segmentation, we need to detect the boundaries of different music features. To detect
such boundaries, we first locate the local peak in the SRSD. Since we are interested in
conspicuous checkerboard pattern in the self-similarity matrix, we consider local peaks whose
size is above some threshold. The threshold can be defined as the average of SRSD within a
music clip. On the other hand, small and short peaks are removed by using an eight-size
moving average filter. The detailed description of this is illustrated in Fig. 5.

5 Segment categorization

In this section, we describe the two-stage categorization method for feature-based music segment
classification. In the first stage, the segments with similar timbre are grouped together using the

Fig. 5 Music segmentation
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self-similarity matrix. In the second stage, the segments in each group are subgrouped according
to their chromagram sequence. The overall steps for categorization are illustrated in Fig. 6.

5.1 Categorization using the self-similarity matrix

After segmentation, the music clip is divided into a few segments. However, such segmenta-
tion does not have any structural information. Music structure such as repeating segments or

MFCC extraction

Music

SSM Calculation

Categorization using SSM

Category1

Categorization 
using chromagram

Category N

Categorization 
using chromagram

…
…

Music Segmentation

Chromagram extraction Chromagram extraction

…

Fig. 6 Two-stage categorization
method

1

2

3

4

5

7

Similarity
between

2 & 4

6

Fig. 7 Similarity measurement
among the segments
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neighboring similar segments can be defined by comparing the segments in the self-similarity
matrix. Figure 7 shows an example of the comparison of the segments. For comparing the 3th
and 5th segments, the average of the similarities in the intersection area in the vertical and
horizontal directions is calculated. When the average similarity is high, we assume that the two
segments are very similar and have the same state. On the basis of this intuition, we perform
categorization from the segments with the highest similarity to the segments with the lowest
similarity. The segments are categorized with their highest similarity pair until all the segments
are categorized. As a result, the music clips typically have three to five categories Fig. 8.

5.2 Categorization using chromagram

Categorization on the basis of the self-similarity matrix considers timbre feature only for
segment grouping. As a result, the segments with similar timbre are categorized together. In
this work, for more delicate categorization, we perform additional comparison for chromagram
sequences of segments using the cross-correlation function. Figure 9 shows the detailed steps
for categorization, and Fig. 10 shows an example of the chromagram sequence comparison.

Algorithm Categorization using self-similarity matrix
Input: self-similarity matrix SSM,

music segments {sg1, … , sgn}
segmentation boundaries {b1, … ,bn+1}

where b1=0 and bn+1=length of song
Output: category sequence C = {c1 , … cn}

initialize segment similarity matrix SGSIM with n × n size
for i = 1 to n do

for j = 1 to n do
SGSIM(i,j) = average of SSM(m,n)  

where m={bi , … , bi+1}and n= {bj ,…, bj+1}

end
end
initialize category sequence C = {c1 , … cn} with null value
// set threshold which distinguishes similar segments
while all c    null do

find segments sgi, sgj having maximum similarity in SGSIM (i,j)
if SGSIM (i,j) > then

if both ci and cj are null then
assign new category to ci and cj

if either ci or cj is null then
copy non-null category to null category

else
assign new category to c

end
remove sgi, sgj from SGSIM (i,j)

end
return C

Fig. 8 Categorization using the self-similarity matrix
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6 Experimental results

6.1 Segment boundary hit accuracy

For music segmentation, we collected 50 popular songs over various genres. After listening to the
songs several times, the subjects were requested to define the boundary set bH, which denotes the
music structural changes, such as the transition from verse to chorus or bridge, and the music
mood changes based on personal perception. Another boundary set bA is defined by our proposed
method. By comparing the two boundary sets bH and bA, we estimate the effectiveness of our
method. Here, we consider that the two boundaries are same when their interval difference is less
than 3 s. The average precision and recall accuracies are summarized in Table 1.

6.2 Comparison of the segmentation methods

In this experiment, we compare the proposed segmentation method (SRSD) with the CBK
method. The proposed segmentation method uses the sum of row-wise standard deviations of
the self-similarity matrix. The CBK method uses the checkerboard kernel for segmenting the
music clips on the basis of the self-similarity matrix. Figure 11 shows the comparison of the
two methods for segmenting 50 popular songs. As shown in this figure, the proposed method
outperforms in accuracy and computation time.

6.3 Comparison of the categorization methods

For evaluate the effectiveness of the two-stage categorization method, 50 popular songs are
categorized using (i) a self-similarity matrix and (ii) a self-similarity matrix and chomagram, and

Algorithm Categorization using chromagram
Input: category sequence C = {c1 , … cn}
Output: category sequence C' = {c1 , … cn}

initialize category sequence C' = {c'1 , … c'n} with null value
for each category g do

initialize segment similarity matrix SGSIM2 with m × m size
where m is the number of segments in the category

for each segment i in category g do
for each segment j in category g do

extract successive chromagram CHi(t),CHj(t) from segment i,j
CHSIM = max(cross-correlation between CHi(t) and CHj(t)  ) 
// set threshold which distinguishes similar segment

if CHSIM > then SGSIM2(i,j) = 1
else SGSIM2(i,j) = 0

end
for each column in SGSIM do

k = find row indices with value 1
allocate new category to c'k
if all segments in category g are allocated then break

end
return C

Fig. 9 Categorization using chromagram
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the segmentation results are presented to ten subjects for evaluation. The subjects listened to all
the segments in the category of 50 popular songs and evaluated whether those segments are
really similar. Fig. 12 shows the results of the user evaluation for 50 songs. As mentioned earlier,
the songs cover seven genres. We calculate the average of the categorization accuracy by genre
because the music structure differs depending on the genre. Overall, the average categorization
accuracy is 74.86 % and 80.4 % for single- and multi-stage categorization, respectively.

7 Conclusion

In this paper, we proposed a method for music structure analysis on the basis of
segmentation and categorization. Music segmentation was performed using a self-

Table 1 Average segmentation
accuracies for 50 songs Precision Recall

72.12 % 39.36 %
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Fig. 10 Example of chromagram comparison
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similarity matrix, which is constructed by calculating the similarities among the timbre
features. For segment categorization, we presented a two-stage categorization method,
which uses the timbre and chromagram features of the music clips. For evaluating the
performance of our method, we carried out experiments for songs of seven genres.
The experimental results show that our method achieves reasonable performance with
regard to music segmentation and categorization.

A few important issues still need to be tackled further. Basically, our scheme
belongs to the state approach. Even though this approach is computationally less
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expensive and more robust than the sequence approach, it is poor at performing
delicate structure analysis. Future work involves combining the sequence approach
and the state approach to facilitate more delicate structure analysis with less expensive
computations. We also wish to further investigate how to apply our method in music
retrieval and recommendation.
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