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Abstract Compressed Sensing, an emerging framework for signal processing, can be used
in image and video application, especially when available resources at the transmitter side
are limited, such as Wireless Multimedia Sensor Networks. For a low-cost and low-power
demand, we consider the plain compressive sampling and low sampling rates and propose a
Compressed Video Sensing scheme. As a result, most burden of video processing can be
shifted to the decoder which employs a hybrid hypothesis prediction method in
reconstruction. The Elastic net-based multi-hypothesis mode, one part of the prediction
method, combines the multi-hypothesis prediction and the elastic net regression together.
And in the process of decoding, either this mode or the single-hypothesis one is
implemented based on the threshold which is selected from [1e-11, 1). Both of the prediction
modes are carried out in the measurement domain and a residual reconstruction as the final
step is executed to accomplish the recovery. According to the performance presented by the
simulation results, the proposed multi-hypothesis mode provides a better reconstruction
quality than the other multi-hypothesis ones and the proposed scheme outperforms the
observed state-of-the-art schemes for compressed-sensing video reconstruction at low
sampling rates.

Keywords Compressed sensing . Distributed video coding . Elastic net .

Hypothesis prediction . Wireless multimedia sensor networks

1 Introduction

The traditional video coding standards share a common characteristic that the design of the
encoders is more complex than the decoders. For this reason, these standards are not suitable
for all application backgrounds. For example, in the rapidly developing Wireless Multimedia
Sensor Networks (WMSN) [1], the lifetime of the large number of sensors has a great effect
on the performance of the network. So the low-complexity transmitter with a good coding
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efficiency has to be considered to decrease the power consumption. In contrast to traditional
video coding, most burden of video processing is shifted to the decoders where abundant
resources are available.

At present, one of the techniques that apply the strategy mentioned above is Distributed
Video Coding (DVC) [15]. In this technique, the intra-frame encoding is implemented
independently without performing motion estimation (ME) and motion compensation
(MC). Especially as for Wyner-Ziv (WZ) frames, a kind of channel code is applied and
then a portion of the resulting parity bits are transmitted. The decoder employs the received
WZ bits and the side information (SI) generated from previous decoded frames to carry out
WZ frames reconstruction jointly. Another technique aiming to achieve low complexity for
encoders is Compressed Sensing (CS) [5, 9]. CS, a new branch of signal processing, can
realize the recovery of sparse or compressible signals by only obtaining a small number of
non-adaptive linear measurements. CS breaks the limit of Nyquist sampling theorem and
needs no additional compression. Although the video coding technique based on CS, as it is
often called Compressed Video Sensing (CVS), has considerable advantages over the ones
noted above, a gap still exists in the practical application of CVS.

Existing CVS schemes perform encoding for each frame independently. According to the
sampling mode, these schemes can be classified into two categories: the plain compressive
sampling [2, 12, 19, 40] and the hybrid sampling [8, 25, 27, 32]. In terms of the plain
compressive sampling mode, Kang and Lu [19] proposed the DCVS framework to complete
video recovery with the help of SI derived from the reconstructed key frames and the
modified GPSR algorithm. Asif et al. [2] considered a motion-adaptive linear dynamical
system at the decoder to model the temporal variations and designed the correspondent
recovery algorithm which were only suitable for frames with small size. Two CVS schemes:
MC-BCS-SPL and MH-BCS-SPL are studied in [12]. In the first one, ME/MC was
incorporated into the reconstruction process and three main components were included:
multi-hypothesis initialization, residual reconstruction and forward/backward MC. The
second one took another form of ME/MC—multi-hypothesis (MH) prediction and proposed
a Tikhonov regularization-based MH prediction method which cooperates with the residual
reconstruction. Ying et al. [40] exploited how to enhance the sparse representation of each
frame block and realized it by means of generating Karhunen-Loève (KL) bases adaptively
at the decoder. However, it is hard for this means to meet the real-time processing. This
video codec had some differences in sampling form. All frames were treated equally without
the partition of key frames and non-key frames. The hybrid sampling mode used a traditional
video coding technique for key frames. [27] presented a practical acquisition process that
combined the compressive sampling with a conventional one and applied it to non-key
frames. The key to this acquisition process was the compressive sampling test that identified
which blocks were sparse within key frames. Prades-Nebot et al. [25] proposed a CS-based
DVC technique in which three coding modes (SKIP, SINGLE and L1 mode) were utilized to
improve the coding efficiency of video. Do et al. [8] designed the DISCOS codec in which
both block-based and frame-based measurements were acquired for non-key frames. Their
main contributions were the interframe sparsity model, sparsity-constraint block prediction
algorithm and sparse recovery with decoder SI method. Tzagkarakis et al. [32] proposed a
CVS system for remote imaging applications. This system employed the iterative frame
refinement process and super-resolution step to enhance the quality of the reconstructed non-
key frames. In brief, compared with the plain compressive sampling without any other form
of encoding, the hybrid sampling was more complex and required more computing
resources. It was not appropriate for the low-cost, low-power encoding devices applied to
WMSN. Based on this fact, we just employ the plain compressive sampling on all frames.
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It is worth noting that much attention has been paid to the performance at low sampling
rates (which means the fewer amounts of data will be acquired), because it can greatly
reduce the power consumption of WMSN. In this paper, we introduce the elastic net
regression which is widely utilized in statistical learning to CVS and propose an Elastic
net-based hybrid hypothesis prediction technique named MS-wEnet. This technique
implements the single-hypothesis (SH) mode or the multi-hypothesis (MH) weighted
Elastic net (MH-wEnet) mode selectively. Both modes are carried out in the
compressed measurement domain at the decoder to obtain the predictions of non-
key frames. After that, the residual reconstruction step is applied to accomplish the
final recovery. The simulation results and analyses show our proposed scheme is more
superior at low sampling rates when compared with the other CVS schemes which
apply MH prediction.

The remainder of this paper is organized as follows: Section 2 describes the background
of Compressed Sensing and further reviews its application in video processing. The
architecture of the proposed CVS scheme is illustrated in Section 3. The MS-wEnet
technique is described in detail in Section 4, and then the performance evaluation is carried
out in Section 5. Finally, a conclusion for this paper is made in Section 6.

2 Background

2.1 Compressed sensing

Briefly, CS integrates signal acquisition and compression (dimensionality reduction)
together and under certain conditions, a small number of linear measurements obtained
contain all the information that is necessary for exact recovery of the signal. Specifically,
assume that a real-valued signal of interest x∈RN has sparse representation in a certain basis
Ψ, the transform coefficients vector α can be accurately recovered with high probability from
a series of projections acquired through

y ¼ Φx ¼ Aα ð1Þ
where y is a measurement vector, Φ∈RM×N is a measurement matrix with M≪N and A
denotes ΦΨ. It involves searching the sparse solution for the underdetermined linear
equations when recovering α from y. Under the condition that A conforms the restricted
isometry property [5], this can be realized by some iterative greedy algorithms, such as OMP
[31], StOMP [10] and CoSaMP [24]. In addition, with the same condition and a convex
relaxation applied, the sparse solution can also be obtained by solving the ‘1 -minimization
problem,

min
α

αk k1; s:t: y ¼ Aα ð2Þ

In practice, the acquisition of CS measurements is often corrupted by noise,

y ¼ Φxþ e ¼ Aαþ e ð3Þ
where e represents the noise vector. In this case, to deal with noisy measurements, (2) should
be relaxed to yield the following optimization problem,

min
α

1

2
y − Aαk k22 þ λ αk k1 ð4Þ
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known as basis pursuit denoising (BPDN) [6] criterion. Here, λ is a non-negative parameter.
For the advantage of obtaining the global optimal solution, convex optimization approaches
for solving (4) achieve better in reconstruction quality than greedy algorithms, but with more
computational complexity.

2.2 Video techniques based on CS

In many cases, natural video frames are compressible in DCT or Wavelet basis and a random
matrix is selected as Φ to guarantee the incoherence with Ψ. In the field of reconstruction
algorithms, a variety of solvers have been proposed against (4). For example, the FPC_AS
[39] algorithm combines the characteristic of greedy algorithms with the improved fixed-
point continuation (FPC) to deal with the challenging problems arising in CS, such as high
dynamic range; the ADMM [4] solver utilizes the simple but powerful alternating direction
method of multipliers to handle the large-scale problems efficiently. Moreover, another
recovery algorithm named CGIST [16] has also developed. This algorithm is based on
iterative shrinkage/thresholding (IST) and takes advantage of the conjugate gradient partan
method to accelerate convergence when the active set remains constant.

When we employ the reconstruction algorithms noted above to handle the video
streaming, the most straightforward approach is to implement global frame-based acquisition
and reconstruct the individual frames independently. However, it causes an increasing
storage at the encoder and takes much time to recover at the decoder. To solve these
problems, we take the strategy of non-overlapping block splitting, which in turn leads to
the severe blocking artifacts. Learning from the method of eliminating blocking artifacts in
traditional video processing, the BCS-SPL [22] algorithm incorporates a Wiener-filtering
step into the reconstruction. In view of its fast implementation and good reconstruction
quality, we adopt the BCS-SPL algorithm for the recovery of video frames.

As to the specific dynamic magnetic resonance imaging (MRI), a number of approaches,
such as LS-CS [34], KF-CS [33], modified-CS [35], modified-CS-residual [21], and k-t
FOCUSS [18] are suggested in CVS community. However, in comparison with natural video
sequences, the dynamic MRI ones have fewer amounts of inter-frame motion and smaller
temporal variations in video contents. So these approaches are not suitable for natural video
scenes, but we can benefit from the idea of “prediction—residual reconstruction”. We can
get the conclusion from the CVS schemes described in Section 1 that various ME/MC
techniques can be embedded into the CS video receiver/decoder efficiently and that the
performance of CVS can also be further improved by merging the respective features of CS
and DVC. In addition, we can apply the methods in Matrix Completion, such as MATRIX
ALPS [20] and SpaRCS [38], to video surveillance environment in which the static
background is explained as a low-rank matrix while the moving foreground objects result
in a sparse matrix. Also, we may take the form of 3D processing [14, 36, 37]. In this case, a
3D joint reconstruction is implemented. However, the computation and memory issues will
be worse with the amount of data increase.

In essence, all these CVS schemes make efforts to take advantage of the redundancy
(which exists in both intra-frame and inter-frame forms), especially the temporal redundancy
to improve the performance of video reconstruction.

3 Architecture of the proposed CVS scheme

The block diagram of our proposed CVS system is presented in Fig. 1.
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Figure 1(a) shows the CVS encoder and Fig. 1(b) illustrates the CVS decoder. The decoder
presents the recovery procedure for one non-key frame. It is worth emphasizing that the number
of non-key frames plays a decisive role in the amount of data we need to process. In WMSN,
with the acceptable visual quality, themore non-key frames, the less power will be consumed on
encoding devices. From this block diagram, we can clearly learn that there are four main stages
to accomplish the proposed CVS scheme. The first stage, named as plain compressive
sampling, carries out at the encoder. At this stage, the block-based measurements will be
acquired on key frames and non-key frames separately. Then, at the decoder, key frames will
be reconstructed first based on the received and inverse-quantized measurements of them at the
second stage. After the block sliding and projection process, the third and the most important
stage, MS-wEnet prediction, is implemented to construct the predictions of the blocks in one
non-key frame with the aid of the calculated distance sets. The last stage, residual recovery,
recovers the difference between the prediction and the target non-key frame. Additionally, the
recovery procedure described in Fig. 1(b) can be extended to other non-key frames.

3.1 Design of CVS encoder

As we discussed above, to meet the low-cost and low-power demand, we apply the plain
compressive sampling to the video streaming frame-by-frame, block-by-block to obtain
measurements. According to the analysis of the distribution of measurements in [2, 12], we
divide the video sequence into many Group-of-Pictures (GOPs) which consist of one key frame
and several non-key frames. For convenience, we assume xj,m

K is themth block(vectorized) in the
jth key frame and that xi,m

CS is the mth block(vectorized) in the ith non-key frame. Moreover,

ΦK
B∈R

MK
B�N is defined as the block-based key-frame measurement matrix and ΦCS

B ∈RMCS
B �N

is defined as the block-based non-key-frame measurement matrix. Here, we define MB
K/N and

MB
CS/N as Key-subrate and CS-subrate, respectively. In Fig. 1(a), all of the frames are splitted

into blocks with the same size. Each block (vectorized) of key frames is compressively sampled
by projecting onto ΦB

K to get the measurement vector yj,m
K , while non-key frames are sampled by

ΦB
CS to obtain all measurement vectors yi,m

CS. Besides, for simple and practical implementation,
we adopt the first MB

CS rows of ΦB
K to form ΦB

CS.
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Fig. 1 Block diagram of the proposed CVS codec: a CVS encoder, b CVS decoder
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3.2 Design of CVS decoder

The recovery of key frames is completed by using the BCS-SPL algorithm. Same as
traditional video coding, to make full use of the temporal redundancy, two neighboring
key frames are employed to carry out bi-directional prediction for non-key frames between
them. On the reconstructed key frames, the block sliding process is implemented. In this
process, a block with the same size of xi,m

CS will slide pixel-by-pixel in all directions within the
search space associated with xi,m

CS and all obtained blocks will be transformed to vectors to
generate the hypothesis set Hm. Multiplied by ΦB

CS, Hm is projected to yield the measurement
vector set Qm. The Euclidean distances between every column qs in Qm and yi,m

CS (the
measurement vector corresponds to xi,m

CS) are calculated to form the distance vector Di,m,
and then Di,m is used for the implementation of the hybrid hypothesis prediction procedure.
Specifically, the hybrid hypothesis prediction is a new method. It selects either the SH or the
MH-wEnet prediction mode in the projection domain to produce exCSi;m as the approximation

of xi,m
CS. These two modes complete the prediction task for non-key frames together. After

that, the predicted blocks are arranged via block grouping to acquire the whole predicted exCSi
followed by the step of residual reconstruction.

As pointed out above, the most essential part in our proposed CVS scheme is the MS-
wEnet prediction stage, i.e., the Elastic net-based hybrid hypothesis prediction, and next we
will illustrate it in detail.

4 Elastic net-based hybrid hypothesis prediction

In MS-wEnet, MH-wEnet is a new approach to carry out the measurement-domain MH
prediction. Therefore, it is necessary to explain the MH prediction employed in CVS first. In
the following part, we assume Hi,m represents the hypothesis set associated with xi,m

CS and that
Qi,m denotes the projection set of Hi,m by ΦB

CS.

4.1 MH prediction mode in CVS

This mode [8, 30], as well as the SH prediction one, belongs to the ME/MC technique which
is more suitable for dealing with complex motion. In CVS, ME/MC only occurs in the CS
reconstruction of video. In this process, we can construct the prediction exCSi;m as the

approximation of xi,m
CS with the measurement vector yi,m

CS. Similar to the usage of ME/MC in
traditional video coding, in CVS, the more accurate this prediction exCSi;m is, the more

efficiently for the corresponding residual erCSi;m to be recovered via reconstruction algorithms

based on the residual measurements, and then get xCSi;m ¼ exCS
i;m

þerCSi;m . Therefore, the key to

applying ME/MC to CVS successfully is the prediction methods on the basis of yi,m
CS.

In the CS reconstruction of video, both MH and SH prediction modes can be
implemented in the pixel domain or in the measurement domain. However, from [3, 7, 12,
17], exCSi;m made in the measurement domain is probably more close to xi,m

CS as compared to that

made in the pixel domain according to the Johnson-Lindenstrauss (JL) lemma. Therefore,
the idea of “prediction—residual reconstruction” is more suitable for the measurement
domain and this has been confirmed in [12]. Besides, by selecting multiple candidate
hypotheses (columns) hs from Hi,m and then executing an optimal linear combination, the
MH mode produces a prediction superior to any other ones constructed by the SH mode.
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Based on these facts, we conclude that the predictions obtained by the MH mode in the
measurement domain achieve better accuracy than the other ones.

When this mode is carried out, the MH coefficients vector wi,m
mh is acquired in the

projection domain first and then applied to all hypotheses to obtain the linear prediction exmhi;m
¼ Hi;mwmh

i;m . Because of the dimensionality reduction caused by ΦB
CS, the optimization

problem of acquiring wi,m
mh should be added a certain penalty term to obtain a preferable

solution. At present, two methods have been proposed for MH prediction in the projection
domain.

(a) ‘1 regularization-based MH prediction. In [8], the proposed sparsity-constraint block
prediction scheme supposes xi,m

CS can be represented as a linear combination of a few hs.
In other words, wi,m

mh is assumed to be sparse and the support used for combination is a
subset of that of Hi,m. As a result, the ‘1 regularization-based MH prediction involves
solving

w‘1
i;m ¼ argmin

w

������yCSi;m−Qi;mw
������2
2
þ λ

������w������
1

ð5Þ

where w‘1
i;m is a form of wi,m

mh.
(b) Tikhonov regularization-based MH prediction. This method, as the main part of MH-

BCS-SPL [12, 30] which is called MH-Tikhonov in our work assumes the support used
for combination is just that of Hi,m. All hs make contributions to the prediction. Based
on the Euclidean distances between each column qs in Qi,m and yi,m

CS, the contributions
can be further adjusted. With these distances as prior knowledge, the Tikhonov
regularization-based MH prediction can be written as

wTik
i;m ¼ argmin

w

������yCSi;m −Qi;mw
������2
2
þ
������λΓw������2

2
ð6Þ

Here, Γ is a Tikhonov matrix which contains the prior knowledge stated, and wi,m
Tik is

another form of wi,m
mh. Compared with (5) which is solved by iteration, a closed-form

solution is available for (6).

4.2 Elastic net

A conclusion can be drawn from the analysis noted above that the performance of prediction is
dominated by the selected support and the associated coefficients. In fact, both ‘1 -based and
Tikhonov-based prediction methods in the measurement domain can be viewed as two limiting
cases in the MHmode for their supports applied in the linear combination. However, to achieve
the best prediction performance, hs which is highly correlated with xi,m

CS should be selected as
much as possible and the others should be dropped in order to avoid the corruption. With this
principle, we introduce and modify Elastic net which is widely used in statistical learning to
execute MH prediction in the projection domain for video data.

Associated an ‘1 penalty with an ‘2 one together, the optimization problem, as it is often
called Elastic net [42], can be written as

wEnet
i;m ¼ 1þ λ2

n

� �
argmin

w

������yCSi;m − Qi;mw
������2
2
þ λ1

������w������
1
þ λ2

������w������2
2

ð7Þ
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with both λ1 and λ2 be non-negative values. wi,m
Enet represents the acquired MH coefficients

vector. From (7), it is obvious to find out the connection between Elastic net and ‘1
regularization or Tikhonov regularization. Here, the introduction of the factor 1þ λ2

n

� �
is

to eliminate the double shrinkage caused by these two regularization terms. It is well known
that the elastic net regression combines the merits of the LASSO [28] and ridge regression.
Specifically, the ‘1 part in the elastic net penalty promotes the sparsity in wi,m

Enet and the ‘2
part not only overcomes the limitation on the number of columns in Qi,m to be selected but
also stabilizes the solution path when p≫n (Qi,m∈Rn×p). More importantly, a grouping effect
on wi,m

Enet can be encouraged by the ‘2 part. This makes Elastic net be able to handle many
highly correlated columns in Qi,m perfectly. Unlike the LASSO which tends to select one
column and ignore the others, all of these columns can be selected or dropped. From the
construction of Hi,m, we can learn that the correlations between some columns (hypotheses)
are so high that they can be treated as a group in Hi,m. According to the JL lemma, the
projections in Qi,m which correspond to the group are also highly correlated, thus it is
reasonable for Elastic net to deal with these columns.

To make the statements above more understandable, we take the first frame of Foreman
sequence (CIF format, 352×288) as the reference frame. On it, the block-based compressive
sampling with a block size of B=16 and Key-subrate=0.7 is executed. Then, the BCS-SPL
algorithm is used for the recovery of this frame. On the reconstructed reference frame, we
extract the search space related to the 25th block of non-key frames with a spatial window
size W (15 pixels) to form Hi,25 and Qi,25. Figure 2 presents the acquisition of the search
space and the CS-subrate we set for Qi,25 is 0.2. The experimental data in Tables 1 and 2
present the correlations between columns 40~43 in Hi,25 and Qi,25, separately.

From Tables 1 and 2, we can conclude that the columns 40~43 are highly correlated with
all the ρa,b above 0.8, especially in Qi,25. In this case, Elastic net can be utilized to process
these columns effectively. All of them will be abandoned and the corresponding coefficients
are set zero, or be selected and allocated similar non-zero coefficients.

B
W W

W

W

B+2W

Fig. 2 A block with B×B and the search space with (B+2W)×(B+2W); W is the spatial window size
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LARS-EN, an efficient algorithm, is also developed in [42] to obtain the entire Elastic net
solution path by the updating and downdating of Cholesky decomposition and [26] makes a
further description of this algorithm with the available Matlab software: SpaSM. In the
situation where p≫n , we adopt the early stopping [42] which means the optimal solution is
achieved before the algorithm runs to end. Besides, LARS-EN requires O(k3+pk2)
operations after k iterations, so the early stopping can be used to ease the computational
burden to acquire the solution.

4.3 Weighted Elastic net

Applying Elastic net simply to video processing does not utilize all the underlying available
information. In [43], the described adaptive Elastic net combines the adaptive LASSO [41]
and Elastic net together. This adaptive Elastic net, with the pre-computed Elastic net
estimator as the penalty factor embedded into the ‘1 part, allocates different weight to the
corresponding coefficient. As to the multi-hypothesis setting in the projection domain for
video data, the distance-weighted rule is employed to form the Tikhonov regularization-
based MH prediction in [30]. The greater the distance is, the heavier penalty to the
correspondent coefficient will be. We can adopt this rule to Elastic net or replace the pre-
computed Elastic net estimator in the adaptive Elastic net by the distance vector Di,m defined
in Section 3.2. Compared with the adaptive Elastic net, the resulting weighted Elastic net
(wEnet), as we call, is also data-dependent for Di,m varies with the block number m in the
frame number i but more efficient in computing without acquisition of the Elastic net
solution. Additionally, the wEnet also inherits the characteristics of sparse representation
and grouping effect in Elastic net mentioned above. In summary, the proposed Multi-
Hypothesis weighted Elastic net (MH-wEnet) which is used in the measurement domain
to make the prediction exwEneti;m has the following form:

wwEnet
i;m ¼ 1þ λ2

n

� �
arg min

w

������yCSi;m − Qi;mw
������2
2
þ λ1

������Di;mw
������
1
þ λ2

������w������2
2

ð8Þ

exwEneti;m ¼ Hi;mw
wEnet
i;m ð9Þ

where

Di;m ¼

d1 0
⋱

ds
⋱

0 dΣ

0
BBBB@

1
CCCCA

Table 1 The correlations between
columns 40~43 in Hi,25

ρa,b
H 40 41 42 43

40 1 − − −
41 0.9314 1 − −
42 0.8537 0.9327 1 −
43 0.8023 0.853 0.931 1
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wi,m
wEnet is the MH coefficients vector in MH-wEnet and ds= ||yi,m

CS−ΦB
CShs||2 is also the

element in the distance vector Di,m. Σ represents the total number of columns in Qi,m.
For the computation, the LARS-EN algorithm can still be employed to obtain the solution

path efficiently based on the adjusted Qi,m by Di,m and the early stopping is also adopted.

4.4 MH/SH wEnet

We have designed the measurement-domain MH-wEnet mode to handle the problems of
support selection and coefficients adjustment. But from the construction of Di,m, we can see
that the value of ds will be extremely close to zero when yi,m

CS is approximately equal to qs and
that in the special case where yi,m

CS=qs, ds will precisely be zero. When one of these two cases
happens, the LARS-EN algorithm used to solve the wEnet will become unstable because of
the implementation of Cholesky decomposition. To avoid this and improve the robustness of
the prediction procedure, we take the approach of SH prediction and combine it with MH-
wEnet to complete the prediction task for non-key frames.

In CVS situation, the SH mode has two options for implementation. In the pixel domain
[2, 19, 23, 32], it is similar to the traditional ME/MC framework and an ME operation is
made between an initial predicted frame and a reference frame to form the associated field of
motion vectors. This field is applied to produce the more precise prediction. In the
measurement domain [25], a single and best-matching hypothesis hs is chosen as exCSi;m
according to some distortion standards, such as the minimum mean square error (MMSE),
carried out between each measurement vector qs and the target yi,m

CS. As noted in Section 4.1,
the prediction calculated in the measurement domain is more precise than that in the pixel
domain. Moreover, because MH-wEnet has its implementation in the measurement domain,
the SH mode should also keep the same manner to guarantee the efficiency of prediction.

Specifically, as Fig. 1(b) shows, after the calculation of Di,m, the minimum dθ in it will be
found and then compared with a suitable threshold T which is determined by experience and
requirements. According to the results of judgment, either the SH or the MH-wEnet
prediction mode in the projection domain will be selected to execute. That is the reason
why we call MS-wEnet a hybrid prediction method. Once the SH mode is chosen to carry
out, the θth column in Hm, i.e., Hm,θ will be viewed as the prediction of the vectorized xi,m

CS

directly and then added to predictions of the other blocks to constitute the whole prediction
of xi

CS via block grouping.
Here, there may exist a problem that since SH prediction is less attractive than MH

prediction in quality, the participation of SH prediction may lead to a reduction in the final
reconstruction quality. It should be emphasized that the number of blocks which go through
the process of SH prediction is much less than that through MH prediction. And if the
threshold T is small enough, xi,m

CS can be accurately approximated by Hm,θ according to the JL
lemma. As a result, the quality achieved by the hybrid hypothesis prediction method
(MH/SH wEnet, and MS-wEnet for simplicity) will not be deteriorated compared with that
by the solely MH mode. Moreover, the prediction procedure will also be speeded up because

Table 2 The correlations between
columns 40~43 in Qi,25

ρa,b
Q 40 41 42 43

40 1 − − −
41 0.997 1 − −
42 0.9931 0.9971 1 −
43 0.9904 0.992 0.9958 1
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the implementation of SH prediction is much faster than MH one. This will be presented in
the simulation part.

With the discussion above, we have described the proposed CVS system in detail,
especially the vital component—MS-wEnet at the decoder. The performance of this scheme
will be shown and analyzed in the next section.

5 Experiments and results

In order to make the performance evaluation, in all our experiments, we take the standard test
video sequences with CIF format available at http://trace.eas.asu.edu/yuv/ and use the
luminance component. A block size of B=16 and an orthonormalized Gaussian ΦB are applied
to the block-based plain compressive sampling. The Key-subrate we use is 0.7 and CS-subrate
varies from 0.1 to 0.5. The dual-tree discrete wavelet transform (DDWT) with four levels of
decomposition is used as the sparsity-inducing basis for reconstruction and the residual
reconstruction is only executed once by using the BCS-SPL algorithm. Moreover, in those
schemes implementingMH/MS prediction, the spatial window sizeW, as shown in Fig. 2, is set
to be 15 pixels. All of the experiments are carried out under the configuration of Windows 7
SP1, Intel Core i3-2330 M, CPU 2.20GHz, 2GB RAM. The version of Matlab is R2010(b).

Before the performance of the proposed CVS scheme is demonstrated, there are still
several problems that need to be handled.

5.1 Parameters in MS-wEnet

In the MH-wEnet mode, the Matlab software: SpaSM is adopted to solve the wEnet
presented in (8) and (9). There are two parameters λ1 and λ2 that need to be predetermined
in the wEnet. In other words, we should define the values of delta and stop (delta is equal to
λ2 and −stop which is related to λ1 denotes the number of hypotheses to be selected) first for
SpaSM. We can learn from the JL lemma that ||yi,m

CS–Qi,mw||2 will be close to ||xi,m
CS–Hi,mw||2

with a higher probability and meanwhile the correlations between each qs in Qi,m and yi,m
CS

will be distinguished more efficiently as CS-subrate increases. So it allows us to select more

Fig. 3 Reconstruction quality of frame 5 of Foreman sequence with different T at various CS-subrates
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hs in Hi,m to make contributions to the prediction with higher CS-subrate. Based on the
analysis and experimental observations over a large set of different frames, we find
deltaZ[0.01,0.2] and stop=−1000×CS–subrate provide the better results. As a result, we
use delta=0.1 and stop=−1000×CS–subrate from this point on.

Because of the application background of WMSN, there are abundant computing
resources available at the receiver. So compared with the reconstruction time, the
reconstruction quality is more important. Next, we will analyze the effect that the threshold
T makes on the reconstruction quality in detail.

In fact, the lower limit of the threshold T is the minimum value of dθ that the LARS-EN
algorithm allows when solving (8) stably. It is found that when dθ is lower than 1e-11, the
adjusted Qi,m (each adjusted column qs

, =qs./ds) is badly conditioned and this leads to the
instability of LARS-EN. For this reason, the lower limit of T we set is 1e-11. Based on this

Fig. 4 Reconstruction quality of frame 5 of News sequence with different T at various CS-subrates

Fig. 5 Reconstruction quality of frame 5 of Foreman sequence for various MH prediction methods
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lower limit and without loss of generality, we utilize the frames 1,5,9 of Foreman and News
sequences to determine the scope of T in which the reconstruction quality of MS-wEnet
achieves the optimum. The frames 1,9 are treated as key frames and frame 5 as non-key
frame to be recovered. Figures 3 and 4 show the relationship between the threshold T and the
reconstruction quality of frame 5 at different CS-subrates. The reconstruction quality is
measured in peak signal-to-noise ratio (PSNR).

It can be observed that the trend of all curves is consistent. When T∈[ 1e–11, 1 ), the
reconstruction quality remains unchanged. The reason is that few dθ are in [ 1e–11, 1 ) and the

Table 3 PSNR(dB) and reconstruction time(s) of frame 5 of Foreman sequence for various MH methods

Method CS-subrate

0.1 0.2 0.3 0.4 0.5

MH-OMP PSNR 27.36 30.51 32.93 34.63 36.15

Time 10.7 16.0 25.3 41.1 72.8

MH-LARS-LASSO PSNR 32.66 35.68 37.52 38.98 40.31

Time 42.9 78.0 119.0 173.9 229.2

MH-LARS-wLASSO PSNR 33.97 36.61 38.16 39.47 40.57

Time 30.3 61.0 97.2 138.8 200.8

MH-Enet PSNR 32.01 34.76 36.44 38.11 39.56

Time 81.3 170.2 286.7 479.5 766.1

MH-wEnet PSNR 34.63 37.12 38.67 40 41.15

Time 47.4 101.0 174.2 311.6 520.7

MH-Tikhonov PSNR 33.09 36.25 38.01 39.57 40.88

Time 173.3 168.2 170.6 173.7 179.2

MH-L1-CGIST PSNR 33.80 36.54 38.18 39.55 40.72

Time(h) 1.41 2.05 2.78 3.55 4.50

Fig. 6 Reconstruction quality for frame 5 of News sequence for MS-wEnet/SH
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block corresponding to dθwhich is in [ 1e–11, 1 ) can be approximated by SH prediction.When
T∈ [1, 500 ], the reconstruction quality reduces rapidly with the increasing T which indicates
most dθ are in [ 1, 500 ]. When T>500, for the reason that all blocks employ the reconstruction
method based on SH prediction, the reconstruction quality does not change any more. With this
analysis, in order to achieve the best reconstruction quality stably by applying MS-wEnet, we
should select T from [ 1e–11, 1 ). Therefore, T=1e-7 is used from this point on.

5.2 Comparison of various MH prediction methods

In our decoding procedure, the acquired Hi,m and Qi,m can be viewed as two special
dictionaries in the spatial domain and measurement domain, respectively. It exists many
kinds of techniques that can be employed to settle the MH prediction problem based on Qi,m.
Here, we take five typical algorithms: OMP, CGIST, LARS [26], LARS-EN and Tikhonov
regularization [30]. The OMP is an iterative greedy algorithm, while CGIST is an ‘1 -
regularization solver by convex optimization. The LARS and LARS-EN are two fast
algorithms based on Least Angle Regression [11] for line regression: the LASSO and Elastic
net. At last, in Tikhonov regularization, an ‘2 -penalty term that contains the prior knowledge

Table 4 PSNR(dB), reconstruction time(s) and SH proportion for frame 5 of News sequence for MS-wEnet/
SH

Method CS-subrate

0.1 0.2 0.3 0.4 0.5

MS-wEnet PSNR 35.34 36.72 37.53 38.2 38.63

Time 38.16 74.99 137.12 241.64 385.98

SH proportion 0.313 0.313 0.313 0.313 0.313

SH PSNR 32.72 33.73 34.67 35.41 36.26

Time 13.78 14.47 14.31 14.93 16.1

SH proportion 1 1 1 1 1

Fig. 7 Performance comparison with the first 88 frames of Foreman sequence
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is imposed on the norm of wi,m
mh. All of the algorithms except Tikhonov regularization, will

provide the sparse solution wi,m
mh. Additionally, we also extend the distance-weighted rule to

the LASSO, yielding another MH prediction method, MH-LARS-wLASSO. So there are
seven methods which are demonstrated in Fig. 5 in total to compare.

As a representative, we take the frames 1,5,9 of Foreman sequence as an example. The
frames 1,9 are treated as key frames and frame 5 as non-key frame to be recovered. In OMP,
the maximum number of iterations K equals 500 and in CGIST, the value of the parameter
mu we set is 100. To solve Enet (Elastic net) and wEnet, we take delta=0.1 and stop=−
1000×CS–subrate. As for the LASSO and wLASSO, SpaSM is also utilized to obtain the
solution with delta=0 and stop=−1000×CS–subrate. Note that the number of the selected
hypotheses will be limited by n when applying LASSO or wLASSO. In MH-Tikhonov,

Fig. 8 Performance comparison with the first 88 frames of Coastguard sequence

Fig. 9 Performance comparison with the first 88 frames of Mother and Daughter sequence
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lambda=0.25, the same setting with [12, 30]. The comparison of reconstruction quality for
various methods is shown in Figure 5. And Table 3 presents the associated experiment data.

Here, it should be emphasized that when using MH-wEnet or MH-LARS-wLASSO on
the three frames we select, there is no unstable situation which is described in Section 4.4. In
other words, the SH mode has no contribution to the reconstruction.

As Fig. 5 shows, MH-wEnet almost outperforms the other methods in reconstruction quality but
MH-OMP is the worst. The suboptimal ones are MH-L1-CGIST and MH-LARS-wLASSO. The
corresponding curves of these methods are very close to each other. MH-Tikhonov has a slight
advantage over the suboptimal ones at high CS-subrates. From the quality formed by MH-LARS-
LASSO and MH-Enet, we can see that the improvement of PSNR can not always benefit from the
simply more selected hs from the hypothesis set Hi,m. It is essential to apply the prior knowledge
contained in Di,m to further distinguish the contribution made by each hs to the linear combination.

Fig. 10 Performance comparison with the first 88 frames of Hall Monitor sequence

Fig. 11 Performance comparison with the first 88 frames of News sequence
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According to the reconstruction time (CPU time) for various MH methods provided in
Table 3, clearly, MH-OMP is the fastest method, while MH-L1-CGIST is the slowest one. So
it is not suitable for the real-time processing. It takes nearly the same amount of time to
implement the recovery process for MH-Tikhonov at each CS-subrate. The remaining four
methods need more and more time for reconstruction with the increasing CS-subrate.
Additionally, it can be found that the application of the distance-weighted rule makes
MH-LARS-wLASSO and MH-wEnet much faster than that without it.

With the analysis above, MH-wEnet, MH-Tikhonov, and MH-LARS-wLASSO are the
better ones. However, for the application background of WMSN, much attention is paid to
the performance at low sampling rates, especially the reconstruction quality because of the
abundant computing resources available at the receiver. From Fig. 5 and Table 3, we can see
that with MH-Tikhonov to be the baseline, MH-wEnet is more competitive than MH-LARS-
wLASSO in terms of reconstruction quality at low CS-subrates, though some longer time is
required. In addition, MH-LARS-wLASSO does not only ignore the grouping effect but also
inherit the instability of the LASSO solution path when qs are highly correlated. Therefore,
between the two proposed methods, MH-wEnet and MH-LARS-wLASSO, we select the
former to compare with MH-Tikhonov which is one of the best methods in reconstruction
quality as we know at present. But for the reason that MH-wEnet is not suitable for all video
sequences, we adopt MS-wEnet instead of MH-wEnet.

Table 5 Average PSNR(dB) for the first 88 frames of several video sequences

Sequence Method CS-subrate

0.1 0.2 0.3 0.4 0.5

Foreman Dir-BCS-SPL 28.42 30.83 32.72 34.44 35.95

MH-OMP 28.73 31.79 33.99 35.71 37.32

MS-wEnet 35.87 37.84 39.26 40.51 41.73

MH-Tikhonov 34.0 36.58 38.33 39.88 41.32

Coastguard Dir-BCS-SPL 24.75 26.51 27.78 29.14 30.56

MH-OMP 25.18 28.28 30.41 32.37 34.26

MS-wEnet 30.78 32.88 34.65 36.33 38.04

MH-Tikhonov 29.37 32.02 34.13 36.16 38.20

Mother and daughter Dir-BCS-SPL 32.68 35.51 37.52 39.18 40.79

MH-OMP 33.45 37.47 39.86 41.66 43.22

MS-wEnet 42.10 43.52 44.72 45.81 46.84

MH-Tikhonov 39.93 42.41 44.14 45.61 46.90

Hall monitor Dir-BCS-SPL 24.84 27.84 29.91 31.75 33.52

MH-OMP 26.91 31.09 33.34 35.07 36.33

MS-wEnet 34.97 36.21 37.17 37.99 38.68

MH-Tikhonov 33.81 35.74 37.0 38.02 38.83

News Dir-BCS-SPL 24.57 27.28 29.41 31.91 33.84

MH-OMP 25.11 31.33 33.68 35.64 37.05

MS-wEnet 36.24 37.44 38.22 38.69 39.16

MH-Tikhonov 34.98 36.87 37.91 38.59 39.18

The bold PSNR values represent the highest PSNR for each video sequence at different CS-subrates
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5.3 Contribution comparison of MH-wEnet and SH to MS-wEnet

Because MS-wEnet involves the mode selection, it is necessary to figure out the
contributions two modes make to the reconstruction performance gain of MS-wEnet. In this
time, to make SH mode play a role in MS-wEnet under the threshold T=1e-7, we choose
frames 1,5,9 of News sequence and the treatment is the same as that in Section 5.2. Figure 6
shows the reconstruction quality of the 5th frame by applying MS-wEnet and solely SH
method, separately. Note that MMSE distortion standard is used in the solely SH method.
Table 4 lists the PSNR values, the reconstruction time and the proportion of SH mode in
either method.

From these results, we can see the reconstruction quality achieved by MS-wEnet is
significantly better than that by solely SH method. So it can be inferred that in terms of
prediction quality, the MH-wEnet mode is much better than the SH mode. From Table 4, we
can know the reconstruction time for solely SH method is much less than that for MS-wEnet.
So it can be concluded that in terms of prediction speed, the SH mode is much faster than the
MH-wEnet mode. It should be emphasized that in the reconstruction method applying MS-
wEnet, the proportion of blocks using the SH mode is 0.313 only. Therefore, in comparison
with the SH mode, the contribution made by the MH-wEnet mode is dominant in the
reconstruction performance gain of MS-wEnet.

Table 6 Average reconstruction time(s) per frame for all methods at each CS-subrate

Sequence Method CS-subrate

0.1 0.2 0.3 0.4 0.5

Foreman Dir-BCS-SPL 10.8 7.2 5.7 4.4 3.9

MH-OMP 65.9 70.7 79.2 93.3 118.7

MS-wEnet 96.3 137.1 202.0 313.0 503.5

MH-Tikhonov 187.3 191.7 195.6 200.5 206.5

Coastguard Dir-BCS-SPL 9.7 6.0 5.1 4.2 3.9

MH-OMP 66.0 70.2 78.4 91.5 116.3

MS-wEnet 94.9 137.4 202.8 314.0 502.3

MH-Tikhonov 187.5 190.3 194.0 197.1 200.9

Mother and daughter Dir-BCS-SPL 11.1 5.9 5.2 4.2 3.8

MH-OMP 66.7 73.0 78.7 93.5 117.3

MS-wEnet 96.1 139.3 201.8 315.3 502.8

MH-Tikhonov 190.9 200.7 194.7 202.0 203.9

Hall monitor Dir-BCS-SPL 12.8 6.8 5.9 4.9 4.3

MH-OMP 72.0 76.1 86.9 100.9 127.6

MS-wEnet 105.1 150.3 222.1 338.5 538.8

MH-Tikhonov 204.8 206.9 213.1 215.7 221.7

News Dir-BCS-SPL 9.6 7.9 6.0 4.8 4.4

MH-OMP 69.1 74.2 79.1 89.3 106.7

MS-wEnet 90.0 120.3 162.8 239.2 367.2

MH-Tikhonov 199.8 208.3 206.4 211.5 215.6

Sampling rates: 0.1, 0.2, and 0.3 in bold represent the low sampling rates
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5.4 Performance of the proposed CVS scheme for video

We are more interested in the performance of the proposed CVS system in entire video
sequences. So a comprehensive comparison of the proposed CVS scheme for video
sequences with the other ones is made in this section. Note that all CVS schemes take the
same plain compressive sampling, though different strategies are utilized for recovery. As a
result of Sections 5.2 and 5.3, MS-wEnet and MH-Tikhonov are the main participants in the
final comparison. Besides these, MH-OMP and Dir-BCS-SPL which directly applies BCS-
SPL to reconstruction are added. The MH-OMP method can be considered as a benchmark
for the methods using MH prediction and by comparison with Dir-BCS-SPL, we can see
how efficient MH prediction is to improve the reconstruction quality.

In the experiments, we employ the first 88 frames of the commonly used video test
sequences, Foreman, Coastguard, Mother and Daughter, Hall Monitor, and News. At the
CVS encoder, we define a GOP size of P=8. At the CVS decoder, in the schemes that take
MH/MS prediction strategy, for fair comparison, the same reconstructed key frames must be
used for the recovery of non-key frames. Moreover, the better accuracy key frames are
reconstructed, the more margins will be obtained in quality for non-key frames. So the
enhancement process [29] in which the temporally neighboring non-key frames are utilized
to re-recover and boost key frames should be applied to MH-OMP, MH-Tikhonov, and MS-

Fig. 12 Reconstruction of frame 15 of Foreman sequence with CS-subrate = 0.1: a Dir-BCS-SPL,PSNR =
26.83 dB b MH-OMP,PSNR = 26.93 dB c MH-Tikhonov,PSNR = 33.31 dB d MS-wEnet,PSNR = 35.86 dB
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wEnet. Additionally, the parameter setting is the same with that in Sections 5.1 and 5.2 and
the Matlab code for MH-Tikhonov can be available at http://www.ece.msstate.edu/~ewt16/
publications/.

Figures 7, 8, 9, 10 and 11 illustrate the performance of the four CVS schemes for varying
CS-subrates. The PSNR is averaged over all 88 frames of each sequence. Table 5 shows the
same experiment data as well and Table 6 presents the average reconstruction time per frame
for various methods at each CS-subrate. Visual results of the reconstructed frame 15 of
Foreman sequence with CS-subrate=0.1 are depicted in Fig. 12.

In terms of reconstruction quality, we can observe intuitively that the CVS schemes based
on MS-wEnet and MH-Tikhonov have a great improvement compared with the remaining
ones. Furthermore, at low sampling rates (CS-subrate<0.3), MS-wEnet always outperforms
MH-Tikhonov and at high sampling rates, such as CS-subrate=0.5 for all video sequences
except Foreman, MH-Tikhonov has a very slight advantage over MS-wEnet. The
comparison between MH-OMP and Dir-BCS-SPL shows the usage of MH prediction can
enhance the reconstruction quality greatly.

Besides the reconstruction quality, we also take the average reconstruction time per frame
measured by the CPU time into consideration, though none of these schemes has been
specially optimized for execution speed. As Table 6 presents, it takes the shortest time for
Dir-BCS-SPL to reconstruct each frame and a longer time for MH-OMP. As for MH-
Tikhonov, the average time spent on recovery has small changes with CS-subrates for each
video sequence. At last, we can find the corresponding time for MS-wEnet has a
characteristic that more time is needed with the increasing CS-subrate because of the linear
relation between the parameter stop and CS-subrate. However, by comparison with MH-
Tikhonov, MS-wEnet is faster at low sampling rates. Moreover, in the special case of News
sequence, we can observe the reconstruction time is reduced further for the reason that more
blocks need to be processed by the SH mode. As an extension, many measures can be taken
to speed up the CVS scheme based on MS-wEnet. For example, we can replace LARS-EN
with the glmnet [13] algorithm to solve the wEnet for its faster implementation; in the
enhancement process for key frames, MS-wEnet can be utilized to produce the temporally
neighboring non-key frames at low sampling rates; the value of threshold T in MS-wEnet
can also be increased greatly to reduce the number of blocks that need to be dealt with by
MH-wEnet, though a little loss will be made in reconstruction quality.

In conclusion, because of the application background of WMSN, the low sampling rates
draw much attention and at such rates, the proposed CVS scheme based on MS-wEnet is
superior to that based on MH-Tikhonov not only in the reconstruction quality but also in the
recovery time.

6 Conclusions

In this paper, we have studied how to make efficient use of the temporal redundancy to
improve the performance of Compressed Video Sensing in WMSN. The proposed CVS
scheme based on MS-wEnet performs the hybrid hypothesis prediction in the measurement
domain for each non-key frame. It means either the SH or the MH-wEnet prediction mode is
selected to carry out and that both modes are implemented in the projection domain
constructed by the measurement matrix. With the prediction process completed, a residual
reconstruction step utilizing the measurement-domain residual is followed to accomplish the
recovery of non-key frames. By comparison with various MH prediction methods, we can
see that MH-wEnet provides a better reconstruction quality. Next, by the comparison made
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between MS-wEnet and MH-Tikhonov applied to the video sequences, we can see the
proposed CVS scheme outperforms that based on MH-Tikhonov, especially at low sampling
rates. In terms of future work, to make the proposed CVS scheme more practical in WMSN,
we will work on the issue of quantization for CS measurements which is largely
underdeveloped in CS community, and the adaptive strategy for compressive sampling at
the encoder will also be considered to reduce the amount of data more.

Acknowledgments The authors would like to thank Dr. Eric W. Tramel for the helpful discussion on the MH-
BCS-SPLmethod. This work was supported by theNational Science Foundation China under grant 60972072 and
the 111 Project of China (B08038).

References

1. Akyildiz IF, Melodia T, Chowdhury KR (2007) A survey on wireless multimedia sensor networks.
Comput Netw 51(4):921–960

2. Asif MS, Fernandes F, Romberg J (2011) Low-complexity video compression and compressive sensing.
In: Duke workshop http://users.ece.gatech.edu/~sasif/

3. Baraniuk R, Davenport M, DeVore R, Wakin M (2008) A simple proof of the restricted isometry property
for random matrices. Constr Approx 28(3):253–263

4. Boyd S, Parikh N, Chu E, Peleato B, Eckstein J (2011) Distributed optimization and statistical learning via
the alternating direction method of multipliers. Found Trends® Mach Learn 3(1):1–122

5. Candès EJ, Romberg J, Tao T (2006) Robust uncertainty principles: exact signal reconstruction from
highly incomplete frequency information. IEEE Trans Inf Theory 52(2):489–509

6. Chen SS, Donoho DL, Saunders MA (2001) Atomic decomposition by basis pursuit. SIAM Rev
43(1):129–159

7. Chen C, Tramel EW, Fowler JE (2011) Compressed-sensing recovery of images and video using
multihypothesis predictions. In: Proceedings of the asilomar conference on signals, systems and
computers, pp 1193–1198. Pacific Grove, CA

8. Do TT, Chen Y, Nguyen DT, Nguyen N, Gan L, Tran TD (2009) Distributed compressed video sensing.
In: Proceedings of the international conference on image processing, pp 1393–1396. Cairo, Egypt

9. Donoho DL (2006) Compressed sensing. IEEE Trans Inf Theory 52(4):1289–1306
10. Donoho DL, Tsaig Y, Drori I, Starck J-L (2012) Sparse solution of underdetermined systems of linear

equations by stagewise orthogonal matching pursuit. IEEE Trans Inf Theory 58(2):1094–1121
11. Efron B, Hastie T, Johnstone I, Tibshirani R (2004) Least angle regression. Ann Stat 32(2):407–499
12. Fowler JE, Mun S, Tramel EW (2012) Block-based compressed sensing of images and video. Found

Trends® Signal Process 4(4):297–416
13. Friedman J, Hastie T, Tibshirani R (2010) Regularization paths for generalized linear models via

coordinate descent. J Stat Softw 33(1):1
14. Gamper U, Boesiger P, Kozerke S (2008) Compressed sensing in dynamic MRI. Magn Reson Med

59(2):365–373
15. Girod B, Aaron AM, Rane S, Rebollo-Monedero D (2005) Distributed video coding. Proc IEEE

93(1):71–83
16. Goldstein T, Setzer S (2010) High-order methods for basis pursuit. UCLA CAM Report, 10–41
17. Johnson WB, Lindenstrauss J (1984) Extensions of Lipschitz mappings into a Hilbert space. Contemp

Math 26(189–206):1
18. Jung H, Sung K, Nayak KS, Kim EY, Ye JC (2009) k–t FOCUSS: a general compressed sensing

framework for high resolution dynamic MRI. Magn Reson Med 61(1):103–116
19. Kang L-W, Lu C-S (2009) Distributed compressive video sensing. In: Proceedings of the international

conference on acoustics, speech, and signal processing, pp 1169–1172. Taipei, Taiwan
20. Kyrillidis A, Cevher V (2012) Matrix alps: Accelerated low rank and sparse matrix reconstruction. In:

IEEE statistical signal processing workshop, pp 185–188
21. Lu W, Li T, Atkinson IC, Vaswani N (2011) Modified-cs-residual for recursive reconstruction of

highly undersampled functional mri sequences. In: Proceedings of the international conference on
image processing, pp 2689–2692. Brussels, Belgium

22. Mun S, Fowler JE (2009) Block compressed sensing of images using directional transforms. In:
Proceedings of the international conference on image processing, pp 3021–3024. Cairo, Egypt

Multimed Tools Appl (2015) 74:2085–2108 2105

http://users.ece.gatech.edu/~sasif/


23. Mun S, Fowler JE (2011) Residual reconstruction for block-based compressed sensing of video.
In: IEEE data compression conference. Snowbird, UT, pp 183–192

24. Needell D, Tropp JA (2009) CoSaMP: iterative signal recovery from incomplete and inaccurate
samples. Appl Comput Harmon Anal 26(3):301–321

25. Prades-Nebot J, Ma Y, Huang T (2009) Distributed video coding using compressive sampling. In:
Proceedings of the picture coding symposium, pp 1–4. Chicago, IL

26. Sjöstrand K, Ersbøll B (2012) SpaSM—a Matlab toolbox for sparse statistical modeling.
Software available at http://www2.imm.dtu.dk/projects/spasm/

27. Stankovic V, Stankovic L, Cheng S (2008) Compressive video sampling. In: Proceedings of the European
signal processing conference, pp 2–6. Lausanne, Switzerland

28. Tibshirani R (1996) Regression shrinkage and selection via the lasso. J Roy Stat Soc Ser B
58(1):267–288

29. Tramel EW (2012) Distance-weighted regularization for compressed-sensing video recovery and
supervised hyperspectral classification. Ph.D. thesis, Mississippi State University

30. Tramel EW, Fowler JE (2011) Video compressed sensing with multihypothesis. In: IEEE data compression
conference, pp 193–202. Snowbird, UT

31. Tropp JA, Gilbert AC (2007) Signal recovery from random measurements via orthogonal matching
pursuit. IEEE Trans Inf Theory 53(12):4655–4666

32. Tzagkarakis G, Woiselle A, Tsakalides P, Starck J-L (2012) Design of a compressive remote
imaging system compensating a highly lightweight encoding with a refined decoding scheme.
In: Proceedings of the international conference on computer vision theory and applications, pp
24–26. Rome, Italy

33. Vaswani N (2008) Kalman filtered compressed sensing. In: Proceedings of the international conference on
image processing, pp 893–896. San Diego, CA

34. Vaswani N (2010) LS-CS-residual (LS-CS): compressive sensing on least squares residual. IEEE Trans
Signal Process 58(8):4108–4120

35. Vaswani N, Lu W (2010) Modified-CS: modifying compressive sensing for problems with
partially known support. IEEE Trans Signal Process 58(9):4595–4607

36. Wakin M, Laska J, Duarte M, Baron D, Sarvotham S, Takhar D, Kelly K, Baraniuk RG (2006)
Compressive imaging for video representation and coding. In: Proceedings of the picture coding
symposium. Beijing, China

37. Wakin MB, Laska JN, Duarte MF, Baron D, Sarvotham S, Takhar D, Kelly KF, Baraniuk RG (2006) An
architecture for compressive imaging. In: Proceedings of the international conference on image
processing, pp 1273–1276. Atlanta, GA

38. Waters AE, Sankaranarayanan AC, Baraniuk RG (2011) SpaRCS: Recovering low-rank and sparse
rmatrices from compressive measurements. In: Neural Information Processing Systems, pp 1089–
1097

39. Wen Z, Yin W, Goldfarb D, Zhang Y (2010) A fast algorithm for sparse reconstruction based
on shrinkage, subspace optimization, and continuation. SIAM J Sci Comput 32(4):1832–1857

40. Ying L, Ming L, Pados DA (2013) Motion-aware decoding of compressed-sensed video. IEEE Trans Circ
Syst Video Technol 23(3):438–444

41. Zou H (2006) The adaptive lasso and its oracle properties. J Am Stat Assoc 101(476):1418–1429
42. Zou H, Hastie T (2005) Regularization and variable selection via the elastic net. J Roy Stat Soc B

67(2):301–320
43. Zou H, Zhang HH (2009) On the adaptive elastic-net with a diverging number of parameters. Ann Stat

37(4):1733

2106 Multimed Tools Appl (2015) 74:2085–2108

http://www2.imm.dtu.dk/projects/spasm/


Jian Chen was born in Jiangsu, P.R. China. He received the B.S. degree from Xian Jiaotong University, China
in 1989, the M.S. degree from Xian Institute of Optics and Precision Mechanics of Chinese Academy of
Sciences in 1992, the Ph.D. in teletcommunication engineering in Xidian University, China in 2005. He is a
professor in the school of telecommunications engineering in Xidian University. He was a visitor scholar in
the University of Manchester from 2007 to 2008. His research interests include cognitive radio, OFDM and
wireless multimedia sensor networks.

Yunzheng Chen was born in Hebei, P.R. China. He received his Bachelor’s degree in Electronic Information
Engineering from Agricultural University of Hebei, P.R. China in 2011. Now he is pursuing his Master’s
degree of Communication and Information Systems in Xidian University. His current research interests
involve compressed sensing, image and video processing, and distributed video coding.

Multimed Tools Appl (2015) 74:2085–2108 2107



Dong Qin was born in Shaanxi, P.R. China. He received his Bachelor’s degree in Xidian University, P.R.
China in 2011. Now he is pursuing his Master’s degree of Computer Architecture in Xidian University. His
current research interests involve network security, sparse coding, and network information processing.

Yonghong Kuo was born in Henan, P.R. China. She received the B.S. and M.S. degrees from Xian Jiaotong
University in 1989 and 1992 respectively, the Ph.D. degree from Peking Union Medical University in 1998.
She is a professor in the school of telecommunications engineering in Xidian University. Her research interests
include OFDM systems, cognitive radio and wireless multimedia sensor networks.

2108 Multimed Tools Appl (2015) 74:2085–2108


	An elastic net-based hybrid hypothesis method for compressed video sensing
	Abstract
	Introduction
	Background
	Compressed sensing
	Video techniques based on CS

	Architecture of the proposed CVS scheme
	Design of CVS encoder
	Design of CVS decoder

	Elastic net-based hybrid hypothesis prediction
	MH prediction mode in CVS
	Elastic net
	Weighted Elastic net
	MH/SH wEnet

	Experiments and results
	Parameters in MS-wEnet
	Comparison of various MH prediction methods
	Contribution comparison of MH-wEnet and SH to MS-wEnet
	Performance of the proposed CVS scheme for video

	Conclusions
	References


