
Image retrieval through qualitative representations
over semantic features

Zia Ul Qayyum

Published online: 17 October 2013
# Springer Science+Business Media New York 2013

Abstract This paper proposes a qualitative knowledge-driven semantic modelling approach
for image understanding and retrieval. The similarity measure is calculated for each query by
exploiting the notion of conceptual neighbourhood—a measure of closeness between qualita-
tive relations. The relative similarity of two images is proportional to the qualitative similarity
measure value. The approach is motivated by the need to bridge the semantic gap between a
human user and that of CBIR systems and enable semantic querying in such systems. Local
semantic concepts, such as sky, grass, of an image are used to obtain a semantic image
description. Four kinds of qualitative spatial representations have been applied to these
semantic concepts. This allows for representation and reasoning of an image’s content struc-
tures at a more abstract level than pixels or other low level features and provides a higher level,
semantic basis for image understanding. We investigate whether such a representation of an
image’s visual content also provides an effective and natural way to provide content-oriented
querying. We also investigate whether querying based on multiple representations is effective,
and report on three voting schemes used to retrieve images in this way. The test data set having
hand-assigned class labels has been used to have a metric evaluation of the retrieval accuracy.
The results compare favourably with a non-qualitative representation based on the same
semantic features which simply compares the percentage of each feature in pairs of images.

Keywords Image retrieval . Semantic features . Qualitative representations . Qualitative
similarity

1 Introduction

Advances in digital technologies along with the growth of World Wide Web have resulted in
universal access to very large archives of digital data. This has lead to an increasing
requirement for systems which can handle such a dynamic and complex visual content at
a higher semantic level. Moreover, more flexible and robust techniques are required in such
systems. Content based image classification and retrieval systems, therefore, have gained
more importance and have been an active research area in recent years [1]. In all such
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systems, image interpretation and understanding plays a vital role. Most of the research in
this area is primarily based on use of low level image features like colour, texture, shape etc.
[10, 15, 25–27]. Although low level image processing algorithms and methodologies are
quite mature, such systems are hard to be used effectively by a novice due to the semantic
gap between user perception and understanding, and system requirements. Therefore,
bridging this gap between low level synthetic features and high level semantic meanings
is generally regarded as an open problem [1]. Humans tend to describe the scenes using
natural language semantic keywords/concepts like sky, water etc. and specify retrievals “an
image with water next to fields and having sky at the top….” or “… has a small lake with
high peaks of mountains behind and fields on left….”. This suggests that use of underlying
semantic knowledge in a qualitative representation language may provide a way to model
the human context and a natural way to bridge this semantic gap for better image under-
standing, categorization and retrieval capabilities [19].

This paper proposes a qualitative knowledge-driven semantic modelling approach for
image categorisation and retrieval. As discussed above, qualitative representation of the
local semantic contents of image allows for representation and reasoning of content struc-
tures at a higher abstraction level than pixels or other image low level features. In earlier
work [19], we showed how category descriptions for a set of images could be learned; using
qualitative spatial representations (QSR) over a set of local semantic concepts (LSC) such as
sky, grass. There were six global categories (e.g. Coasts, Landscapes with Mountains etc.)
[24] and we used three kinds of QSR techniques to demonstrate that supervised learning of a
pure qualitative and spatially expressive representation of semantic image concepts can rival
a non qualitative approach [19, 31] for image categorization, and moreover result in a more
intuitive and more human understandable image description. Details of these qualitative
representations are presented later.

In this paper we turn our attention away from categorisation and to the retrieval of images
either given example(s), or a qualitative description. We base our work on the same semantic
descriptions as in the categorization work summarized above: our hypothesis is that the
qualitative representations which were able to effectively support categorization may also
provide an effective and natural way to support content-oriented querying approach. A query
can either be directly described in the qualitative representation or a query can be given as a
sample image (i.e. query by example: QBE)—the system then forms a qualitative description
of it and compares this with qualitative descriptions of images in the database of images, and
uses a qualitative similarity measure to retrieve qualitatively similar images [20]. The
qualitative similarity measure is based on the notion of a conceptual neighbourhood [11],
discussed in more detail below in Section 4. The relative level of similarity is proportional to
value of the similarity measure. Therefore, a sorted list of this measure corresponds to the
respective image’s level of similarity according to this order. The retrieved images can be
grouped together into “Most Typical”, “Typical”, and “Less Typical” images by using
certain thresholds on the similarity measures—these thresholds may be qualitatively deter-
mined by inspection of the qualitative behaviour of histograms for buckets of images over
the similarity ordering. In order to evaluate the performance of this approach to image
retrieval, we take advantage of the manually assigned categories for the image data base in
our experiments. Although we are not performing image categorization, and the retrieval
algorithm does not use the category information, we can evaluate the success of a retrieval
by counting the number of images in the same category as the query image near the top of
the rank ordering of retrieved images.

In experiments using this technique on the different qualitative representations we
observed that different measures have different levels of performance for different categories
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of images; this lead us to also investigate the use of voting schemes in order to combine the
different qualitative representations to enhance the performance of the retrieval system
overall.

The potential advantages of this approach are threefold. Firstly, a qualitative description
is arguably closely resembles human cognition in such domains and, therefore, may also
model human perception in this context. Secondly, qualitative and semantic representation
of image content provides the opportunity to specify a query either with an example image,
or with a qualitative description over semantic concepts. Thirdly, the approach does not rely
on existing segmentation techniques to learn semantic labels using low level features of an
image; our approach is region-based and is segmentation free.

In the work described here, a collection of 700 natural scenes images has been used. The
labelled data set was provided by Julia Vogel who had developed a semantic modelling
framework for image categorisation and retrieval [31]. Our approach builds on her work; a
brief overview of her approach is presented in Section 2.4.

The rest of the paper has been structured as follows. Related work is briefly discussed in
Section 2. Section 3 describes our approach for image description using qualitative repre-
sentations. A qualitative similarity based image retrieval approach is presented in Section 4.
Section 5 presents the results and evaluation of the approach, while Section 6 presents our
conclusions and suggestions for future work.

2 Related work

In the image retrieval literature, image description and better understanding of underlying
semantic content plays an important role as the nature and structure of the query mainly
depends on the underlying image description. Moreover, image categorization may provide
a keyword based querying facility using global image labels in content-based image
categorization and retrieval systems. The following subsections, therefore, describe some
relevant work from allied disciplines of content-based image retrieval.

2.1 Image description/categorization

As discussed above, much previous research on image description and categorization has
been accomplished through low-level feature vectors like colour, texture and shape, whereas
semantic scene description is arguably a natural way to describe image features and it may
bridge the gap between a human’s description and that of a computer. In most of the
literature, semantics is only found in definitions of scene classes such as indoor vs. outdoor,
city vs. landscapes, mountain vs. forest etc. while classification itself is based on low level
image features. These approaches are based on the assumption that the images with similar
colour and texture features are semantically closer.

Vailaya et al. [30] describe a hierarchical scheme for classifying vacation images using
colour and edge direction features. They classify at a first step images into city vs.
landscapes; the landscapes category is further classified into sunset, forest and mountain
classes. The probabilistic model of low level features required for the Bayesian framework is
estimated using vector quantization. Most of the techniques in this category of research use
low level image features and some use some spatial content as well. Moreover, in some cases
categorization proceeds hierarchically to further subdivide these classes but work on cate-
gorization into multiple classes simultaneously is sparse. In these binary approaches, the rate
of accuracy is quite good perhaps not surprisingly since it is likely there will be less variation
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of low level concepts along only two branches of categorization. Our approach and that of [31],
on the other hand, provides a classification scheme for categorizing and retrieval of natural
scene images into six semantically meaningful classes based on local semantic image content.

Semantic image description may improve image description and understanding significantly
and can bridge the semantic gap between humans and computer systems. As an example of this
approach to image categorization, based on local semantic contents of an image, Serrano et al.
[24] use two semantic attributes, namely sky and grass, and low level colour andwavelet texture
features to classify images into indoor vs. outdoors using support vector machines (SVM) with
an overall accuracy of 87.2 %. The semantic scene attributes, sky and grass, were predicted
using the same low level features and integrated into the classification scheme already learnt for
an improved two step indoor/outdoor classification scheme using a Bayesian network which
resulted in an improved classification rate of 90.7 %. This shows that the use of low level
semantic concepts in image description may improve expressiveness and classification accu-
racy, in line with our proposed approach. Maron et al. [16] have described a method for
categorizing natural scenes into waterfall, mountain and fields. The images are modelled as
bags of multiple instances (sub regions) and a bag is labelled as positive if at least one instance
in the bag is positive and negative otherwise. The model learns scene templates for each class
and then a probabilistic diversity density method is used to learn concepts from multiple
instance examples. The classification results are evaluated based on the RGB colour features
of an image that are closer to at least one positive instance in every positive labelled bag of
instances for a class. Ciocca et al. [6] have also presented an image retrieval approach using
prosemantic features. The objective of this approach was mainly based on incorporating the
semantics into the image description and categorization process.

Segmentation of image regions for feature extraction is another important technique, which
is widely discussed in the literature and used in image retrieval and computer vision context.
Depalov et al. [9] present an approach for segmenting and hierarchically labelling natural scenes
images into perceptually and semantically uniform regions by using texture and spatially
adaptive colour features. Regions are hierarchically labelled using dominant semantic concepts
such as natural, man-made, human, animal etc. with sub-categories like vegetation, sky,
building etc. The segmentation algorithms, though are quite mature, still tend to over or under
segment the image, constraining the overall accuracy of the system by the accuracy of region
segmentation [31]. By contrast, the semantic annotation scheme we use here does not rely on
variable segmentation techniques; rather, it is based on a fixed segmentation of the image into a
10×10 grid resulting in 100 patches which are labelled with semantic concepts; these semantic
concepts are extracted using low level features as detailed below in Section 2.4.

Image annotation has also been used to obtain a better image description and classifica-
tion accuracy. Picard et al. [18] introduced the idea of annotating image regions using
texture. The framework selects a best model from a multitude of texture models to annotate
the image regions with semantically meaningful labels. It first learns from the user’s input
and interaction and then propagates the learnt labels to other similar regions. Town et al. [29]
developed a system to classify segmented image regions into semantic labels using a neural
network, segmenting the image using colour and texture features. This approach and the one
presented here are similar in using semantic labels but labelling of image regions in our
approach can be described as to be region based as opposed to the segmentation approach
based on low level colour and texture features.

From the above discussion, it appears that most of the existing techniques in image
description and image classification are predominantly quantitative and based on describing
and categorizing images using low level features such as colour, texture [17, 25, 27, 30].
Scene descriptions are typically not expressed in terms of underlying semantic knowledge or
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using qualitative and spatial relationships between attributes used for image description. Our
approach addresses these issues by applying a variety of qualitative spatial representations
onto semantically annotated image regions/patches of each of the semantic concepts in an
image. This abstracts away from dealing with low level image features and provides higher
level, more expressive descriptions, which are arguably more intuitive and spatial, and
potentially useful for semantic querying and image retrieval. This representation has been
used in different experiments to have a more intuitive and expressive categorization of
images into six semantically meaningful classes [19].

2.2 Image retrieval using semantic image description

Content-based image retrieval systems have been an active research area in computer vision
during recent years. A more recent review of CBIR techniques is Singhai and Shandilya [26]
which highlights the importance of using higher semantic content along with low-level
features to model human perception in image retrieval process. Another study is by Deb
et al. [8], which discusses the state of the art in segmentation, indexing and retrieval
techniques in a number of CBIR systems. They note that despite much work in aspects
related to high level semantics of image features, the gap between low level image features
and high level semantic expressions are bottlenecks to the access of multimedia data from
databases. Madugunki et. al. [15] have also published a paper to present classification of
CBIR systems. Using number of low level features like local and global color histograms,
HSV, DCT and DWT features to compare the results of CBIR systems. These surveys all
reveal one important aspect that almost all existing approaches rely on using low level image
features for image description, categorization and retrieval. Since image understanding is a
key to all content-based image categorisation and retrieval systems, so a human understand-
able image description may yield more robust systems since humans normally tend to use
semantic and qualitative terms to describe a situation/image. Therefore, a retrieval system
based on underlying semantic knowledge may help a non-expert user to use such systems
more effectively. In this category, some research has been done focusing on the use of
labelling the image regions with semantic concepts and carrying out key-word based search
for image retrieval. Bradshaw [4] proposed a probabilistic approach to assign small image
areas labels such as “man-made” and “natural”, and global labels such “inside”, “outside”
etc. to whole images using class likelihoods from colour-texture features of images for a
semantic image retrieval. Town et al. [29], as mentioned above, have also have annotated
local regions of images with 11 and 10 semantic categories respectively, Town et al. do not
assign a global label to the images, so retrieval is based on local semantic concepts only.
Aghbari et al. [1] also demonstrate an image retrieval approach based on semantically
labelled image regions. These image regions have been hierarchically classified based on
their semantics using low level image features. The retrieval is based on these semantic
keywords attached to particular images. Enser et al. [10] present a survey of issues relevant
to the semantic gap in image retrieval systems. They focused particularly on the nature and
representation of semantic content of an image in image retrieval systems.

Wang et al. [32] discuss an approach for semantic retrieval based on content and context
of image regions and which supports both keyword and QBE approaches. In this approach,
images are segmented using a semantic codebook based on colour and texture classification.
The content and context describe a region’s low level features and their relationships
respectively. It uses only dominant semantic categories of an image and most typical images
in that category are selected manually from an image database which can best model the
codebook representing colour and texture classification for that particular semantic category.
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Another query by semantic example (QBSE) approach is proposed by Rasiwasia et al. [22]
based on posterior concept probabilities of each concept in an image. QBSE is accomplished
by comparing the probability simplexes of the query image and all database images to find
the closest neighbours. The perceptual segmentation approach in Depalov et al. [9], as
discussed in the Section 2.1 above, has not been applied in their work for image categori-
zation and retrieval; but the relative effectiveness of their approach in regards to image
segmentation and labelling can be used to perform keyword based image retrieval. The
VISENGINE system of Sun at al [28] relies on segmenting image regions by clustering
visual features like colour, texture, shape etc. and differentiating them into foreground and
background regions. A semantic visual template for each of the background and foreground
regions is used to retrieve images. User feedback on retrieved images is gathered to mark
“most relevant” images with respect to each query image. A visual template of features
generated by mining the relationship between feature weights of all retrieved images and
those of marked by the user is used to try to improve the similarity level at the next iteration..
The approach is largely user-centered, and therefore results may vary depending on human
perception and context. Only large regions are identified during segmentation which inhibits
a true semantic similarity in the retrieved images, as relatively small image areas do not
contribute towards the retrieval process. CIRES is an online CBIR system which uses image
structures in addition to colour and texture features to achieve a more robust image retrieval
framework [14]. Perceptual groups of hierarchically extracted image structures like lines,
segments, long linear lines, L-junctions, U-junctions, polygons etc. are formed to create high
level meaningful concepts. The approach is claimed to be particularly helpful in retrieval of
images containing man made objects like windows, walls etc., as they contain such structural
objects. Howe [12] has used different algorithms combined together to boost the classification
and retrieval accuracy. Sebe et al. [23] have also surveyed recent approaches and the state of the
art in the areas of semantic image/video retrieval, interactive retrieval frameworks, retrieval
based on human perception, and relevance feedback strategies in information retrieval. The use
of ontologies and metadata representation languages is another recent trend for annotating and
retrieving images [13]. A prerequisite for applying this approach is the construction of generic
and possibly domain specific ontologies and detailed annotations.

One crucial research question for QBE systems is how to measure the level of similarity, and
assess the accuracy of such a technique. Defining a notion of similarity is fraught with difficulties
as context may play a pivotal role. Moreover, when using a qualitative representation, where
feature descriptions do not take quantitative values, the very notion of a metric becomes
problematic; approaches to qualitative similarity are discussed in [3]. In computer vision and
image processing, metric approaches have generally been used to compute scene similarity. Vogel
et al. [31] use a semantic typicality measure based on normalised distance for a semantic ordering
of natural scenes in categories such as forest and mountains, mountains and rivers/lakes. Indeed,
in most CBIR systems, similarity is based on a metric evaluation and images with desired level of
image features, either low level or semantic concepts are retrieved. Burn et al. [5] use the concept
of “gradual change” to determine spatial similarity of scenes. This metric is based on the gradual
transformation of spatial relations, namely topological, directional and distance relations, in an
attempt to transform one scene into the other. The number of transformations required determines
the level of spatial similarity between scenes. Each transformation can be thought of as changing
one relation to a conceptual neighbour of the relation. The notion of conceptual neighbourhood
was first put forward by Freksa [13] in the context of a set of 13 pairwise and disjoint relations
between temporal intervals and was defined as “two spatial or temporal relations are conceptual
neighbours if one can be transformed into the other by a single transformation/transition” (also
related to the continuity networks described in [21]. Our approach to measuring qualitative
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similarity is also based on the use of the use of conceptual neighbourhoods as discussed further
below in Sections 4 and 5.

2.3 Qualitative spatial representations

There has been an increasing amount of research into qualitative spatial representation and
reasoning in the fields of AI and other disciplines including Geographic Information Science as
it can be argued to provide an appropriate cognitively or intuitively relevant representation for
spatial information—typical spatial expressions in natural language are qualitative rather than
quantitative; moreover qualitative representations abstract away from quantitative computation,
and from noise and uncertainty in perceptual data. It has widely been used in different
application domains like GIS, NLP, robotics, computer vision etc. Cohn and Hazarika [7]
review the state of the art in qualitative spatial representation and reasoning and related issues
with identification of some application areas as well. There are now many qualitative spatial
calculi, covering aspects such as topology, distance, orientation, and shape. Rather than attempt
an exhaustive analysis of the utility of all these calculi, we concentrate on a small set of
qualitative spatial relations here; we do not claim these are necessarily the best calculi for image
description, or even for the particular kinds of images in the database we use here, but we leave
that for further work. Our aim is simply to illustrate the use of qualitative calculi for image
retrieval and to demonstrate their potential applicability.

Initially we will use the three qualitative representations we used in our earlier work on
image categorization using QSR [19]: Allen’s interval calculus [2], Chord patterns [17] and
relative size. We claim that these representations are sufficient to demonstrate that the use of
qualitative relations between semantic regions can provide an effective and natural way to
support content-oriented querying approach. Although that Allen’s calculus was originally
intended for temporal representations, it can also be used for representing 1D space. These
three representations are discussed further in Section 3.

2.4 Baseline approach

Our approach builds on Vogel et al’s work [31]; a brief description of her work is presented in
this section to make this paper self-contained. In their approach, images were divided into a grid
of 10×10 regions to extract local image regions. By analyzing these regions in images, nine
local1 and discriminating semantic concepts were identified: sky, water, grass, foliage, flowers,
field, mountain, snow, trunks and sand. Using these labels, 99.5% of the images were manually
annotated. Subsequently supervised machine learning techniques were developed to automat-
ically annotate images—we use the original hand labelled data set in our work here in order to
concentrate our evaluation on the semantic and qualitative representations. A label “rest” is used
for unidentified patches or occurrences of other semantic categories. A sample description is
presented in Fig. 1. Based on this representation, the percentages of concept occurrences,
concept occurrence vector (COV), were evaluated on between three and five horizontally
divided image regions (e.g. top/middle/bottom). Images were represented by frequency histo-
grams of local semantic concepts such as grass, foliage, water etc. and based on a semantic
typicality measure, the images were categorized into one of the six semantically meaningful
categories sky_clouds, coasts, landscapes_with_mountains (lwm), fields, forests, waterscapes.

1 Vogel has cited nine semantic concepts in her work [31], while the data set she provided and which has been
used in experiments contains two extra ones (mountain and snow)—however these occur infrequently and the
basis for comparison will be largely unaffected.
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Their approach is partially spatial through its division of the image into horizontal bands
(e.g. top/middle bottom) but is mainly based on the metric value of the percentages of
discriminant semantic concepts.

Following on from our earlier mentioned above [19], where we used a qualitative
representation over these semantic categories for learning image categories, in the work
we report here we conduct a variety of experiments to retrieve images labelled with the same
semantic concepts but using qualitative spatial similarity measures over these concepts
rather than computing percentages. The details of our methodology for image description
and retrieval are discussed in the next section. A sample from the image data set used
representing each of six classes is displayed in Fig. 22,, which illustrates the six
classes/categories with which all 700 images have been hand labelled.

3 Qualitative image description

In this section, we present our qualitative approach based on local semantic concepts for
image description. The approach is briefly explained here—further details can be found in
[19]. We use the same three kinds of qualitative spatial relations already used in our earlier
work on categorization:

1) The relative size (‘RSizeRep’—measured in grid squares) of each of the concept
occurrences in each image. The relative size is calculated for all possible pairwise
combination of semantic labels. Since there are 11 labels and only one ordering needs to
be considered, this gives 66 pairings. Each may be regarded as an attribute of the image
with possible values of ‘Greater than’ (>), ‘Less than’ (<) and ‘Almost Equal to’ (≈).
These relations are defined as:

Let |P| denote the number of occurrences of a patch type ‘P’ (a patch refers to one
grid square containing a semantic concept, as represented in Fig. 1 above). If ‘P1’, ‘P2’
are two patch types, then:

& P1>P2 iff (0.9*|P1|>|P2|)

Concepts Concept Occurances

sky        31%

water    0 %

grass      13%

trunks   0 %

foliage   56%

fields      0 %

rocks     0 %

flowers  0 %

sand       0 %

sky

foliage

grass

Fig. 1 A segmented image with 9 local semantic concepts and COV

2 In fact for copyright reasons, we have substituted similar images in this paper, and the percentages in Fig. 1
have been hand estimated.
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& P1<P2 iff (1.1* |P1|<|P2|)
& P1≈P2 otherwise

Note that we have used a tolerance of ±10 % since it is relatively unlikely that
two attributes/labels would ever have exactly equal size in similar images.

2) Allen relations [2] (‘AllenRep’—measured on vertical axis between the intervals
representing the maximum vertical extent of each concept occurrence). Allen’s
calculus has been used to represent 1D spatial knowledge using thirteen relations
namely, ‘before’ (<), ‘meets’ (m), ‘overlaps’ (o), ‘during’ (d), ‘starts’ (s), ‘finishes’ (f)
and their inverses ‘after’ (>), ‘met-by’ (mi), ‘overlapped-by’ (oi), ‘contains’ (di), ‘started-
by’ (si), ‘finished-by’ (fi) respectively, and ‘equal’ (=). If either or both of the semantic
attributes being compared using Allen’s relations are missing in the image, we
indicate this with “No” in place of the Allen relation. Again this gives 66 pairings
describing each image.

3) Chord patterns [17] (‘ChordRep’) of semantic concepts applied to each grid row. In this
approach, each semantic feature is a ‘tone’ and the set of these in each row forms a
‘chord’. Thus, given the 10×10 grid that describes the semantic attributes for each
image, we thus generate 10 chords, one for each row to describe each image such as
“foliage sky” or “grass sky sand water” etc3. This representation thus generates set-
valued attributes.

In addition to the above three representations already used in our categorization work
[19], we add a fourth representation: whether one patch type is spatially in contact with
another in the image (‘TouchRep’). Note that the Allen meets relation does not guarantee this
since the two patches may be at different sides of the picture, nor does the Allen represen-
tation explicitly record horizontal contact; similarly the fact that two semantic concepts are
present in adjacent chords does not guarantee contact either. To represent genuine touching
relationships we thus introduce 55 pairwise comparisons to record which patch types touch
which other ones.

In addition to these qualitative representations, for comparison purposes, we also ran
experiments with a purely quantitative metric based retrieval scheme based on the respective
percentages of each of the semantic concepts in each image has also been investigated in the
style of Vogel et al. [31]4.

Figure 3 shows a segmented image described by the relative size and Allen relationships
while Fig. 4 illustrates an image described with the fine grained chord representation.

3 This representation can be regarded as an abstraction of the relation used by Vogel et al. above—whereas
they record the percentage of each attribute in each horizontal band, in the chord representation it is only the
presence or absence which is recorded.
4 This representation is labelled as “%ages” in Tables 2, 3 and 4 below. Similarity is computed using the sum
of absolute differences in percentage values for each attribute in a pair of images.

sky_clouds (34) waterscapes (114) forest (103) coasts (143) lwm (178) fields (128)

Fig. 2 Sample images of the six categories of natural scenes

Multimed Tools Appl (2015) 74:1935–1959 1943



3.1 Refinements of the qualitative representations

Several variants of the above qualitative representations were also investigated. One such
case was a coarser chord representation with just three image areas namely, Top (T: top 3
rows in grid based image regions), Middle (M : for rows 4–7 of the image grid) and Bottom
(B : constituted by rows 8–10); we also used an even coarser chord representation with just
two chords: the top five and bottom five rows.

Since many Allen relations have zero count in a particular image, we also investigated a
more coarse grained Allen-like representationwhere groups of Allen relations were collapsed to
a set of five jointly exhaustive and pairwise disjoint relations (plus the “No” relation as before):

& BM combining “Before” and “Meet”
& Ov “Overlap” relation
& LG combining “Starts”, “During”, “Finishes”, “Started by”, “Contains”, “Finished by”

and “Equal”
& Ob “Overlapped by” relation
& AM combining “After” and “Met by”
& No if no Allen relation exists between two attributes of an image.

minsky….........

maxsky...........

…minmountains

……….maxmountain
s

minwater………

maxwater………….

“sky ‘‹’ water”

(1.1 *  mountain 
<  water )

(minsky = minmountains 
& maxsky < 

“sky ‘s’ mountains”

“mountain ‘<’ 

| |
| |

Fig. 3 Qualitative representation of an image using relative size and Allen’s calculus

Fig. 4 Qualitative representation of an image using the chord representation

1944 Multimed Tools Appl (2015) 74:1935–1959



4 IR based on qualitative similarity

We envisage an image retrieval system in which a query is specified either by giving an
example image or by a symbolic query expressed in terms of the qualitative relations defined
in the previous section. In the latter case the description is likely to be partial and a set of
images will match the query, e.g. “retrieve images with rocks meeting water and water
relatively greater than foliage”. In the former case, we can compute a qualitative description
of the image using one more of our qualitative schemes, but in this case it is more likely that
no image will exactly match—this could also happen in the latter case. It would clearly be
convenient to be able to retrieve images, which nearly match the query (which ever way it is
specified). The problem is to define what “nearly matches” means, since in a qualitative
representation we do not have raw numbers available. In the remainder of this section we
define notions of qualitative similarity measure (QSM) for each the qualitative representa-
tions. The conceptual neighbourhood diagrams of each of the representations are used to
calculate respective similarity measures.

& QSM for AllenRep: The conceptual neighbourhood diagram of Allen relations is
presented in Fig. 5 above. Since the links in CND connect neighbouring relations—ones
which are most similar, as one traverses links from a particular relation, the relations
become progressively less similar. Thus if image 1 has sky < grass, and so does image 2,
then they are identical (in this comparison), if image 3 has sky ‘m’ grass, then image 3 is
similar to image 1, whilst if image 4 has sky ‘o’ grass, then image 4 is also similar to
image 1 but not as similar as image 3, and so forth. Since there are 66 Allen relations in
our description of an image, we have to find a way to combine the similarities of each
pairwise comparison. The conceptual neighbourhood diagram for the Allen relations is
already a partial order, and it is clear that the 66-cross product is much more partial in
this respect. It is clearly desirable to have a total ordering. In order to achieve this we
assign a weight of one to each arc in the conceptual neighbourhood diagram, and sum
the number of arcs traversed across all 66 relations in order to transform one description
into another (using the shortest route). Clearly we could assign non uniform weights to
the different arcs but in the absence of any particular reason to do this a uniform
weighting appears to be an obvious choice.

The situation where one of the relations from a particular attribute in a pair of images is
“No” whilst the other is not, deserves some discussion—what should be the weight in this
case (since “No” does not appear in the conceptual neighbourhood)? For a “No” relation,
one or both of the concepts is not present in the image. One possibility is to choose a weight
of seven (one more than the maximum weight otherwise in the Allen conceptual
neighbourhood), though other choices could clearly also be used, and indeed we also
experiment with the choice of zero5. This has further been verified by experimenting with
values greater than one and between range 7–10; and choice of using a default weight of one
came up with relatively better retrieval results. We envisage that in an implementation for an
end user, this would be a parameter (perhaps a slider in the interface) so that the user can

5 This was particularly motivated by image classes such as “lwm” where the set of concepts present in this
class can vary considerably, and penalizing images with a different set of concepts to the query image had a
great affect on the results for this category of images. A penalty weight of zero implies that the similarity of
images is determined only by the relationship between common semantic concepts in the query and database
images, and missing concepts do not contribute toward total penalty weight.
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determine the effect of concepts not present in both images (though the current system takes
into account only the default weights).

& QSM for RSizeRep: Turning to the relative size representation, the conceptual
neighbourhood is much simpler with three nodes, one for each of the three relations,
with ≈ neighbouring each of > and <. The maximum weight is two. For missing patch
types we do not use a ‘No’ relation in this representation but rather use >, < if just one
patch type is missing and ≈ if neither are present.

QSM for ChordRep: For the case of the chord representation, we can think of the
conceptual neighbourhood as being equivalent to a complete lattice generated by the power
set of patch types; effectively this means that the similarity is directly proportional to the
number of insertions and deletions required to transform one chord into another.

& QSM for TouchRep: For the representation of spatial touching, there are just two nodes in
the conceptual neighbourhood diagram (touching and not-touching) and a single link
connecting them. We experimented with this representation, but converged on a similarity
measure which also takes account of the degree of touching (i.e. taking a hybrid
quantitative-qualitative approach). Each patch can touch up to eight other patches. For a
pair of given patch types p1 and p2, we compute howmany patches of type p1 touch a patch
of type p2, and vice-versa for p2 and p1; the maximum of these two values is then recorded
as one of the 66 attributes in this representation of an image. To compute the degree of
similarity between two images using this representation, we simply take the sum of the
absolute differences in each of the corresponding 66 values for each image. This

Fig. 5 Conceptual neighbourhood diagram for the interval calculus [7]
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representation thus combines a very qualitative representation, touching, which is a purely
topological relationship, with a metric measurement of its applicability to a particular
image. Thus for example images with an extended sky-grass spatial connection will be
more similar than ones where there is only a small amount of spatial connection between the
two.

Following figure (Fig. 6) presents steps involved in image retrieval activity through a
diagrammatic representation for ease of understanding.

Thus given a representation “R” with attributes A1
R,A2

R,….A|R|
R and a function fR (u,v)

which gives the similarity between two attribute values u and v then the overall similarity SR

(x,y) between two images ‘x’ and ‘y’ in representation ‘R’ is given by:

SR x; yð Þ ¼
XRj j

i¼1

f R AR
i xð Þ;AR

i yð Þ� � ð1Þ

We can compute rank of an image ‘y’ in the database for query image ‘x’ as:

RankR x; yð Þ ¼ z : SR x; zð Þ < SR x; yð Þ ð2Þ

5 Results and evaluation

In this section, results for IR using the different representations described above are
presented and evaluated. We have conducted experiments with each of the representations
above individually and also in various combinations. To illustrate the results obtained, we
first present (in Fig. 5) a sample query image and the top 5 results according to the
qualitative similarity measures described in previous section—see Figs. 7, 8, 9, 10 and 11.

Fig. 6 Tasks involved in image retrieval activity
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The above querying does provide a visual appreciation of retrieval process but does
not give any quantitative evaluation of the quality of the retrieval and we next turn to
this question. To provide a more thorough quantitative analysis of the performance of
the various representations, we used the following experimental setup. Each of the
700 images in the database was used as a query image in turn, and a similarity
ordering computed for all the other 699 images. However this does not tell us
whether images high in the ordering really are intuitively similar to the query image.
As a proxy for an extensive user evaluation of each of these rank orderings, we use

Query Image

Fig. 7 Example image and top 10 images retrieved using Allen’s grouped representation

Query Image

Fig. 8 Example image and top 10 retrieved images using the chord representation
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the hand assigned category labels used above and in [19] for supervised learning of
category descriptions.

Given a query image in category c, we can evaluate the number and hence the percentage
of images in the same category in the top k images in the rank ordering. For cases where the
number of images of a particular category in the data base is less than k clearly 100 % scores
cannot be achieved.

The number k may be user defined, or be determined by conditions such as how many
images of a certain size fit on a user’s screen, or could be determined by analysis of the

Query Image

Fig. 9 Example image and top 10 images retrieved using Allen’s representation

Query Image

Fig. 10 Example image and top 10 images retrieved using the relative size representation
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actual similarity values. In the figures below (Fig. 12, 13, 14 and 15), we histogram the
similarity values for particular queries using various representations. It can be seen
that typically there are “qualitative jumps” in the similarity values. These could be
used to delineate the ordered list of images into “most similar”, “fairly similar” and
“least similar” sets. We have not experimented further with this approach in this paper
or evaluated its cognitive plausibility (The legends ‘Actual’ represents frequency count
of images while ‘CF’ represents the cumulative frequency of images in each
bin—number of bins are plotted along X-axis while Y-axis represents number of images in
each bin).

Table 1 gives a complete view, for each class, of the number of retrieved images of that
class in the top ranked 20, 50 and 100 images, each row giving the values for a different
representation. To show the effect of combining pairs of representations, we also show some
hybrid representations, such as Allen_Size. The final row in each of the following three

Query Image

Fig. 11 Example image and top 10 images retrieved using Allen’s representation (with Zero Penalty Weight
for “No” relation)
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Fig. 12 Histogram for Allen representation
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tables shows the statistics when using the percentage of each semantic attribute as the
image representation, as described Table 2 gives the same results but this time
expressed as a percentage of the retrieved set. Clearly the number of actual occur-
rences of each image class in the database will affect the a priori probabilities of
retrieving a particular image class; Table 3 thus presents the percentages of retrieved
results relative to the actual number of each category of images in the database. In
particular there are only 34 instances of Sky_Clouds in the database, so it is impossible to
retrieve more than this number (in fact more than 34, assuming that one is used as the
query image).

These results reveal the following interesting conclusions:

1. The recall rate clearly validates the measures of similarity used, since as the number of
images retrieved increases, the accuracy of retrieved images goes down (measured by
successive retrieved images of the same category).

2. The case of assigning zero weight to the “No” relation in image descriptions
results in a decrease in recall value particularly in images corresponding to top
most values in the ordered list of measure. This situation is improved if we
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Fig. 13 Histogram for chord representation
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Fig. 14 Histogram for spatial touching representation
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simultaneously consider relative size relation as well along with the Allen or Allen_LGp
representations.

3. The chord representation performs relatively better than the other ones; it seems to be
particularly suitable for measuring and comparing images. Arguable this is because it
closely resembles the human cognition of similarity because human may describe or
compare an image in terms such as an “image having sky in the top, foliage and water in
the middle, water and sand at the bottom of image”—remembering that the semantic
categories were assigned by a human (though without being aware of the possibility of
subsequently using the chord representation (or indeed any of the others).

3
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Fig. 15 Histogram for relative size representation

Table 1 Number of Images of each class retrieved in top 20, 50 and 100 retrieved images for all experiments

Categories/
Representations

Coasts:
Out of

Field:
Out of

Forest:
Out of

LWM
Out of

Sky_Clouds
Out of

Waterscapes
Out of

100 50 20 100 50 20 100 50 20 100 50 20 100 50 20 100 50 20

Allen only 53 28 14 29 21 13 85 50 20 74 41 20 15 3 3 46 26 13

Allen_LGp 47 27 12 27 17 12 80 50 20 64 42 20 8 3 3 50 28 15

Allen_Zero 33 26 16 29 22 18 55 37 20 36 14 8 8 4 3 15 4 3

Chord 17 10 6 49 39 20 81 50 20 91 47 19 33 33 20 59 31 13

Chord on TMB 16 5 3 43 37 18 68 49 20 47 38 14 33 31 20 47 25 14

Allen_Size 50 27 14 34 22 14 84 50 20 83 46 20 17 7 3 43 25 13

Allen_LGp_Size 49 30 12 30 21 13 84 50 20 86 44 20 15 4 3 46 26 13

Allen_Zero_Size 50 24 14 43 27 17 84 50 20 80 39 18 22 18 5 28 17 10

Chord_Size 44 26 14 42 29 17 89 50 20 88 49 20 26 17 12 39 22 12

Size only 48 28 13 38 26 16 86 50 0 86 49 20 25 16 10 36 21 10

Touch 36 19 11 29 15 7 68 50 20 88 48 20 23 17 14 20 14 10

Touch + Size 45 25 11 32 15 9 77 50 20 88 49 20 25 19 14 27 15 12

%ages 20 11 7 46 38 20 83 49 20 86 44 17 34 34 20 48 33 14

The Labels ‘Allenonly’ represent Allen Representation, ‘Allen_LGp’ represents Allen’s variant described in
Section 3.1, ‘Allen_Zero’ represents variant of Allen with zero penalty weight, ‘Allen_Size’ and others are
hybrid representations by combining Allens and Size representations
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Table 2 Recall percentages in top 20 and 100 images retrieved for all of the experiments

Representations Coasts Field Forest LWM Sky_Clouds Waterscapes Over
All

Out
of
20

Out
of
100

Out
of
20

Out
of
100

Out
of
20

Out
of
100

Out
of
20

Out
of
100

Out
of
20

Out
of
100

Out
of
20

Out
of
100

Allen only 70 53 60 29 100 85 100 74 15 15 65 46 50 %

Allen_LGp 60 47 60 27 100 80 100 64 15 8 75 50 46 %

Allen_Zero 80 33 90 29 100 55 40 36 15 8 15 15 29 %

Chord 30 17 100 49 100 81 95 91 100 33 65 59 55 %

Chord on TMB 15 16 90 43 100 68 70 47 100 33 70 47 42 %

Allen_Size 70 50 90 34 100 84 100 83 15 17 65 43 52 %

Allen_LGp_Size 60 49 70 30 100 84 100 86 15 15 65 46 52 %

Allen_Zero_Size 70 50 65 43 100 84 90 80 25 22 50 28 51 %

Chord_Size 70 44 85 42 100 89 100 88 60 26 60 39 55 %

Size only 65 48 80 38 100 86 100 86 50 25 50 36 53 %

Touch 55 36 35 29 100 68 100 88 70 23 50 20 44 %

Touch + Size 55 45 45 32 100 77 100 88 70 25 60 27 49 %

%ages 35 20 100 46 100 83 85 86 100 34 70 48 53 %

Table 3 Percentages of retrieved results relative to the total number of images in each category of database

Representations Coasts Field Forest LWM Sky_Clouds Waterscapes Over
all

Out
of
143

%age Out
of
128

%age Out
of
103

%age Out
of
178

%age Out
of
34

%age Out
of
114

%age %age

Allen only 69 48 37 29 86 84 108 61 3 9 48 42 46

Allen_LGp 66 46 33 26 80 78 105 59 3 9 56 49 45

Allen_Zero 42 29 35 27 57 55 54 30 3 9 17 15 28

Chord 22 15 57 45 82 80 127 71 30 88 63 55 59

Chord on TMB 23 16 52 41 70 68 80 45 24 71 52 46 48

Allen_Size 62 43 42 33 86 83 110 62 3 9 49 43 46

Allen_LGp_Size 61 43 40 31 86 83 109 61 3 9 50 44 45

Allen_Zero_Size 61 43 45 35 85 83 110 62 17 50 29 25 50

Chord_Size 59 41 50 39 90 87 124 70 16 47 44 39 54

Size only 60 42 48 38 87 84 123 69 15 44 36 32 52

Touch 50 35 35 27 68 66 114 64 14 41 23 20 42

Touch + Size 60 42 41 32 78 76 121 68 16 47 29 25 48

%ages 26 18 54 42 84 82 135 76 31 91 51 45 59
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4. The representation ‘relative size’ performs surprisingly well, given the low information
content.

5. The collapsed version of the Allen representation, namely Allen_LGp, is not as good as
the best representations. The obvious conclusion to draw is that the representation is too
coarse to successfully distinguish somewhat dissimilar images.

6. The touch based representation does not perform particularly well either—again we
hypothesise that it does not encode sufficient information to be able to adequately
distinguish cognitive similarity in the image dataset.

As can be seen above in Figs. 12, 13, 14 and 15, we have considered combining the
representations (e.g. Allen and relative size). We now consider hybrid representations further.
In the binary combinations above, the two representations carried equal weight (although we
considered weighting them corresponding to their overall performance). Since different repre-
sentations perform better in different categories (and bearing in mind that we assume we do not
know the category of an image—we are using this information here purely for evaluation
purposes), we experimented with combinations of four different qualitative representations.

5.1 IR using voting based QSRs

We experimented with a number of voting schemes to aid and improve the retrieval process
using multiple representations6. The selected representations were Allen, relative size, chord
and touch. There has been number of approaches in image categorization research involving
bagging/boosting while in image retrieval, multiple query processing or use of low level and
semantic labels has been used to improve the retrieval accuracy. We have investigated
following four voting approaches based on combining the respective penalty weights of
images in individual representations7, and on combining the ranks of retrieved images in
each selected qualitative representation:

V1: Compute…

SV 1 x; yð Þ ¼
Xr¼4

R¼1

Sr x; yð Þ ð3Þ

for each image in the DB for a query ‘x’ and then sort in ascending order.
V2: Compute…

SV 2 x; yð Þ ¼ Φr¼4
r¼1S

r x; yð Þ ð4Þ
for each image in the DB for a query ‘x’ and then sort in ascending order:(a variant of V1
and Φ is “Min” function). Although the weights within in each representation may be

6 Of course each representation can itself be a hybrid representation with the 66 attributes (or whatever
number of attributes used in the particular representation) combining together to assign an overall similarity to
an image pair.
7 This is thus the same as the combination used within each representation, as mentioned in the previous
footnote.

Table 4 Recall percentages in top 5 and 10 pooled images from each of 4 representations

Class of Q_Image Coasts Fields Forest LWM Sky_clouds Waterscapes

Recall values Top 5 69 % 83 % 100 % 100 % 46 % 50 %

Top 10 54 % 78 % 100 % 100 % 50 % 52 %
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regarded as comparable, it is arguable as to whether this also holds with respect to the
weights in other representations. We thus investigated schemes based solely on the rank
within each of the four representations.

V3: Compute…

SV 3 x; yð Þ ¼
Xr¼4

r¼1

rankr x; yð Þ ð5Þ

for each image in the DB for a query ‘x’ and then sort in ascending order.
V4: Compute…

SV 4 x; yð Þ ¼ Ωr¼4
r¼1rank

r x; yð Þ þΨr¼4
r¼1rank

r x; yð Þ ð6Þ
where “Ω” and “Ψ” compute the maximum and 2nd highest values respectively.

In the first case of simple voting, the top 5 and 10 retrieved images from each of the four
representations with respect to a query image were pooled together, removing duplicates.
For the evaluation we then counted how many images in the resulting pool were in the same
category as the query image. The results of this approach are given in Table 4.

In order to count for the accumulative effect of penalty weights in all of the 4 represen-
tations mentioned in above paragraph and also the overall ranking of an image in the list of
database images, several other kinds of weighted voting schemes were investigated (V1–V4):

In voting scheme V1, the individual weights of each image in the data base in each of the four
representations were computed, and the all four weights summed. The database images were then
sorted in ascending order of this “rowsum” weight for each representation for each. See Table 5.

A variant of the rowsum scheme is to take the minimum weight (MinWt) of each image
across all of the four representations (Voting scheme V2). Thus an image which has a low rank
in all four representations will still have a low rank, but an image which is selected out as very
similar buy just one representation will be be penalised by representations which weight it as
rather un-similar to the query image. The results for this approach are presented in Table 6.

Although the weights within in each representation may be regarded as comparable, it is
arguable as to whether they should be compared with the weights in other representations. We
thus investigated schemes based solely on the rank within each of the four representations (V3

and V4). In V3, ranks of each image in each of the sorted lists of the four individual
representations were added together to have the “RankSum” of each image—e.g. an image
ranked 2,5,15 and 40 in the four representations would receive total “vote” of 62. The retrieved

Table 5 Recall percentages in top 20 and total number of images in each category of database for AllRep
RowSum Weighted Voting

Class of query image Coasts 143 Fields 128 Forest 103 Lwm 178 Sky_clouds 34 Waterscapes 114

Recall values top 20 70 % 65 % 100 % 100 % 20 % 65 %

Top k 46 % 29 % 85 % 61 % 28 % 43 %

Table 6 Recall percentages in top 20 and total number of images in each category of database for AllRep
RowSum Weighted Voting using MinWt

Class of query image Coasts 143 Fields 128 Forest 103 Lwm 178 Sky_clouds 34 Waterscapes 114

Recall values top 20 55 % 100 % 100 % 100 % 90 % 65 %

Top k 19 % 45 % 82 % 73 % 82 % 54 %
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images were then sorted in ascending order corresponding to a decreasing relative similarity of
database images to the query image. The results of this approach are presented in Table 7.

Finally, similarly to voting scheme MinWt, rather than combine the ranks from all four
representations, the overall weight for each image was computed as the sum of its two best weights
across the four representations (V4). The results of this voting scheme is displayed in Table 8.

The results above suggest the following conclusions:

& The purely qualitative approaches perform as well as or even slightly better in some
cases than the quantitative ones. The qualitative approaches, though, have added advan-
tage that these approaches also allow retrieval based on simple linguistic descriptions
using qualitative descriptions over the semantic attributes.

& The voting schemes based on accumulative weighted votes and ranksum weighted votes
perform better than the individual approaches.

& The overall accuracy of the retrieval process compared with the actual class labels is not
entirely a fair evaluation due to the fact that most of the images may be categorized as
either “lwm” or “coast”—i.e. most of the images in the data base have some aspects of
“lwm” or “coast”, and arguably it is a matter of degree or personal preference when an
lwm with sky above becomes a “sky_clouds” for example. Similarly, there is lot of
confusion in images categorised in classes like “fields” and “sky_clouds”. This fact was
also established in [19, 31] while learning the class descriptions using the same image
descriptions.

& The minimum weights (MinWt) approach in the AllRep RowSum Weighted Voting
scheme performs much better in the top 20 and the top k (k is equal to total number of
images in each category of mages in database) as it is based on minimum row weight of
an image out of penalty weights corresponding to four representations chosen. This
approach filters out relatively ‘more’ similar image to a query image from list of
retrieved images of all representations. The second best voting scheme, namely
RankSum Weighted Voting, performs slightly better in the case of using best two ranks
out of four (Table 8 rather than Table 7), though it is much better in the recall of the top
20 rather than the top k.

& It can be seen that coasts and waterscapes do relatively badly compared to the other
categories in many of the representations, which is not altogether surprising from a
semantic/intuitive viewpoint. If these two categories are combined into a single category

Table 7 Recall percentages in top 20 and total number of images in each category of database for RankSum
Weighted Voting

Class of query image Coasts 143 Fields 128 Forest 103 Lwm 178 Sky_clouds 34 Waterscapes 114

Recall values top 20 60 % 45 % 100 % 100 % 70 % 60 %

Top k 41 % 39 % 89 % 73 % 44 % 41 %

Table 8 Recall percentages in top 20 and total number of images in each category of database for RankSum
Weighted Voting

Class of Query Image Coasts 143 Fields 128 Forest 103 Lwm 178 Sky_clouds 34 Waterscapes 114

Recall values top 20 75 % 75 % 100 % 100 % 55 % 65 %

Top k 41 % 36 % 87 % 72 % 47 % 42 %
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then the rate of accuracy improves. For example the figures for the top 20 and top 100
images for this combined category are as follows for a selection of representations:

Allen: 20/20 87/100

Relative Size: 17/20 72/100

Chord: 20/20 87/100

T_n_T (Touching): 10/20 29/100

RowSum with MinWt: 20/20 87/100

Rank_Sum (Top two ranks out of 4): 16/20 75/100

6 Conclusions and further work

We have presented an approach to image retrieval based on semantic knowledge and
qualitative spatial image descriptions. The approach does not rely either on segmentation
techniques applied directly or on low level image features for an image description. We have
presented similarity measures of the qualitative spaces based on the conceptual
neighbourhoods that typically accompany qualitative calculi. We have presented the results
for a variety of qualitative description languages and several combinations of these. We are
not necessarily arguing that these are the best languages either for this particular data set or
in general. It is the overall approach we present which we believe is the most important result
of our research. We have also presented a variety of voting schemes for combining
representations and evaluated their success on the image dataset.

The evaluation was based on a hand labeled categorization which although it has some
disadvantages does provide a cognitive basis for evaluating the retrieval results.

We have also suggested the use of histogram analysis to categorize retrieved results into
categories of similarity.

A variety of further work suggests itself including the evaluation on other data sets, using
actual user analysis to evaluate the results, experimentation with other qualitative calculi,
and combining qualitative and quantitative representations. We already have a prototype
user interface to an image retrieval system based on the ideas presented here; this could be
further improved to provide a flexible interface based on query by image or by qualitative
description, or a combination of the two, with the user free to select the kinds of descriptions,
similarity measures and voting schemes most appropriate to their needs. The analysis here
provides the basis for reasonable default choices.
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