Multimed Tools Appl (2015) 74:259-270
DOI 10.1007/s11042-013-1758-4

Line recognition algorithm for 3D polygonal model using
a parallel computing platform

Ji Hun Kang - Shin Jin Kang - SooKyun Kim

Published online: 12 November 2013
© Springer Science+Business Media New York 2013

Abstract Line recognition-based rendering technique has been used effectively for shape
transmission of 3D polygon model. Line recognition is defined by multifarious forms and
characteristics of lines, and has been a fundamental key point in expressing shape of 3D
polygon model in non-photorealistic rendering technique. Line recognition, however, requires
a long period of calculation time and thus, various methods have been studied to accelerate the
speed of the operation. This paper presents a new method that will accelerate the overall
operation compared to the standard CPU-based method of extracting ink line. The new method
will enhance the efficiency of the calculation speed by applying the parallel processing
technique CUDA (Compute Unified Device Architecture) to the complex processes that
consume a lot of time such as implicit surface calculation and feature point extraction. The
overall performance will be tested and verified through various types of experiments with 3D
polygon model.

Keywords Feature detection - Line recognition - 3D model - Parallel computing platform -
GPGPU

1 Introduction

Characteristics of 3D polygon model are defined in multiple forms such as outline, silhouette,
Ridge, and Valley. Among those characteristics, Ridge-Valley lines are considered to be one of
the most significant and are studied in depth as they are used to identify appearance of the
object. The problem with speed of the process, however, still remains as one of the factors that
have to be improved. This paper will propose an approach of finding Ridge-Valley lines by
using MLS surface approximation, as suggested by Kim et al. [4], and a feature extraction
acceleration algorithm to shorten the overall computational time by using CUDA (Compute

J. H. Kang
Department of Computer Science Education, Korea University, Seoul, Korea

S. J. Kang
School of Games, Hongik University, Sejong, Korea

S. Kim (54)

Department of Game Engineering, Paichai University, Daejeon, Korea
e-mail: kimsk@pcu.ac.kr

@ Springer

260 Multimed Tools Appl (2015) 74:259-270

unified device architecture). Feature line extraction technique of 3D model discussed in the
paper plays a fundamental role in non-photorealistic rendering technique. The technique
generally has been used in ink line effect, which displays images as if they are manually-
drawn by pen, as well as other different styles of rendering such as ink wash painting and oil
painting. With an ink line effect of Ridge-Valley lines playing a fundamental role, distinct style
of 3D polygon model are expressed in this paper through partial rendering or line shape
modification.

CUDA-based line recognition acceleration presents a possibility of accelerating not only
Ridge-Valley lines extraction but also other feature line extractions. In Section 2 of the
following paper, we have explored over CUDA before we discuss the actual content of the
study. In Section 3, we have illustrated how parallel processing of CUDA can be applied in
feature extraction system, and especially propose CUDA-based MLS approximation and
feature extraction system. We have explained the test result through table and figures in
Section 4 and evaluate the result of the paper and discuss about the course of the future
studies in Section 5.

2 Background

Feature line exists in multiple forms and definitions. Lines that are commonly used to represent
feature line, such as Silhouette, outline, Ridge, and Valley, had been studied in various aspects
for a long time. Feature line extraction is mainly divided in two separate categories. One of
them is an object space-based approach method where feature line is extracted directly from
the 3D model. The other one is image space-based approach method where 3D model is
transformed into 2D image and feature line is extracted from the image. Among those, Ridge-
Valley lines, the feature lines that were used in this research, have been studied in depth as
well. Apparent Ridge proposed by Judd et al. [2] has been studied to demonstrate characteristic
of a model and its related lines, and administers view-dependent feature line, which implies
that feature line is extracted depending on how view changes. Hence, this approach can be
inconvenient because line has to be extracted again every time the view changes. Another
approach method that has been proposed is implicit surfaces fitting method. This method,
proposed by Ohtake et al. [8], extracts view and scale-independent Ridge-Valley lines through
first and second order curvature derivatives whose shapes are approximated by triangle meshes
with high densities. Although this process is a visually excellent feature line extraction method,
it does not produce good visual for the models with many wrinkles. It also requires the overall
process to take around 1 h in order to extract Ridge and Valley from models that are composed
of' more than 40,000 triangles. The two studies that were previously discussed are object space-
based approach. The following study is an image space-based feature line extraction. Line
drawing method based on abstraction of a shaded image, as proposed by Lee et al. [5], is a
GPU-based algorithm that renders lines along tone boundaries or thin dark areas in the shaded
image of 3D model. This study achieves feature lines from 2D image and emphasizes artistic
expression. As shown in the related works, feature line extraction has been studied in various
aspects and is consistently advancing and improving.

3 Parallel computing technique using CUDA

This paper incorporates CUDA (Compute Unified Device Architecture), a type of GPGPU
(General Purpose computing on Graphics Processing Units) technology developed by the

@ Springer

Multimed Tools Appl (2015) 74:259-270 261

hardware manufacturer company nVidia (https://developer.nvidia.com/category/zone/cuda-
zone). In addition to the real number calculation ability that the original GPU was known
for, CUDA uses thread-based parallel computing to accelerate the calculation speed, and has
contributed in improving calculation rate [1].

CUDA’s threads are structured in grid of many threads in one block. The number of thread
block is determined by general size of processed data and number of system processor.
Because all the threads within block must be on a common processor, they share limited
amount of data. Hence, the number of threads in each block is restricted to 1,024. While the
threads are processed, data can be accessed in various memory spaces. CUDA bases its
calculation on data exchange between the main memory, called host, and GPU memory, called
device and GPU is processed according to the instructions given by CPU. CUDA’s calculation
processes are operated in each individual thread and consequently have parallel structure
where calculations are processed simultaneously [1]. By subdividing calculations of feature
line extraction based on these structures, calculations that would be repetitive can be processed
at the same time and therefore, reduce the overall computational time. Calculation can
thoroughly be accelerated by using parallel computing.

Although CUDA’s parallel processing has many benefits, there are also some limitations to
it. When CUDA processes general calculations, it first inputs data from main memory to GPU
memory and administers parallel processing through threads that are formed according to the
instructions given by CPU. When the calculation is completed, CUDA concludes its calcula-
tion processes in cycle by transmitting the test results from GPU memory to the main memory
[6, 7, 9]. Such data transmission structure can lead to collision during data delivery process due
to system bus bandwidth and time delay [9]. There is also a possibility of an overflow of the
data if a large quantity of data is copied all at once, and this can cause cancellation of memory
copy. Algorithm process must also be prepared to be processed in parallel structure. If the
parallel processing structure was not considered when preparing algorithm, each thread may
compete each other when they access memory among each other, which can lead test result to
be invalid. When the calculation is processed, there’s also time consumed during data
transmission because data must be transmitted between the main memory and GPU memory.
Considering these structures of data transmission, calculations that require more works must be
processed based on CUDA [9].

4 Line recognition using CUDA
4.1 Approximation surface and curvature calculation

This paper applies MLS (moving least square) surface approximation to extract feature lines.
MLS creates a function using least-square error between a given vertex and an adjacent vertex.
Figure 1 displays an overall flow chart of the algorithm proposed in the paper. Speed
improvement algorithm proposed is divided in host and device section, which is appropriate
for the characteristic of CUDA. The host inputs data, collects neighbor information, and
transmits data to the device. In device, we calculate for curvature through MLS approximation
and then find Ridge and Valley. Then finally, basic model and ink line are formed when result
is transmitted from device to host.

After input data is transmitted from host to device, all calculations are processed through
CUDA’s kernel function, which is a function used in GPU. MLS surface approximation is
formed by using method proposed by Kim et al. [4]. Surface approximation estimates
approximate values through least-square error equation between vertex and it neighboring

@ Springer

https://developer.nvidia.com/category/zone/cuda-zone
https://developer.nvidia.com/category/zone/cuda-zone

262 Multimed Tools Appl (2015) 74:259-270

Host Device

Data input phase MLS calculation phase

3D polygon model > Formation of surface
Data input) approximation
Neighbor information Curvature calculation
collection

Model Formation phase

4
Feature point
extraction phase

Feature point linking

Ridge extraction

Basic model formation

N

. . Valley extraction
Ink line formation Y

Fig. 1 Flow chart

vertex and applies those values to construct a hypothetical surface. Surface approximation
formation is processed in accordance to all vertices and hence, threads are formed in accor-
dance to the number of all vertices and surface approximation of all vertices is calculated
through parallel processing. The following is an Eq. (1) used for surface approximation
formation.

S (o) =) 0(|ri 1) (1)

€N, .
i N,/

At MLS calculation phase, we form function that estimate least-square error between a
vertex and its neighboring vertex. Then, surface approximation between all vertices and their
neighboring vertices are formed and the curvatures and direction are calculated by using the
Eq. (2) below.

Fyt't't + 3kft'n/

e =Vkt VF| (2)

The calculations that are repeated in all vertices are processed simultaneously using each
individual thread. The main purpose of this calculation is to find surface approximation, which
is defined by a set of approximate values between a specific vertex and its neighboring vertex.
The proposed method studied by Kim et al. [4] is used in formation of this set. Figure 2
displays a structural diagram of a formation of CUDA-based MLS surface approximation.

As presented in Fig. 2, applying the fact that MLS surface approximation is formed from
each vertex and its neighboring vertex, threads are formed in accordance to the number of all
vertices and MLS surface approximation is formed through set of data that individually consists
of information on each vertex and its neighboring vertex. Whereas standard method calculated
surface approximation of all vertices through iterative processes, the new method can simulta-
neously calculate MLS surface approximation of all vertices through parallel processing.

@ Springer

Multimed Tools Appl (2015) 74:259-270

263

Thread 1

Thread 2

Extraction of Least-square error equation
between vertex and its neighboring vertex

Extraction of Least-square error equation
between vertex and its neighboring vertex

v

v

Approximate value calculation between vertex
and its neighboring vertex

Approximate value calculation between vertex
and its neighboring vertex

v

v

Formation of surface approximation using
approximate values

Formation of surface approximation using
approximate values

Curvature calculation between vertex 1 and its Curvature calculation between vertex 2 and its
neighboring vertex neighboring vertex
Thread 3 Thread n

Extraction of Least-square error equation
between vertex and its neighboring vertex

Extraction of Least-square error equation
between vertex and its neighboring vertex

v

v

Approximate value calculation between vertex
and its neighboring vertex

Approximate value calculation between vertex
and its neighboring vertex

Formation of surface approximation using Formation of surface approximation using
approximate values approximate values
Curvature calculation between vertex 3 and its Curvature calculation between vertex n and its
neighboring vertex neighboring vertex

Fig. 2 MLS surface approximation using CUDA
4.2 Detection of feature point

Ink line generally is formed by linking feature points, or vertex of Ridge-Valley lines. We use
maximum curvature derivative in order to extract feature points [4].

Vertex of Ridge-Valley lines examine for all edges that exist inside 3D polygon
model. Threads are formed in accordance to the number of all edges and each edge
simultaneously processes feature point examination through parallel processing. When
this examination is completed, each vertex can be distinguished whether or not they are
Ridge-Valley vertex and feature point. Ultimately, the result of feature point extraction is
transmitted from device to host. Calculation processes in device are completed when
allocated memories in device are deactivated. Feature point extraction has similar
structure as CUDA-based MLS surface approximation formation method. Threads are
formed in accordance to the number of edges and each thread differentiates feature point
through examination of all edges. The Fig. 3 presents a structural diagram of CUDA-
based feature point extraction.

As shown in the above diagram, each thread is processed simultaneously, which can,
therefore, reduce the overall computational time needed for feature point extraction.

4.3 Generation of line

Ink line is expressed in curve form through feature point linking. We have previously
explained that calculations are processed in device and the test results are transmitted to host.

@ Springer

264 Multimed Tools Appl (2015) 74:259-270

Thread 1 Thread 2
I Edge examination composed {ry,rp} | I Edge examination composed {ry,} |
I Check for Non — Umbilic Vertex | I Check for Non — Umbilic Vertex I
Maximun curvature comparison between Maximun curvature comparison between
vertex ry and neighboring vertex ry vertex ry and neighboring vertex rp
Indication and exemption of ridge vertex at the Indication and exemption of ridge vertex at the
vertex Iy, I vertex Iy, I
Thread3 Threadn
I Edge examination composed {ry,r} I I Edge examination composed {ry,r»} I
I Check for Non — Umbilic Vertex I I Check for Non — Umbilic Vertex I
Maximun curvature comparison between Maximun curvature comparison between
vertex ry and neighboring vertex ry vertex ry and neighboring vertex
Indication and exemption of ridge vertex at the Indication and exemption of ridge vertex at the
Vertex ry, I Vertex ry, Iy

Fig. 3 Detection of feature point using CUDA

The result values display information on feature point. After feature point information is
transmitted from device to host, feature point linking is processed. In other words, because all
of the CUDA-based calculations are completed in the earlier procedures, feature points are
linked in host. Feature point linking randomly selects any feature point first and links it to other
feature points that are not linked with neighboring vertices. If there are two feature points that
are not linked to neighboring vertices, the one that will be selected for linking will depend on
the direction. As these processes are repeated, feature line is connected. Also, Ridge and Valley
lines link between each other. After the processes described earlier are completed, the two
types of lines Ridge and Valley are linked. When line is linked, this could produce a short line,
which is visually unappealing. Considering the length of ink line, these parts are eliminated
from feature lines through critical values.

5 Experimental results

All the experiments tested in this paper were performed in Intel i7 3.2 Ghz CPU main memory
and Window 7(x64) computer installed with Nvidia Geforce 285 GTX graphic card. For 3D
graphic rendering, we have implemented C from OpenGL library and Visual Studio 2008, and
have operated CUDA 4.0 SDK for parallel processing.

Table 1 compares the time difference between the standard method and the proposed
method. The total column shows that the calculation speed was significantly acceler-
ated in the proposed method compared to the old method. The bolded part displays
the GPU-based calculation. Most of the calculations of feature extraction system are

@ Springer

265

Multimed Tools Appl (2015) 74:259-270

Ov8L'L 0910°0 0ST10°0 0910°0 0910°0 0r199 096C°0 ndo
01€S'T 0910°0 0S10°0 €100°0 01000 0€6£0 0081°0 20091 000 o3[ndo
01c6'L 0910°0 0910°0 0010°0 0910°0 01089 099C°0 ndo
06¢S'1 0910°0 00100 ¢100°0 01000 YCIvo OILT0 S61°L1 666'1€ Auung ndoS
0CL6'L 0010°0 00200 00100 0010°0 00£8°9 00$T°0 ndo
0005°T 0000 00100 €100°0 11000 £€Tr0 00L1°0 866°S1 666'1€ oula ndo
0s01°¢ 0S10°0 0910°0 01000 01000 0L£9°C 0601°0 ndo
OLIL0 00000 00000 S000°0 ¥000°0 8SS1°0 0290°0 SLY'9 96°C1 3sip ueq Ndo
0T68°L 0S10°0 0910°0 0S10°0 0S10°0 098L9 00$T0 ndo
0C81'1 00000 00000 ¢100°0 01000 LSEV'O 0CLT0 €50°91 000°C€ Qul[d] Nndo
UONBULIO)
Sunyury Sunyu| uonero[dxa uonerodxa uoneuwnxoxdde uord2[[0d SOONIOA JoejIns [opowr 2y poyouwr
reloL KaTTeA a8pry AST1BA a8pry ooeNg oJur 10qU3ON Jo JoquinN. JO JoquiN Jo auwreN Surssaoo1d

(spuooas :run) dwm [euonendwo))

uo

IRULIOJUI [9POI

9[qe} uosuredwoo ISy | dqeL

pringer

A's

266 Multimed Tools Appl (2015) 74:259-270

(b) Proposed method (Computational time: 0.7170 seconds)

Fig. 4 Fan disk (Number of faces: 12,964)

processed in GPU, which led to acceleration of overall calculation speed. Thus, even
though there was a time delay due to data copy and transmission between memories

(b) Proposed method (Computational time: 1.5000 seconds)

Fig. 5 Dino (Number of faces: 31,999)

@ Springer

Multimed Tools Appl (2015) 74:259-270 267

(b) Proposed method (Computational time: 1.4820 seconds)

Fig. 6 Feline (Number of faces: 32,000)

as previously explained, the total computational time was still exceptionally reduced.
In computational Time, the sum of the time consumed from calculations is slightly

(b) Proposed method (Computational time: 1.5290 seconds)

Fig. 7 Bunny (Number of faces: 31,999)

@ Springer

268 Multimed Tools Appl (2015) 74:259-270

./vﬁ.‘ﬁ ?{

\R

G
N

(b) Proposed method (Computational time: 1.5310 seconds)

Fig. 8 Igea (Number of faces: 32,000)

different from the total because some time are consumed when data is input in main
memory and when memories are copied and transmitted between host and device.
Table 1 shows the for the model Feline, the total calculation took around 7.8 s to be
completed when the standard method was used while the time dropped to around
1.8 s when the proposed method was used. MLS calculation, one of crucial factors in
this rate comparison, took around 6.7 s when the standard method was used and was
reduced to 0.4 s when the proposed method was used. For the model Fan disk, the
total computational time was reduced from around 3.1 s to around 0.7 s and the
duration of MLS calculation was reduced from around 2.6 s to around 0.5 s. For the
model Dino, the total computational time was reduced from around 7.9 s to 1.5 s and
the duration of MLS calculation was reduced from around 6.8 s to around 0.4 s. For
the model Bunny, the total computational time was reduced from around 7.9 s to
around 1.5 s and the duration of MLS calculation was reduced from around 6.8 s t
around 0.4 s. The last model has also shown the similar result as well, with its
computation time reduced from around 7.8 s to around 1.5 s and its MLS calculation
time reduced from around 6.6 s to around 0.4 s.

Figures 4, 5, 6, and 7 display that the standard method and the proposed method both
produced products with same quality. This shows that application of parallel processing helped
to successfully reduce the overall computational time without any data simplification and
omission (Fig. 8).

@ Springer

Multimed Tools Appl (2015) 74:259-270 269

6 Conclusion and future work

This paper proposed a method of accelerating calculation by applying CUDA to a line
recognition algorithm that uses MLS surface approximation. The proposed method showed
that we were able to significantly reduce the time consumed in feature extraction while
maintaining the quality of the model. The speed improvement algorithm suggested in the
paper is not only effective for Ridge-Valley line but could also be effective for acceleration of
other form of feature lines such as silhouette and outline, and can possibly improve the overall
speed of algorithm. In this paper, we have only applied ink line effect that displays the image
as if it was manually drawn by a pen.

In the future, we plan to add other techniques such as feature line shape modification and
texturing and apply effects other than ink line such as sketch effect and oil painting effect. Also
we will apply our technique to 3D game algorithm [3].

References

—_

. Hwu W-M, Kirk D (2010) Programming massively parallel processors: a hands-on approach. Morgan
Kaufmann

. Judd T, Durand F, Adelson EH (2007) Apparent ridges for line drawing. ACM Trans Graph 26(3):19:1-7

. Kang SJ, Kim SK, Cho SH (2011) Procedural game level generation with interactive evolutionary compu-
tation. J Future Game Technol 1(1):9-20

. Kim SK, Kim C-H (2006) Finding ridges and valleys in a discrete surface using a modified MLS approx-
imation. Comput Aided Des 38(2):173—180

. Lee Y, Markosian L, Lee S, Hughes JF (2007) Line drawings via abstracted shading. ACM Trans Graph
(ACM SIGGRAPH 2007) 26(3):18

. nVidia (2011) NVIDIA CUDA C programming guide, nVidia

. nVidia (2011) CUDA API reference manual, nVidia

. Ohtake Y, Belyaev AG, Seidel H-P (2004) Ridge-valley lines on Meshes via implicit surface fitting. ACM
Trans Graphics 23(3):609.12 [Proceedings of SIGGRAPH 2004]

. Sanders J, Kandrot E (2010) CUDA by example. Addison-Wesle

[SSIN]

N W N

[N

9

>
>
»

Ji Hun Kang is a Ph.D. student in Department of Computer Science Education at Korea University, Korea. He
received M.S in Department of Game Engineering at Paichai University, Korea, in 2013. His research interests
include GPGPU, parallel processing, computer graphics and distribute data processing.

2=
N

@ Springer

270 Multimed Tools Appl (2015) 74:259-270

Shin Jin Kang received Ph.D. degree in Computer Science from Korea University in 2011. Since 2003, he has
worked at Sony Computer Entertainment Korea and NCsoft as a lead game designer in various video games and
MMORPGs including AION. He is now a professor at the School of Games at Hongik University. He is also the
technical advisor of NCsoft.

SooKyun Kim received Ph.D. in Computer Science & Engineering Department of Korea University, Seoul,
Korea, in 2006. He joined Telecommunication R&D center at Samsung Electronics Co., Ltd., from 2006 to 2008.
He is now a professor at Department of Game Engineering at Paichai University, Korea. Professor Kim has
published many research papers in international journals and conferences. Professor Kim has been served as
Chairs, program committee or organizing committee chair for many international conferences and workshops;
Chair of ICCCT’11, ITCS’10, HumanCom’10, EMC’10, ICA3PP’10, FutureTech’10, ACSA’09, Em-Com’09,
CSA’09, CGMS’09, ISA’09, SIP°08, FGCN’08 and so on. Also Professor Kim is guest editor of the International
Journal of “IET Image Processing” and “Multimedia Tools and Applications”. His research interests include
multimedia, pattern recognition, image processing, mobile graphics, geometric modeling, and interactive com-
puter graphics. He is a member of ACM, IEEE, IEEE CS, KACE, KMMS, KKITS and KIIT.

@ Springer

	Line recognition algorithm for 3D polygonal model using a parallel computing platform
	Abstract
	Introduction
	Background
	Parallel computing technique using CUDA
	Line recognition using CUDA
	Approximation surface and curvature calculation
	Detection of feature point
	Generation of line

	Experimental results
	Conclusion and future work
	References

