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Abstract One of the main challenges in hierarchical object classification is the
derivation of the correct hierarchical structure. The classic way around the problem
is assuming prior knowledge about the hierarchical structure itself. Two major
drawbacks result from the former assumption. Firstly it has been shown that the
hierarchies tend to reduce the differences between adjacent nodes. It has been
observed that this trait of hierarchical models results in a less accurate classification.
Secondly the mere assumption of prior knowledge about the form of the hierarchy
requires an extra amount of information about the dataset that in many real world
scenarios may not be available. In this work we address the mentioned problems by
introducing online learning of hierarchical models. Our models start from a crude
guess of the hierarchy and proceed to figure out the detailed version progressively.
We show the merits of the proposed work via extensive simulations and experiments
on a real objects database.

Keywords Dirichlet distribution · Generalized Dirichlet distribution ·
Beta-Liouville distribution · Online learning · Hierarchical classification ·
Statistical modeling · Visual words · EM algorithm · Count data analysis

1 Introduction

When dealing with huge amount of data, it is critical that one finds an efficient way
for classifying them into relevant classes. Proper classification of the data has many
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potential applications in different domains. For instance, in text mining, it leads to
faster textual data browsing and improved search results [35]. Human visual system
is a strong object classifier [24, 32]. Whence it has been an ongoing trend among
researchers to develop machine learning classification algorithms that work similar
to human vision [4]. Development of such algorithms can lead to potentially vast
number of applications such as improved content-based retrieval [11, 17], improved
recognition, improved decision making, database summarization [7, 9, 14] and also
various applications in biomedical imaging [25].

Traditionally the primary step in developing classification models is the training
phase. Training phase is usually accomplished by the consideration of training data.
In general, there are two categories of training data, supervised and unsupervised.
The two training trends have been analyzed extensively in the past [12, 13]. In
supervised training, one assumes that a certain amount of information is known
about the training set. It could be the presence of a certain object inside an image for
machine vision applications or the context of the training document in text mining.
The embedded information is concordantly used to improve the learning process. For
the unsupervised training sets, however, one assumes that no specific information is
known about their content in advance. The advantage of the supervised sets to the
unsupervised ones is that one can use the information available about the former to
improve the learning process. The disadvantage of the supervised sets in comparison
to the unsupervised ones is that, in general, creating large supervised training sets is
far more resource demanding than creating unsupervised sets. Considering the size
of the available training sets, one way to improve the learning process is through
finding ways that one can use training sets interchangeably. The following example
further elaborates the idea. Suppose that one decides to build a model that classifies
different animal species. Considering two closely related but distinct bird species,
such as falcons and hawks, and comparing them with land dwelling animals, such as
horses and Kettles. The former pair shares many common features such as beaks,
wings, talons, etc., that are either not present or are visually significantly different
in the later. In order to exploit the class similarities to improve the classification
process, one way is to create hierarchical structures based on visual similarities.
The main idea is that the closely related classes are ought to have been generated
from the same, unobserved, parental nodes. Therefore the same as siblings in a
family tree share common traits [21], so do the neighboring nodes. The idea of
using hierarchical structures for improving classification has already been analyzed in
numerous works [1–3, 23, 27, 33]. In general the structure of the hierarchy is worked
out in two different ways. Firstly by assuming a known in advance structure for the
hierarchy, and secondly by assuming total ignorance about the hierarchical structure
and proceeding with generating the hierarchy from the scratch based on the available
data. The model that we propose in this work stands in the middle of the previous
models. We therefore call it semisupervised online learning of hierarchical structures
(SOLHS). The etymology comes from the following reasons. Semisupervised since it
assumes a crude understanding of the hierarchical structure. Online learning because
the model proceeds with improving its initial assumption of the hierarchical structure
every time new data are introduced to it.

For machine vision applications, which is the focus of this work, often the models
deal with the frequency of the occurrence of certain features inside objects, thus
leading to count data modeling [15, 20]. Count data modeling approaches are divided
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into two main groups. The discriminative group of approaches such as support
vector machines (SVM) [18] and the generative family of approaches [5]. There is
a favorable trend for developing hierarchical classifiers based on generative models
[29]. In comparison to discriminative models, generative models offer faster training
speeds and are easier to expand. Another advantage of the generative models is that
it is relatively an easy task, pendant certain conditions, to leverage flat statistical
models to work in hierarchies. Previously Sivic et. al effectively used the hierarchical
latent Dirichlet allocation [33], the hierarchical adaptation of the latent Dirichlet
allocation (LDA) model [6]. Another example is using the hierarchical Dirichlet
model for document classification [34] and the subsequent adoptions for improving
the performance of the original model [1–3]. However, the cons in using hierarchical
models is that since, they apply the training data attributed to their neighboring
nodes to enhance their operation it leads to parameter mixing between neighboring
classes. This in return results in the reduction of the model accuracy in distinguishing
similar classes. This problem was observed in previous models developed for object
classification. The main contribution of this work is proposing an efficient semisuper-
vised online learning method for hierarchical structures through the development
of effective and flexible hierarchical distributions for count data modeling. The
contribution wavers the need for the prior assumption of the hierarchical structure.
The second contribution of this work is, that the online learning model leads to better
classification accuracy in comparison to the static structures. SOLHS in theory is
applicable to all applications that deal with hierarchical count data modeling pendant
that certain conditions, which will be explained in details, are met. We have observed
the frequent occurrence of the necessary conditions in the field of hierarchical object
classification, which will be the focus of this work. The main technical challenge of
the proposed model is identifying features that strongly correlate in similar classes
while in the same time offer distinction between non related classes.

The structure of the rest of this paper is as follows. In Section 2 we give a brief
review of the previous hierarchical models, related to our work, that were developed
for object classification. In Section 3 we describe SOLHS that we have developed in
this work. In Section 4 we show the experimental results of applying SOLHS and we
compare them with previously proposed models. In the last section we present our
conclusions and possible future works.

2 Static hierarchical model

In this section we briefly describe the basic hierarchical model that we have used
for developing our hierarchical semisupervised online learning approach. The model
was originally proposed as a special case of the Dirichlet prior used in [34].

The description is as follows. Assuming that C = {C1, . . . , CN} is a given set of
count vectors, the model is assumed to be a generative multinomial with parameter
space θ I = {

θI1, . . . , θI(D+1)

}
as follows:

p(Cn|θ I) ∝
(∑D+1

d=1 Cnd

)
!

∏D+1
d=1 Cnd!

D+1∏

d=1

(θId)
Cnd (1)
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In above D + 1 indicates the number of elements inside Cn and Cnd indicates the d-th
element of Cn.

The hierarchical Bayesian structure is maintained through the following assump-
tions. Firstly, the generative model parameter θ I must be generated by a conjugate
prior to the multinomial distribution. Secondly, the following condition has to be
maintained:

E[θ I |θ pa(I)] = θ pa(I) (2)

In above, θ pa(I) is the generative parameter of the parent node of the I-th node.
Through maintaining the above conditions, it was shown in [34] that a linear
minimum mean square error (LMMSE) estimator can be used to find the estimation
of θI as follows

θ I = E[θ I] + M−1 ×

⎛

⎜⎜
⎝

θ̂ ch(I1) − E[θ ch(I1)]
θ̂ ch(I2) − E[θ ch(I2)]

.

θ̂ ch(Im) − E[θ ch(Im)]

⎞

⎟⎟
⎠ (3)

Fig. 1 Flowchart of the static model learning and operation [1]
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Fig. 2 Comparison of the classification success rate of the different models. The error bars are set at
90 % standard deviation of the relative graphs [3]

where

M =

⎛

⎜⎜
⎝

�(θ ch(I1)) �(θ ch(I1), θ ch(I2)) . �(θ ch(I1), θ ch(Im))

�(θ ch(I2), θ ch(I1)) �(θ ch(I2)) . �(θ ch(I2), θ ch(Im))

. . . .

�(θ ch(I1), θ ch(I2)) . . �(θ ch(Im))

⎞

⎟⎟
⎠

In the above equation �(θ ch(Ik), θ ch(I j)) is the correlation matrix between the parame-
ter vectors of the k-th and j-th nodes from m children of the I-th node. It was shown
in [34] that if the condition in (2) holds, the following simplifying relationships hold:

E[θ ch(I)] = E[θ I] (4)

�(θ I, θ ch(I j)) = �(θ I) (5)

�(θ ch(I j), θ ch(Ik)) = �(θ I) (6)

�(θ ch(Ik)) = �θ I + Eθ I [�(θ ch(Ik)|θ I)] (7)

Fig. 3 Comparison of the second tier categorization success rate of the different models. The error
bars are set at 90 % standard deviation of the relative graphs [3]
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Fig. 4 Samples of the
ETH-80 dataset

The parameter vector θ I is generated by a predetermined prior. In [1, 34] the prior
was considered to be a Dirichlet distribution. In subsequent works we used gener-
alized Dirichlet [2] and Beta-Liouville [3] distributions as replacement generating
priors to improve the model efficiency.

The schematic of the original model, is displayed in Fig. 1. A series of experiments
for determining the classification and categorization of the models accuracies was
performed in the past, the details of which are present in [1–3]. In Figs. 2 and 3
one can see the results of applying different priors on the original model. In the
past works [1–3] we performed our experiments on the ETH-80 dataset (see Fig. 4)
[28]. We assumed a known in advance hierarchical structure for our experiments
(see Fig. 5). As an example we have also brought the confusion matrix of the
model proposed in [3]. As one can see from Figs. 2, 3 and Table 1, the original
model is quite capable of correctly categorizing different classes. However, when
it comes to recognizing specific objects, the system accuracy fails to offer a strong
outcome. Two reasons are thought to be behind the low accuracy. Firstly, since the
models use visual words that are generated from a common pool they tend to be

Fig. 5 The hierarchical model
assumed for the image
database classes in the
previous works [1–3]. The
choice of the hierarchy
elements was based both on
visual and conceptual
similarities between the classes
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Table 1 Optimal confusion
matrix for the hierarchical
Beta-Liouville model [3]

Class Apple Cow Cup Dog Horse Pear Tomato

Apple 49.1 0.8 15.6 3.4 2.3 6.6 16.7
Cow 0 21.3 7.2 5.4 15.8 0 3.1
Cup 6 0 52 3.7 0 1.7 1.1
Dog 0 24.2 3.4 34.9 17.9 1.1 3.7
Horse 0.5 50 9.5 48.8 58.9 0.5 12.4
Pear 35 2.8 9.6 2.3 3.4 89.5 15
Tomato 9 0.2 2.6 1.1 1.4 0.2 47

less sharp in distinguishing the differences. Secondly, the fact that the sibling nodes
inherit common parameter generators from their parents makes the class vectors
inherently similar to each other. In the next section we will show how by adapting
the maximum likelihood threshold, introducing a saliency factor to it and adapting a
learning hierarchical structure, we improve the efficiency of the model.

3 The model

Looking back at Table 1 gives us an overview of the problem that needs to be
dealt with. If one looks, for example, at the row showing the attributions to the
class “horse” one observes that the class has a tendency to absorb a great portion
of the objects which have visual similarity to it. We call it an absorbing class. The
original model uses maximum likelihood (ML) method for classification. Therefore,
it is logical to assume that the absorbing node tends to have the higher likelihood in
comparison to the neighboring nodes. In order to improve the classification process,
it is necessary that one finds a way for penalizing the absorbing ML. To achieve
this end we proceed with defining a saliency factor for each node. One factor to be
considered as a relatively reliable saliency factor is that similar objects in general give
somehow the same number of visual words. The number of features extracted from
an object follows a natural process, therefore it is expectable to assume that it can
be modeled by normal distribution. The histogram of the number of features in each
category is shown in Fig. 6. As the first step we redefine the likelihood of the count
vector to represent the I-th class as follows:

p(Cn|θ I,�(I)) ∝
(∑D+1

d=1 Cnd

)
!

∏K
d=1 Cn(D+1)!

D+1∏

d=1

(θId)
Cnd × p

((∑
(Cn)|�(I)

))
(8)

In above �(I) represents the statistical characteristics of the I-th class. Therefore,
assuming normal distribution for the number of feature occurrences in the I-th class,
�(I) would be defined by the mean and the variance of the class histogram. It should
be noted that �(I) is independent of θ I and therefore acts solely as a weighing factor,
penalizing deviations from the established characters of the class.

There is yet another factor that needs to be considered for improving the model.
As it was discussed in the previous section, in the original model we encounter
dominant classes that tend to bias the classification process towards themselves.
Mathematically the bias happens because θ I of the dominant class, offers a broad
histogram of likelihood with comparably long tails. Therefore theoretically there are
always dominant classes present inside the model in the form of those classes which
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Fig. 6 Histogram of the number of features present in each experimented class

have stronger spreads on the log-likelihood spectrum. The model therefore finds out
the hierarchical structure most efficiently when there is a strong similarity between
the sibling classes and strong dissimilarity between the non related classes. In Fig. 7
we show the log-likelihood of the dominant classes in our experiments to further
elaborate this fact.

Unlike the previous case, however, as it can be seen in Fig. 7, the log likelihood
of the count data does not clearly follow a Bell shaped Gaussian distribution
and therefore it is analytically difficult to find a fitting function that covers all
different shapes of the different log likelihoods. However, through observing the log
likelihood of the dominant classes an effective boundary can be assumed where the
majority of the likelihood instances occur. In our experiments we have observed that
where normal fitting is possible the best results appear when the boundary is assumed
to be one standard deviation from the mean of the training data likelihood. In theory
The model accuracy suffers where the normal fitting fails to properly model the log
likelihood. Still experiments show that the assumption is reliable in the majority
of circumstances. By assigning this boundary on the dominant class, we devise an
extra layer of protection against misplaced classification. As follows a new object
is solely assigned to the dominant class when its likelihood falls in the acceptable
boundary. If it doesn’t, even if it shows a higher likelihood than other classes in the
same branch, it is rejected as an object belonging to the dominant class and the next
highest likelihood is chosen as the assigned class.
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Fig. 7 Log liklihood of the count data for the dominant classes

3.1 Learning hierarchical structure

The presence of the dominant classes provides us with yet one more assumption
easement. So far the hierarchical models proposed based on [34] have assumed a
known hierarchical structure a priori. As an example the visual hierarchy used in
[1] is brought in Fig. 8. In this work, however, we propose a learning hierarchical
structure based on the presence of dominant classes. SOLHS starts from a crude
sketch of the hierarchy, where only the dominant classes are placed in their relative
positions inside the hierarchy. To derive the dominant classes we pledge to the
naive Bayes classification over the training set. The dominant classes tend to give
high likelihood not only to themselves but also to their sibling nodes, therefore
they absorb the sibling entries in the confusion matrix. Theoretically there are
always dominant classes, however the stronger the dominance of the class over
its sibling classes gets the stronger the model efficiency in properly categorizing
the data becomes. Here we need to define the difference between classification
and categorization in our context. We define classification as the ability of the
model to correctly identify different classes while we define categorization as the
model ability to identify the concept the class belongs to. As an example a strong
classifier can strongly tell the difference between a horse and a cow, while a strong
categorizer can strongly depict that a horse or a cow belong to the animal class.
As we described in this section the likelihood of the classes typically falls within a
derivable boundary. Assuming that a new class appears which likelihood does not
fall in the acceptable boundary of any of the dominant classes; SOLHS will decide
that a new class of objects has been introduced. However, it is expectable to assume
that the new class will have likelihood boundaries near to that of one of the dominant
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Fig. 8 An example of hierarchical object classification

classes. In this step SOLHS compares the likelihood of the object with different
dominant classes and decides where exactly the new branch of the hierarchy the
new class must be placed. In this work, the assumption is that the new objects arrive
in unlabeled classes. Totally random data arrival requires count data clustering as
mentioned in the following works [8, 10]. SOLHS waits until enough new objects
have arrived to form an appropriate training set. In the next step it assumes a new
branch added to the hierarchy and it recalculates the model parameters [1–3] while
including the new class. The process continues in the presence of coming data. Every
time SOLHS decides that a new class has to be formed it adds the appropriate
branch and recalculates the parameters accordingly. The following steps define the
semisupervised online learning of the hierarchical structure phase:

1. From the training dataset extract the dominant classes.
2. From the training dataset extract the saliency and log likelihood of the dominant

classes.
3. For each new entry find the nearest dominant class based on the maximum

likelihood.
4. If the new entry does not fit within the salient boundaries of the dominant class

flag the entry as belonging to an unidentified sibling node of the dominant class
and repeat the process.

5. Once enough entries for the unidentified nodes is collected, re-estimate the
model parameters with the inclusion of the unidentified nodes.
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For the classification part we follow the following steps:

1. Use the ML estimation and if the ML remains within the salient boundaries of
the dominant node with the highest ML select the dominant node as the class.

2. If the saliency fails enter the learning mode and perform the learning algorithm
step 3–5.

3.2 Different considered priors

In this work, we analyzed three different prior distributions to be used for our
model. The three distributions are: Dirichlet distribution, generalized Dirichlet
distribution and Beta-Liouville distribution. By appropriate considerations, the three
distributions satisfy the conditions in (2). Also the three distributions are known to
be conjugate priors to the multinomial distribution, which is the second necessary
condition for creating the hierarchical structure of [34].

A random vector θ i follows a Dirichlet distribution with parameter vector αi =
(αi1, . . . , αi(D+1)) over the hyper plane

∑D+1
k=1 θik = 1, if its joint probability density

function (PDF) is defined as follows [16]:

p(θ i|αi) =
∏D+1

k=1 �(αik)

�
(∑D+1

k=1 αik

)
D+1∏

k=1

θ
(αik−1)

ik (9)

where � is the Gamma function. Dirichlet distribution satisfies condition (2) uncon-
ditionally. Assuming ni = (ni1, . . . , ni(D+1)) to be the observed vector, the conjugacy
with the multinomial distribution is derived as follows:

p(θ i|ni) ∝ D(αi1 + ni1, . . . , αi(D+1) + ni(D+1)) (10)

Defining α′
i = αi + ni, we obtain [22]:

E(θ i|ni) = α′
i∣∣α′
i

∣∣ (11)

The second distribution that we use in our model is the generalized Dirichlet distribu-
tion. Following the same terminology used for Dirichlet distribution a random vector
θ i defined over the hyper plane

∑D
k=1 θik < 1 is said to follow a generalized Dirichlet

distribution with parameter space ξ i = (αi1, . . . , αiD, βi1, . . . , βiD), if its joint PDF is
as follows:

p(θ i|ξ i) =
D∏

k=1

�(αik + βik)

�(αik)�(βik)
θ

αik−1
ik

⎛

⎝1 −
k∑

j=1

θij

⎞

⎠

γik

(12)

Generalized Dirichlet distribution is also a conjugate prior to multinomial distribu-
tion and for θ i|ni ∝ GD(α′

i1, . . . , α
′
iD, β ′

i1, . . . , β
′
iD) , where:

α′
ik = αik + nik (13)

β ′
ik = βik +

D+1∑

l=k+1

nil (14)
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and therefore we have [19]:

E(θik|ni) = α′
ik

α′
ik + β ′

ik

k−1∏

j=1

β ′
ij

α′
ij + β ′

ij
(15)

The following derivations provide the necessary conditions for maintaining the
hierarchy:

θ i ∼
{

GD(η, . . . , η, ζ, . . . , ζ ) if i is the first node
GD

((
f
(
θ pa(i)

)
, g(θ pa(i))

))
otherwise

(16)

where θ pa(i) indicates the parent of the i-th node. The functions f (θ pa(i)) and g(θ pa(i))

depend on the parent node and must be determined in the way that the condition in
(2) holds. By defining fi and gi functions as fi = { fi1, . . . , fiD} and gi = {gi1, . . . , giD},
it was shown in [2] that the following condition preserves the hierarchical structure:

gi(k) =
(
1 − ∑k

l=1 θpa(i)(l)
)

θpa(i)(k)
fi(k) (17)

It was shown in [2] that by choosing a linear relationship between fI and θ pa(I) the
hierarchical generalized Dirichlet model is reduced to a simple hierarchical Dirichlet
model. It was thus suggested that a nonlinear relationship between fI and θ pa(I)

should be considered. Based on that assumption a square relationship between the
parameters is considered as follows:

fi(k) ∝ (θpa(i)(k))2 (18)

The last prior that we consider for our model is the Beta-Liouville distribution. A
random vector θ i defined over the hyper plane

∑D
k=1 θik < 1 is said to follow a Beta-

Liouville distribution with parameter space ({α1, . . . , αD} , α, β), if its joint PDF is
as follows:

p (θ i|α, α, β) = �
∑D

d=1 αd)�(α + β)

�(α)�(β)

D∏

d=1

θ
αd−1
id

�(αd)

×
(

D∑

d=1

θid

)α−∑D
d=1 αd (

1 −
D∑

d=1

θid

)β−1

The condition for preserving the hierarchical structure with Beta-Liouville assump-
tion was derived in [3] and is as follows:

θ i ∼ BL

(

σθ pa(i), Kσ

D∑

d=1

θpa(id), Kσ

(

1 −
D∑

d=1

θpa(id)

))

Beta-Liouville distribution is also a conjugate prior of the multinomial distribution
and we have:

θ |(ni,α, α, β) ∼ BL(α′, α′, β ′) (19)

Multimed Tools Appl (2015) 74:1 –1 2805 821816



where ∼ BL indicates a vector generated by the Beta-Liouville distribution and
in the above α′ = α + (ni1, . . . , niD), α′ = α + ∑D

d=1 nid and β ′ = β + niD+1. And we
therefore have [22]:

E[θ i|ni] = α + ∑D
j=1 nij

α + β + |ni|
αi + ni

∑D
d=1 αd + ∑D

d=1 nid

(20)

In the next section we show the results of applying SOLHS with three different prior
assumptions and we compare its performances against the previously derived models.

4 Experimental results

4.1 Image dataset

To maintain consistency with previous works [1–3], we have chosen the ETH-80
dataset [28] for our experiments. The dataset is optimized for object classification
purposes. It contains views and segmentation masks of 80 objects, each one pho-
tographed in more than 40 different poses. In total it contains more than 3,000
images. There are eight object classes, from which we choose seven categories to
validate our work. The choice of classes is based on visual similarities. In general six
of them can be classified in two unique categories: fruits and animals. It was shown
in previous works that the visual similarities between the chosen classes contribute
much to the efficiency of the hierarchical classification. Approximately 20 percent
of the image database is randomly chosen as the training set, whilst the remaining
images form the test dataset.

4.2 Feature extraction and visual words generation

We use scale invariant feature transform (SIFT) descriptors [30] to represent our
objects. The high dimensionality of the SIFT descriptors and its comparably robust-
ness towards changes in scaling, illumination, occlusion, etc, compared with other
feature descriptors, have been shown to result in better classification results [31]. To
generate the visual vocabulary, we extract SIFT descriptors over the entire dataset.
Each SIFT descriptor has a dimension of 128 as described in [30]. In the next step
the K-Means algorithm [26] is used to extract the centroides and then construct the
visual vocabulary that we shall use.

4.3 Hierarchical model generation

In previous works the optimal hierarchical structure for the dataset was shown to
be the one displayed in Fig. 5. In SOLHS, however, our assumption is that only a
crude structure of the hierarchy in Fig. 5 is known and the model proceeds with
learning the rest of the structure as described in the previous section. The class
“cup” acts as a misplaced class to show the effect of class misplacement in the
system accuracy. We analyze and compare the strengths and the weaknesses of the
model in classification and categorization in comparison with static models proposed
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Fig. 9 Comparison of the recognition success rates of SOLHS against the static models for different
prior assumptions. The error bars are set at 90 % standard deviation of the relative graphs

in previous works. It will be shown in the following subsection that the current
model offers a more efficient classification rate in expense of slightly decreasing the
categorization efficiency in comparison with the static hierarchical models.

Fig. 10 Comparison of the categorization success rates of the SOLHS against the static models for
different prior assumptions. The error bars are set at 90 % standard deviation of the relative graphs
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Table 2 Optimal confusion
matrix of SOLHS when
considering the online
hierarchical generalized
Dirichlet model

Class Cup Horse Pear Dog Cow Tomato Apple

Cup 231 13 8 7 1 33 37
Horse 40 248 11 90 111 150 42
Pear 71 81 323 9 11 41 61
Dog 0 0 0 195 0 0 0
Cow 0 0 0 0 223 0 0
Tomato 0 0 0 0 0 98 0
Apple 0 0 0 0 0 0 285

4.4 Analysis of the recognition capability of the model

For recognition purposes the lowest branches of the hierarchy that show the indi-
vidual object classes are analyzed. The main factor that affects the accuracy of the
model is the number of chosen visual words. Each of the distributions has its own
parent-children parameters that are extensively analyzed in previous works. In order
to maintain the consistency we proceed with comparing the optimum results for each
model against each other. The model recognition success rate is defined as the ratio
between the total number of correctly classified images in all classes against the total
number of images. Figure 9 compares the recognition success rates of the different
models as a function of the number of visual words. As it can be seen from this figure
SOLHS for all distributions show better classification accuracy in comparison with
its static counterpart. This is mostly due to the fact that through applying the online
learning algorithm we have created a deeper distance between the sibling nodes and
therefore we have improved the classification accuracy.

Figure 10 shows the second tier categorization accuracy of SOLHS in comparison
with the static hierarchical models. As it can be seen from this figure SOLHS in
general acts less accurately when dealing with categorization task. The main reason
behind the degradation of the categorization accuracy is due to the fact that the
model starts from a crude understanding of the hierarchical structure. The static
hierarchical models have the advantage of knowing in advance the parameters for
the entire nodes inside the hierarchy. On the other hand the learning model is prone
to placement errors while it learns the correct structure. Since we assume that an
object is classified mistakenly once will not be classified again we thus end up with
higher misplacement errors in comparison to static models. This is further visualized
by looking at the relative confusion matrices in Tables 2, 3 and 4. As it can be seen
from Tables 2–4 SOLHS progressively improves its performance through learning
the hierarchical structure.

Table 3 Optimal confusion
matrix of SOLHS when
considering the online
hierarchical Dirichlet model

Class Cup Horse Pear Dog Cow Tomato Apple

Cup 243 27 6 72 21 82 44
Horse 23 232 0 0 0 58 1
Pear 76 83 336 56 67 0 0
Dog 0 0 0 173 0 0 0
Cow 0 0 0 0 258 0 0
Tomato 0 0 0 0 0 182 0
Apple 0 0 0 0 0 0 297
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Table 4 Optimal confusion
matrix of SOLHS when
considering the online
Beta-Liouville model

Class Cup Horse Pear Dog Cow Tomato Apple

Cup 145 6 11 3 4 30 51
Horse 123 303 12 91 110 129 13
Pear 74 33 319 30 29 39 68
Dog 0 0 0 177 0 0 0
Cow 0 0 0 0 203 0 0
Tomato 0 0 0 0 0 124 0
Apple 0 0 0 0 0 0 210

5 Conclusion

In this paper we proposed a new adaptable general learning hierarchical model
(SOLHS) dedicated to count data. As it was shown in the experimental results,
SOLHS allows substantial improvement in hierarchical classification accuracy as
compared to other models that we have described. The improvement is achieved
through applying several saliency factors in SOLHS. In addition to that the learning
algorithm proposed in SOLHS allows it to expand beyond the previously predefined
hierarchical structures. SOLHS improves efficiency while dealing with unknown
classes and as observed in the experiments succeeds in deciding the location of the
new class within the hierarchy quite efficiently. SOLHS achieves this in return for
a slight expense in its categorization capability. Therefore, an interesting idea for
further work on this model could be the design of learning models that reduce the
misplacement of the data in the early learning phases.
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