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Abstract A human speaker recognition expert often observes the speech spectro-
gram in multiple different scales for speaker recognition, especially under the short
utterance condition. Inspired by this action, this paper proposes a novel multi-
resolution time frequency feature (MRTF) extraction method, which is obtained
by performing a 2-Dimensional discrete cosine transform (DCT) in multi-scale on
the time frequency spectrogram matrix and then selecting and combining to the
final multi-scaled transformed elements. Compared to the traditional Mel-Frequency
Cepstral Coefficient (MFCC) feature extraction, the proposed method can make
better use of multi-resolution temporal-frequency information. Beyond this, we also
proposed three complementary combination strategies of MFCC and MRTF: in
feature level, in i-vector level and in score level. Comparing their performance. We
found the best results are obtained by combination in i-vector level. In the three
NIST 2008 Speaker Recognition Evaluation datasets, the proposed method is the
most effective for improving the performance under short utterance than under
long utterance. And after the combination, we can achieve an EER of 11.32 % and
MinDCF of 0.054 in the 10sec-10sec trials on the male dataset, which is an absolute
3 % improvement of EER than the best reported result in this field.
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1 Introduction

Speaker recognition (SRE) refers to recognizing persons from their voice. No two in-
dividuals sound identical because of their different physical parts of voice production
organs, such as vocal tract shapes and larynx sizes, and also their different speaking
manner such as the accent, rhythm, intonation style etc. [13]. It has many widely
used applications, such as telephone banking, information security, and forensics.
However, some studies have shown that all well known technologies, including
the state-of-the-art i-vector, exhibit a sharp decline in performance and seriously
limit the widespread use of speaker recognition technologies in many practical
applications [3, 9, 17].

For improving the performance, especially in short utterance condition, one of
the main solutions is to propose a new better feature extraction method. Tradi-
tional feature extraction method Mel frequency cepstral coefficient (MFCC) has
some disadvantages, even though it is often simple and efficient. One of the main
disadvantages of MFCC is appending delta and acceleration feature to basic feature,
which is not a good way to extract the temporal information between frames,
because it introduces correlation into the feature vector. This is not good for the
backend classifier. To improve MFCC, time frequency cepstral (TFC) feature was
proposed based on MFCC in [23, 24], which is obtained by performing a temporal
discrete cosine transform (DCT) on the cepstrum matrix for decorrelation of feature
vectors. TFC feature performs better than MFCC feature. However, it obviously is
a fixed single resolution analysis without efficiently using the information in multi-
resolution analysis. As a matter of fact, a voiceprint recognition human expert often
observes the speech spectrogram in different scales when doing speaker recognition,
especially on short utterance. In fact, the reason behind this action is that integrating
the information from multi-resolution observation can improve the accuracy of
recognition.

Based on the above consideration, in this paper we propose a novel multi-
resolution time frequency feature (MRTF) extraction method under short utterance
condition. First, the spectrogram of speech is divided to the multi-resolution blocks
by the different scales. Then it is followed by 2-dimensional DCT and we select
the major components under every single resolution. Finally, MRTF feature is
obtained by stacking all the selected components of multi-resolution analysis and
doing PCA to reduce the dimension and redundancy. This proposed method can take
advantage of the proposed TFC extraction method and the multi-resolution analysis.
It is obviously different from the same named multi-resolution feature extraction
methods in [1, 7, 8], which either use multiple frame lengths and frame rates to extract
the feature or use wavelet transformation in feature extraction.

From an information-theoretic viewpoint, complementary combination and fu-
sion can integrate more information for classification and improve the recognition
performance. It has been proved to be effective in our previous work [14, 15]. In
this paper, we will propose three complementary combination strategies between the
traditional MFCC and proposed MRTF, which are: in feature level, in i-vector level
and in score level, and then compare their performance. We use the state-of-the-art
i-vector based speaker recognition technologies with cosine distance scoring (CDS)
and evaluate the performance on NIST 2008 SRE dataset.
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The outline of the paper is as follows. At first, we briefly describe state-of-the-
art i-vector baseline in Section 2. Section 3 presents the proposed multi-resolution
time frequency feature extraction method. The three complementary strategies are
proposed in Section 4. The experiments and results are given in Section 5. Finally,
Section 6 concludes the paper.

2 The i-vector based speaker recognition

Inspired by classical Joint Factor Analysis (JFA) modeling based on factor analysis
and some following work [2, 4, 11], Dehak et al. [3] have recently proposed the state-
of-the-art i-vector based speaker recognition technology, which was derived from
the GMM-UBM technology [20]. This modeling method is based on defining only a
single space, instead of two separate spaces in JFA. This new space, which is named as
total variability space, simultaneously contains the speaker and channel variabilities.
Hence, during i-vector extraction, there is no distinction between the speaker effects
and the channel effects in GMM supervector space, because experiments have
demonstrated the channel factors of the JFA, which normally model only channel
effects, also contain speaker information [2].

In i-vector model, the new speaker- and channel-dependent GMM supervector
defined can be written as follows:

M = m + Tw (1)

where m is a both speaker and channel independent component (usually using UBM
supervector), T is a rectangular matrix of low rank representing the primary direc-
tions of variability and w is a random vector having a standard normal distribution
N (0, I). The component w are named total factors, also called the i-vector for
short. M is assumed to be normally distributed with mean vector m and covariance
matrix TTt. The process of training the matrix T is exactly the same as training the
eigenvoice V matrix in JFA [10, 12], except that there is no need to consider the
speaker labels. Because of this, the i-vector modeling can be seen as a simple factor
analysis, which allows us to project a high-dimensional GMM supervector derived
from speech utterance onto the low-dimensional i-vector in total variability space.

As the space T contains both the speaker’s session and channel variability,
extracted i-vector require further compensation technologies to attenuate the effects.
Comparing a number of existing approaches such as Within-class Covariance Nor-
malization (WCCN), Linear Discriminant Analysis (LDA) and Nuisance Attribute
Projection (NAP), the experiments in [3] show that the best results are obtained
with the LDA and WCCN combination followed by cosine distance scoring (CDS)
classifier or other classifier like PLDA [22]. For fairly comparing to the result, we
use the same configuration as in [3]. The method we used will be outlined in the
remainder of this section.

2.1 LDA

In the case where all utterances of a given speaker are assumed to represent one
class, the motivation for using LDA to i-vector is to define new special axes that
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minimize the intra-class variance caused by channel effects, and to maximize the
variance between speakers [16]. The advantage of the LDA approach is based on
discriminative criteria designed to remove unwanted directions and to minimize
the information removed about variance between speakers. Mathmatically, the
optimization problem of LDA can be defined as the Rayleigh coefficient as function
of space direction v.

J = vt Sb v

vt Swv
(2)

The solution of this problem is to maximize the Rayleigh coefficient. This maximiza-
tion is used to obtain a project matrix P composed by the best eigenvectors (those
with highest eigenvalues) of the general eigenvalue problem as following equation:

Sb v = λSwv (3)

Sb =
S∑

s=1

(ws − w)(ws − w)t (4)

Sw =
S∑

s=1

1
ns

ns∑

i=1

(
wi

s − ws
) (

wi
s − ws

)t
(5)

where the λ is the diagonal matrix of the eigenvalues, ws = 1
ns

∑ns
i=1 wi

s is the mean
of the i-vectors of each speaker, S is the number of speakers and ns is the number
of utterances of sth speaker. The raw i-vectors are then submitted to the projection
matrix P obtained from LDA.

2.2 WCCN

WCCN is proposed to use the within-class covariance matrix to normalize the cosine
kernel function in order to compensate for intersession variability [6]. We also
assume that all utterances of a given speaker belong to one class. The within class
covariance matrix is computed as follows:

W = 1
S

S∑

s=1

1
ns

ns∑

i=1

(
wi

s − ws
) (

wi
s − ws

)t
(6)

where ws = 1
ns

∑ns
i=1 wi

s is the mean of the i-vectors of each speaker, S is the number
of speakers and ns is the number of utterances of s − th speaker. Then, the mapping
matrix L can be obtained through a Cholesky decomposition of matrix W−1 = LLt.

2.3 CDS classifier

The CDS is an efficient and well-performed classifier for the i-vector based system,
which directly uses the value of the cosine kernel between the target speaker i-
vector and the test i-vector as a final decision score. The value of this kernel is then
compared to the threshold θ to take the final decision. The CDS scoring of the target
and test i-vectors, following the LDA and WCCN transformation, is as follows:

score(wtarget, wtest) = < (Lt Ptwtarget)
t(Lt Ptwtest) >

√
(Lt Ptwtarget)t(Lt Ptwtarget)

√
(Lt Ptwtest)t(Lt Ptwtest)

(7)
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Another advantage of this modeling in speaker recognition is that no target speaker
enrollment step is required, because the target and the test i-vectors are estimated
exactly in the same manner without extra process between estimating the target and
the test i-vectors. In addition, this method can make the modeling and scoring process
faster with less complexities than the other classifiers and can also make the score
normalization like ZT-Norm very fast [5].

3 Multi-resolution time frequency (MRTF) feature

In this section, we will detail the proposed novel multi-resolution time frequency
feature extraction method. At first, we briefly introduce the time frequency cepstrum
matrix analysis proposed in [24].

3.1 Time frequency cepstrum matrix analysis

Supposing ci represents the i-th frame basic cepstrum vector, the cepstrum matrix Xi

can be given as:

Xi = [ ci ci+1 · · · ci+(M−1) ] (8)

where M is the context width. TFC tries to extract more context related information
from a block of the cepstrum matrix and further remove the correlation between
elements.

Because of TFC based on the MFCC basic cepstral feature vector, only a 1-
Dimensional DCT in the temporal (horizontal) direction is used. Letting C denote
the DCT transform matrix, the cepstrum matrix Xi can be decorrelated by

Yi = XiCt (9)

After this operation, most of the variability in Xi will be concentrated in the
coefficients in the upper left part of Yi. By scanning the matrix Yi in zigzag order,
written as

yi = zigzag(Yi) (10)

the upper left components corresponds to the lower index, and the lower frequency
can then be truncated to D-dimensional vector yi.

3.2 Multi-resolution time frequency (MRTF) feature extraction

The method is different from the method in [24], the MFTF method completes the
operation directly in the spectrogram matrix and is more similar to compression tasks
in image processing, in which the 2-Dimensional DCT is often used to decorrelate
and reduce the dimensionality, after using the multi-resolution time frequency
window function. Suppose the i-th is X

X =

⎡

⎢⎢⎢⎣

x11 x12 · · · x1M

x21 x22 · · · x2M
...

...
. . .

...

xN1 xN2 · · · xNM

⎤

⎥⎥⎥⎦ (11)
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where M is the context width and the subscript of i has been omitted for simplicity.
We split the matrix to multi-resolution sub matrix in a different scale, shown as
B

′
1, B

′
2, · · · , B

′
R, and where R is the scale number. As a simple example, through

a 2*2 block operation by a 2*2 window function , B
′
can be as

B = TFBW(X) =
[

b 11 b 12

b 21 b 22

]
(12)

The TFBW mean the time frequency block window function operation on the
spectrogram matrix .

Fig. 1 Framework of MRTF feature extraction
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With similar block operation, we can obtain different scaled multi-resolution
matrix. Next for each B

′
j, do the 2-dimensional DCT as

Y
′
j = zigzag

(
Cv

j B
′
jC

h
j

)
(13)

where Cv
j and Ch

j are the vertical and horizontal DCT transform matrix of B
′
j,

respectively. After this, we obtain a vector by concatenating each Y
′
j vector as

Y =

⎡

⎢⎢⎢⎣

Y
′
1

Y
′
2
...

Y
′
R

⎤

⎥⎥⎥⎦ (14)

Then, we make use of the principal component analysis (PCA) to reduce the
dimension and decorrelate the elements between the dimensions. The framework
of MRTF extraction method is shown in Fig. 1.

In MRTF, there are several control parameters that need to be considered, such as
the context width and the window function. Next we will analyze in detail and select
the optimal value for each parameter. For simplicity and speed, we select the value in
term of the performance of the GMM-UBM system on male SRE 2008 short2-short3
tel-tel dataset. The dataset used to train UBM was the male SRE 2004 1-side dataset.

At first, we check and choose the context width M for a single resolution M*32
using the Mel-FBank time-frequency windowing and the performance is show in
Fig. 2.

As show in Figure, we choose the context width M = 8 and fix this value to fol-
lowing analysis. After choosing the fixed context width M (M = 8), we compare the
different time-frequency window function: Linear-FBank windowing, Mel-FBank
window function, Triangle window function, Hamming window function and the
performance is shown in Fig. 3.

Fig. 2 Performance
comparison of features under
different context widths
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Fig. 3 Performance
comparison of features using
different window functions

Linear_FBank Mel_FBank Triangle Hamming
0

2

4

6

8

10

12
EER(%)
MinDCF(%)

The above result demonstrates that the Mel-FBank window function provides a
best performance than all the other functions. Next, we check the contribution of
three single different resolutions, which are 8*32, 4*16, 2*8, and their concatenated
feature as shown in Fig. 4.

We can see that all single resolution feature contains more or less speaker
information and the concatenated feature can integrate the information and obtain
the better performance.

In order to further reduce the dimensionality of concatenated MRTF feature,
we evaluate the performance of concatenate MRTF feature followed by PCA. For
comparable to MFCC, dimension of MRTF after PCA is set to 39 with accounting

Fig. 4 Performance
comparison of MFCC,
different single resolution
features, MRTF without PCA,
and MRTF following by PCA

MFCC 8*32 4*16 2*8 Concat Concat+PCA
0

5
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15
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Fig. 5 Framework of complementary combination in feature level

for roughly 90 %. We can see that PCA can not only reduce the dimension but
also improve the performance slightly and the final feature performs better than the
traditional MFCC feature as also shown in Fig. 4.

4 Three complementary combination strategies

From an information-theoretic viewpoint, combination or fusion between different
complementary features or systems can integrate more information for classification
and improve the recognition performance. It has have been proved to be effective
in our several previous works [14, 15]. In this paper, we will extend our research and
propose three complementary combination strategies between the traditional MFCC
and the proposed MRTF, which are in feature level, in i-vector level and in score
level, and then evaluate their performance as follows, respectively. A combination in
different level means there is a different tradeoff between the compute cost and the
efficiency of information sharing.

4.1 Complementary combination in feature level

In this section, we propose a complementary combination in the acoustic feature
level for the traditional MFCC and our proposed MRTF feature. To simplify the
combination, we recommend using the same voice activity detection to promise
that all varieties of features have the same frame number. As following, a feature-
domain channel compensation method (fLFA) can be adopted. In a GMM-UBM
based system, the fLFA has been proved to be a very useful feature-domain
channel compensation technology for improving the performance [14, 21] and the
effectiveness in i-vector based system [15]. Then correspondence features of each
frame are concatenated. To delimit the redundant information for classification,

Fig. 6 Framework of complementary combination in i-vector level
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Fig. 7 Framework of complementary combination in score level

LDA is used in the following. The framework of the complementary combination
strategy in the feature level can be shows as in Fig. 5.

4.2 Complementary combination in i-vector level

In this section, we also propose a complementary combination in i-vector level
for the traditional MFCC and our proposed MRTF feature. Different from the
above method in Section 4.1, the method of this section works in the i-vector level.
Similarly, i-vectors are all extracted from the different acoustic features, which are
also compensated by fLFA. And then we concatenate the multiple i-vectors in i-
vector level. In order to reduce the dimension and remove the useless information,
we apply supervised LDA to the concatenated i-vector. The framework of the
complementary combination strategy in i-vector level can be shows as in Fig. 6.

4.3 Complementary combination in score level

In addition, we also describe the combination strategy in score level. Without using
the development data to train the fusion coefficient, we use only the equal weight
to calculate the score fusion. The framework of the complementary combination
strategy in score level can be shows as in Fig. 7.

5 Experiments

5.1 Databases

In this paper, our experiments are based only on telephone data for both training and
testing. All experiments were carried out in short2-10sec and 10sec-10sec two short
utterance conditions of the NIST 2008 SRE and also in core-core long utterance
condition named short2-short3 and we chose male subsets first and female subsets
lastly. In all three conditions, we all have only one telephone conversation to enroll
the target model and one telephone speech to verify the identity of the speaker.
The short2-10sec and 10sec-10sec male corpus 648eakers and 7799 test files and the
short2-short3 corpus contain also 648 speakers but 12922 test files. For short2 and
short3 data, a five-minute telephone conversation recording is available containing
roughly two minutes of speech for enrolling the target speaker model or testing, while
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for the 10sec segment, a 10-second telephone speech segment for enrolling the target
speaker or for testing was used.

In the NIST evaluation protocol [18], we can use all previous NIST evaluation
data and also other corpus to train our systems. For this purpose, we used all the
following corpus to estimate our system hyperparameters:

– Switchboard: Switchboard II, Phase 2 and 3. Switchboard II Cellular, Part 1
and 2.

– NIST2004 : NIST 2004 telephone data of Speaker recognition evaluation.
– NIST2005 : NIST 2005 telephone data of Speaker recognition evaluation.
– NIST2006 : NIST 2006 telephone data of Speaker recognition evaluation.

The configure of data for training is as shown in Table 1.

5.2 Experimental setup

In our experiments, both the proposed MRTF and MFCC features are extracted
using a 20 ms Hamming window and 10 ms frame shift. In MFCC, 12 Mel Frequency
Cepstral Coefficients (MFCC) together with log energy were calculated and this 13-
dimensional feature vector was subjected to feature warping [19] using a 3 s sliding
window. Delta and delta-delta coefficients were then calculated to produce a final
39-dimensional feature vectors. And in the MRTF, 39 dimensional final feature
vectors were extracted with the configuration as show in Section 3.2.We used gender-
dependent UBMs containing 2048 Gaussians.

We used 400 total factors defined by the total variability matrix T and the decision
scores obtained by i-vector scoring were normalized using ZT-norm. These data are
random select from the same dataset as the lambda T training. Table 1 summarizes
all corpora that are used to estimate the UBM, total variability matrix T, LDA,
WCCN, ZT-norm. We also used different datasets to estimate both LDA and WCCN
matrices. As is said in [3] that LDA tries to model between speaker variablity, so
adding more speaker will definitely help to improve the performance while WCCN
models the channel so there is an advantage of using only NIST SRE datasets,
because of containing several speakers that talk simultaneously in the different
session channels.

The detection task is completed and evaluated with equal error rate (EER) signed
by black circle in detection error tradeoff (DET) plot and minimum detected cost
function (MinDCF) signed by red circle in DET plot [18].

Table 1 Data corpora used to
estimate the UBM, total
variability matrix (T), LDA,
WCCN, zt-NORM

Switchboard NIST 2004 NIST 2005 NIST 2006

UBM
√ √ √ √

T
√ √ √ √

LDA
√ √ √ √

WCCN
√ √ √

zt-norm
√ √ √
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Table 2 The results are given as EER and minDCF of MFCC, and MRTF on the trials of three male
datasets of the NIST 2008 SRE

Dataset Result in [3] MFCC MRTF

EER (%) minDCF EER (%) minDCF EER (%) minDCF

short2-short3 4.48 0.024 3.64 0.020 3.53 0.018
short2-10sec 7.38 0.036 6.63 0.035 6.23 0.031
10sec-10sec 14.44 0.063 12.65 0.058 12.04 0.057

Bold entries shows the best result of the experiments

Table 3 Performance comparison of proposed three combination strategies on the trials of three
male datasets of the NIST 2008 SRE

Dataset Combined in feature Combined in i-vector Combined in score

EER (%) minDCF EER (%) minDCF EER (%) minDCF

short2-short3 3.42 0.018 3.34 0.018 3.40 0.018
short2-10sec 6.03 0.032 5.69 0.031 5.90 0.032
10sec-10sec 11.90 0.057 11.32 0.054 11.90 0.056

Bold entries shows the best result of the experiments
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Fig. 8 DET performance curve of MFCC, MRTF and the best combination method under three
male conditions
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Table 4 Performance comparison of three combination strategies on the trials of three female
datasets of the NIST 2008 SRE

Dataset Result in [3] MFCC MRTF Combined in i-vector

EER (%) minDCF EER (%) minDCF EER (%) minDCF EER (%) minDCF

short2-short3 5.76 0.032 5.43 0.031 5.36 0.030 5.24 0.030
short2-10sec 9.59 0.050 8.77 0.048 8.75 0.047 8.06 0.047
10sec-10sec 16.59 0.072 14.94 0.068 14.59 0.064 13.71 0.062

Bold entries shows the best result of the experiments

5.3 Experimental results

5.3.1 Performance of MRTF

The experiments were carried out on the short2-short3 (core condition), short2-10sec
and 10sec-10sec conditions of the NIST 2008 male SRE dataset. The experiments
carried out in this section compare the results obtained with the traditional MFCC
and the proposed MRTF in three condition. We obtain a better result than the result
reported in [3]. We found that the MRTF feature obtains a better performance than
the traditional MFCC as shown in Table 2.
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Fig. 9 DET performance curve of MFCC, MRTF and the best combination method under three
female conditions
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The results given in this table show that the proposed MRTF definitively gave the
better results in all conditions of the NIST evaluation compared to traditional MFCC.
In 10sec-10sec condition, the performance achieve a relative 5 % improvement in
EER. In short2-10sec condition, the performance achieve about 6 % improvement
in EER. The experiments also demonstrate the proposed method also effective in
long utterance with 3 % relative improvement in EER in short2-short3 condition,
even though the gains not better than in short utterance.

5.3.2 Performance comparison of three combination strategies

Table 3 presents the results obtained in three proposed combination strategies,which
are in the feature level, in the i-vector level and in the score level. And the results
were also in three conditions.

The result in Table 3 reveals that the complementary combination in the i-vector
level achieves better results than the two other methods. Compared to the result
show in Tabel 2, we obtained around a 10 % improvement of the EER in the
10sec-10sec and a 14 % improvement of the EER in short2-10sec improvement than
MFCC. The result also gives an absolutely 3 % improvement in the 10sec-10sec
condition, compared to the result in [3], which is the best reported results. The result
gives the 8 % improvement of the EER in the short2-short3 condition, showing its an
effective complement to present methods. The DET performance curve of MFCC,
MRTF and the best i-vector combination method is shown in Fig. 8.

Table 4 also reveals the performance comparison of the Results in [3] and the
performance of MFCC, proposed MRTF and the best combination method in the
i-vector level on the female datasets. The results shows that we can also obtained
the consistently better improvement of the EER than MFCC under three conditions.
The DET performance curve of MFCC, MRTF and the best i-vector combination
method is shown in Fig. 9.

6 Conclusion

Inspired by multiple different scales analysis, especially of short utterance, this paper
proposes a novel multi-resolution time frequency feature (shortened as MRTF)
extraction method, which is obtained by performing a multi-scaled 2-D DCT opera-
tion on the temporal spectrogram matrix block matrix and combining and selecting
multi-scale transformed elements. Compared to the traditional MFCC feature, the
proposed method can make better use of multi-resolution time-frequency informa-
tion. Beyond this, we also proposed three complementary combination strategies,
which are: in feature level, in i-vector level and in score level, and compared their
performance. We found the best results are obtained by combination in the i-vector
level. In the three NIST 2008 Speaker Recognition male Evaluation datasets, the
proposed method is more effective for improving the performance under short
utterance than in a long utterance. And after the combination, we can achieve an
EER of 11.32 % and MinDCF of 0.054 in the 10sec-10sec trials, which is an absolute
3 % improvement of the EER than the best reported result in this field.
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