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Abstract This paper provides a robust scheme for random valued impulsive noise
reduction along with edge preservation by anisotropic diffusion with improved
diffusivity. The defective impulse noisy pixels are detected by Laplacian based
second order pixel difference operation where these defective pixels are replaced by
appropriate values with regard of the gray level of their four directional neighbors.
This de-noised image undergoes the diffusion operation where diffusion coefficient
function is modified to make it adaptive by incorporating local gray level variance
information. The proposed modified diffusion scheme effectively restore the edges
and fine details destroyed during impulse noise reduction process. The effect of
proposed diffusion scheme has been studied on various images and the results are
compared with some existing diffusion methods which are independently used for
impulse noise reduction and edge preservation. The results shows that the prior re-
moval of impulsive noise before the application of diffusion process is advantageous
over the direct application of diffusion for removing the impulsive noise. In addition,
the results of the proposed diffusion scheme are compared with some of the median
filter based methods which are effectively used for impulse noise reduction without
caring of edge preservation. The proposed diffusion scheme sufficiently preserves
the edges without boosting of impulsive noise components on images corrupted up
to 50 % of the impulsive noise density.
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1 Introduction

The process of anisotropic diffusion based on partial differential equations (PDE)
has been widely used for many years by the researchers since the early work of
Perona and Malik [17] which is quite effective for smoothing of the images with
edge preservation. The smoothing in the diffusion process is controlled by a gradient
dependent diffusion coefficient function which tends to become high in highly
homogeneous areas and low in edge abundant areas. This helps in smoothing of the
homogeneous portions of the image and the preservation of high gradient edges.
The method [17] works well in the images affected by Gaussian noise. However,
image quality is mostly compromised by malfunctioning pixels caused by camera
sensor’s defects, analog-to-digital converter errors, bit errors in transmission etc.
These malfunctioning pixels may take any random value within the dynamic pixel
luminance range. These defects are generally termed as random valued impulsive
noise (RVIN) [13]. If we denote the dynamic pixel luminance range of an observed
image f as [pmin, pmax] i.e. pmin ≤ fij ≤ pmax where (i, j) is the pixel position in f .
Then, the RVIN model is defined as follows [13]:

fij =
{
pij, with probability r;
fij, with probability 1-r.

where pij is the gray level of the noisy pixel at location (i, j) which takes the random
value from [pmin, pmax].

Many researchers have suggested different efficient algorithms based on spatial
filtering [5, 8, 9, 11] for reduction of RVIN with preservation of image details. In the
earlier work of image de-noising, median filters were particularly effective for the
removal of impulsive noise but it tends to blur the inter-region edges. An adaptive
center weighted median filter has been proposed by Chen et al. [5] where a switching
median filter is utilized in the detection process for the separation of uncorrupted
pixels from the corrupted ones. Chao [8] extends this work by partitioning the
observational vector space of the image into distinct blocks and applied the center
weighted median filter to each block. The pixel-wise absolute deviations from the
median in order to efficiently separates the noisy pixels from the image details was
developed by Crnojevic et al. [9]. Another method for removal of RVIN is directional
weighted median filter [11] which is based on the differences between the current
pixel and its neighbors aligned in four main directions. It gives the information
of the four directions to weight the pixels in the window in order to preserve the
details and removing the noisy pixels. Smolka and Chydzinski [19] and Smolka [20]
proposed a novel technique of impulse reduction in color images using the Fisher’s
linear discriminant aggregated distances [19] assigned to each of the pixels from the
filtering window. A fast two phase approach to reduce blur and impulsive noise was
presented by Cai et al. [2] in which median type filter is used in first phase to detect
the corrupted pixels and then edge preserving restoration in applied in next phase.
All the above methods remove the noisy pixels effectively but still blurring of edges
degrades the quality of the image.
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Some patch based non-local means block matching methods [7, 10, 14] and L1–
L1 minimization methods [23, 26] have also been efficiently applied for removal of
mixed impulse Gaussian noise. Recently, a moment based non-local means algorithm
is developed by Ji et al. [14] in which moment computation is carried out on small
local windows of each pixel to obtain the local structure information of the image. A
novel block matching method based on sparse representation in transform domain
is introduced in [7] which exhibits considerable performance in the removal of
mixed impulse Gaussian noise. Very recently, a patch based impulsive noise removal
with restoration of textured areas is proposed by Delon and Desolneux [10]. An
adaptive non-local means algorithm based on pixel region growing and merging was
developed by Zheng et al. [29] for reduction of salt and pepper noise (fixed valued
impulsive noise). Our initial research [15] was based on partial unsharp masking [13]
and conservative smoothing [13] which was limited upto the de-noising of images
affected by low level salt and pepper noise. However, the noise reduction process
near edge boundaries in all the above methods has not been addressed properly.

It has been observed that most of the PDE based anisotropic diffusion methods
are developed for the removal of Gaussian noise and edge preservation. However,
in the presence of RVIN, the noisy pixels gets amplified because of the functional
characteristic of anisotropic diffusion and appear as sharp isolated edge pixels in
the image. A latest research on the removal of RVIN has been presented by Wu
and Tang [25] which shows the effective reduction of RVIN but removal of high
level impulsive noise without blurring of edges is still a critical problem. For robust
RVIN detection and correction along with edge preservation, we investigated the
properties of diffusion coefficient function in anisotropic diffusion and developed
a fuzzy based diffusion coefficient function [16] but the preservation of edges was
not satisfactory. In this paper, we focus on the detection and removal of impulsive
noise with the help of spatial differences between the noisy pixel and its surrounding
neighbors in an image window using Laplacian based second order differences
(SOD) [13]. The modified anisotropic diffusion is then applied on the noise filtered
image to restore the blurred edges destroyed during noise filtering operation. The
properties of diffusion coefficient function in the proposed anisotropic diffusion
has been adjusted in accordance with the input impulsive noise filtered image. The
proposed modified diffusion scheme incorporates an adaptive thresholding function
in diffusion coefficient function and made it to vary in accordance with the local
gray level variance of the input noise filtered image. The results indicates that
the prior removal of impulsive noise before the application of diffusion process is
advantageous over the direct application of diffusion for removing the impulsive
noise.

The rest of the paper is organized as follows: In Section 2, a brief review of various
anisotropic diffusion methods have been presented. In Section 3, the proposed
diffusion method has been described. Experimental results and discussions are made
in Section 4 and finally, the paper is concluded in Section 5.

2 Related anisotropic diffusion methods

The process of anisotropic diffusion has been applied in many image applications
for removal of noise with edge preservation. In the initial work, Witkin [24] has
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demonstrated that using a linear heat equation, the entire image can be de-noised
but it tends to smooth the entire image and blurs some prominent edges. Perona and
Malik introduced an image dependent continuous anisotropic diffusion equation [17]
for edge preserving smoothing, which is stated as below:

∂ ft(x, y)
∂t

= Div[dt(x, y).∇ ft(x, y)] (1)

where ft(x, y) is the image at time t; Div is the divergence operator; ∇ ft(x, y) is
the gradient of the image and dt(x, y) denotes the diffusion coefficient function. If
diffusion coefficient function in (1) is kept constant, then the anisotropic diffusion
will change to isotropic diffusion which is equivalent to a Gaussian smoothing filter
as used by Witkin [24]. Perona and Malik used the idea of anisotropic diffusion
by choosing diffusion coefficient function in different diffusion iterations so that
smoothing across the inter-region edges can be minimized. This was achieved by
varying diffusion coefficient function as a function of ∇ ft(x, y) which speed up the
diffusion in low gradient regions and stops the diffusion in high gradient regions. The
diffusion coefficient function used by Perona and Malik [17] is as follows:

dt(x, y) = d(|∇ f |) = 1

1 + ( |∇ f |
k )2

(2)

where k is an edge threshold parameter which is tuned to a fixed value for a
particular application. Here, |∇ f | is taken in place of ∇ ft(x, y) for simplification in
representation.

The diffusion coefficient function introduced in (2) is sensitive to high gradient
impulse noise. Catte et al. [3] proposed an improved diffusion coefficient function by
calculating the gradient after convolving the image with a Gaussian Gσ of standard
deviation σ as given below:

∂ ft
∂t

= Div[d(|∇(Gσ ∗ f )|).∇ f ] (3)

You and Kaveh [27] revised the diffusion coefficient function by using the Laplacian
image � f instead of the gradient image ∇ f and proposed the fourth-order PDE
model for edge detection as defined in (4)

d(|� f |) = 1

1 + ( |� f |
k )2

(4)

A statistical and time interpretation of anisotropic diffusion was developed by Chen
et al. [6] and proposed new edge-stopping diffusion coefficient function as follows:

∂ ft(x, y)
∂t

= v(t)Div[ ∇(Gσ ∗ f )
|∇(Gσ ∗ f )| ] − u((Gσ ∗ f )− f ) (5)

where v(t) is a function of time and u is a constant. Tschumperle and Deriche
[21] redefined the formulations of anisotropic diffusion and proposed a unified
expression for vector valued images with the help of Hessian matrices [13, 21].

An improved anisotropic diffusion was developed by Fang et al. [12] which con-
sists of two independent terms for smoothing of noisy background and sharpening of
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edge features. Yu et al. [28] presented a kernal anisotropic diffusion incorporating a
kernalized gradient operator |∇[� f ]| in place of |∇ f | in diffusion coefficient function
in order to apply the diffusion process in small specified window. A local gray level
variance controlled diffusion coefficient function for forward and backward diffusion
in order to preserve low gray level details was developed by Wang et al. [22]. Some
similar approach was proposed by Chao and Tsai [4] where the local gray level
variance at each pixel location in conjunction with gradient is used to enhance low
gray level details.

The principle objective of all the above methods is to smooth the noisy back-
ground and preserve the edges. Therefore, these methods are not sufficient for
impulsive noise reduction along with edge preservation. Very recently, a PDE
based new diffusion method has been developed by Wu and Tang [25] where the
diffusion coefficient function has been redefined as a controlling function based on
a classification of image into three categories edge pixels, noisy pixels and interior
pixels (ENI). The diffusion coefficient function exhibits selective diffusion process at
edge pixels, noisy pixels and interior pixels whose formulation is given in (6).

dt(ENIp(u, w,T)) = 1

2
+ 1

2
cos

(
2πENIp(u, w,T)

N

)
(6)

where p, u, w, T and N are test pixel, gray level intensity, window size, threshold
and total number of pixels in the window excluding center pixel respectively. The
method efficiently eliminates the RVIN but it tends to leave the noisy pixels when
noise density is high.

3 Proposed diffusion method

In the proposed method, the modified diffusion scheme is applied on the noise
filtered image for restoration of edges and reducing the effect of blurring. The
noise filtered image is obtained by correcting the impulse noisy pixels initially using
Laplacian based second order pixel differences. The details are explained below:

3.1 Pre-reduction of impulse noise

Laplacian operator is considered to be more sensitive to the isolated noisy point as
compared to the gradient. Therefore, we exploited Laplacian based second order
difference (SOD) [13] on the pixels in a test window for reducing the impulsive
noisy pixels. We observed that the difference between the noisy pixel value and
its neighboring pixel value is quite different than that of the two uncorrupted pixel
values. We employed this scheme of impulse detection in a 3 × 3 window M with
center pixel c(i, j) and its surrounding neighbor pixels as given below:

M = [c(i + u, j+ v)] (7)

where −1 ≤ u, v ≤ 1. Laplacian based SODs are computed to detect the noisy pixel
aligned in four directions (horizontal, vertical, diagonal and back diagonal) of M as
shown in Fig. 1 which are as follows:

sl = |c(i+m, j+ n)+ c(i−m, j− n)− 2c(i, j)| (8)
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Fig. 1 SOPDs aligned in four
directions of center pixel c(i, j)
and its surrounding neighbor
pixels in a 3 × 3 window M
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where (l,m,n) = [(1,−1,0), (2,0, 1), (3,1, 1), (4,−1, 1)]. The minimum and maxi-
mum of these four SODs are then used for the detection of isolated noisy pixel as
follows:

smin = min[sl : 1 ≤ l ≤ 4] (9)

smax = max[sl : 1 ≤ l ≤ 4] (10)

Following three decisions are made based on the values of smin, smax and a predefined
threshold Th which is equal to 90 % of the highest absolute difference of the two
pixels of the image:

– if smax < Th, i.e., all the SODs are small and equal to each other, then the test
pixel c(i, j) is a noise free pixel;

– if smin < Th < smax, i.e., all the SODs are the mixture of distinct small and large
values, then the test pixel c(i, j) lies on an edge and considered as a noise free
pixel;

– if smin > Th, i.e., all the SODs are large and equal to each other, then the test
pixel c(i, j) represents isolated noisy pixel which needs to be replaced.

The flow chart in Fig. 2 shows the above impulse noise detection method
which is applied to each pixel. The noisy pixel value detected above is then
replaced by a new appropriate intensity value which should have its gray level
nearer to the four directional neighbors. Considering Dl(i, j) be the gray level
difference between the two neighboring pixels of c(i, j) in the lth direction as given
below:

Dl(i, j) = |c(i+m, j+ n)+ c(i−m, j− n)| (11)

The closeness among the four neighboring pixels can be justified by the four
corresponding values of Dl. Considering Sl be the direction of minimum Dl. This
indicates that the pixels aligned along Sl are nearly equal to each other and closer
to the center pixel value and thus assigned with some different weight r. During
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Fig. 2 Flow chart showing the
SOD operation for impulse
noise detection

the impulse detection process, any test pixel c(i, j) which is detected to be noisy is
replaced by r(i, j) as follows:

r(i, j) = median[M, r � csl ] (12)
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where csl denotes the two neighboring pixels of c(i, j) along the direction Sl and
symbol � is used as a repetition operator [1].

3.2 Edge preservation using modified anisotropic diffusion

The image initially filtered by SOD operation is a noise reduced image but it also
tends to blur the sharp edge boundaries. This problem arises during SOD operation
because of the change in gray level value of the pixels located on an edge boundary.
To recover the edge boundaries, we have modified the anisotropic diffusion and
employed for image deblurring as well as edge preservation. It is observed that
the local gray level variance of the image gives the better information of the local
gray level intensities than the gradient magnitudes in the regions of blurred edge
boundaries [4, 22]. This encourages to utilize local gray level variance at each
pixel in conjunction with local gradient in diffusion coefficient function to fulfil
the requirement of restoring the blurred edge boundaries of the image damaged
by the impulse noise reduction. The flowchart in Fig. 3 shows the adaptivity of
modified diffusion scheme based on local gray level variance at each pixel. Let
f (x, y) denote the gray level of a pixel at coordinate (x, y) and M× N be the
size of the neighborhood centered on (x, y). The local gray level variance in this
neighborhood can be given as:

σ 2(x, y) = 1

MN

M−1∑
x=0

N−1∑
y=0

[ f (x, y)−mf ]2 (13)

where mf is the mean of gray levels in M × N neighborhood window. We need to
restrict the smoothing process through the edge threshold parameter k in diffusion
coefficient function of (2). In this work, the constant edge threshold parameter k in
(2) has been formulated as a function of local gray level variance of image to make
the threshold function adaptive and defined as follows:

k(x, y) = k(σ 2(x, y)) ≈ k0

σ 2(x, y)
(14)

where k(x, y) is inversely proportional to the local gray level variance σ 2(x, y) with
k0 as a positive constant.

Through experimentation, we have found that if σ 2(x, y) > k0, then the pixel at
(x, y) is a point needs to be preserved. Otherwise, if σ 2(x, y) < k0, then the pixel
(x, y) corresponds to low gray level homogeneous region of the image and needs
to be smoothed. Based on the above statistical measure at each pixel, the values of
function k(x, y) obtained adaptively are summarized in (15).

k(x, y) =
⎧⎨
⎩

high when σ 2(x, y) < k0

medium when σ 2(x, y) ≈ k0

low when σ 2(x, y) > k0

(15)

Therefore, the function k(x, y) which fulfils the above criteria can be defined as:

k(x, y) = k(k0, σ
2(x, y)) = 1

1 + e−(k0−σ 2(x,y))2 (16)
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Fig. 3 Flow chart showing the diffusion operation for edge preservation

The function k(x, y) has been chosen in such a way that it is monotonically decreasing
function for σ 2(x, y) and monotonically increasing function for the constant k0

so that the adaptive variational scheme shown in (15) can be fulfilled. The local
neighborhood size M× N for the calculation of local gray level variance σ 2(x, y)
should be small in order to preserve the details. In this work, we selected the
neighborhood size as 3 × 3.

The above stated variation of k(x, y) in accordance with local gray level variance
σ 2(x, y) is considered as an adaptive threshold in anisotropic diffusion and the
corresponding diffusion coefficient function at iteration t is defined as:

dt(x, y) = 1

1 + ( |∇ f |
k(x,y) )

2
(17)
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On substituting the adaptive thresholding function k(x, y) in the above equation, the
modified diffusion coefficient function can be written as follows:

d(x, y) = d(∇ f (x, y),k(x, y)) = 1

1 + |∇ f (x, y)|2[1 + e−(k0−σ 2(x,y))2]2 (18)

This shows that the proposed diffusion coefficient function incorporates both local
gradient and local gray level variance at each pixel in order to fulfil the requirement
of restoring the blurred edge boundaries damaged by the impulse noise reduction.

Let us consider fdt(x, y) be the de-noised image by SOD operation at iteration t.
If we replace ft(x, y) in (1) by fdt(x, y), then, |∇ f | and k(x, y) in (17) will be replaced
by |∇ fdt| and kdt(x, y) respectively. Now, the modified diffusion coefficient function
for SOD filtered de-noised image can be written as:

ddt(x, y) = 1

1 + ( |∇ fdt |
kdt(x,y)

)2
(19)

After substituting the proposed diffusion coefficient function ddt(x, y) in (1), the
modified anisotropic diffusion equation for SOD filtered de-noised image at iteration
t can discretely be implemented by using Laplacian operator [13] as shown below:

fd(t+1)(x, y) = fdt(x, y)+ 1

4

4∑
i=1

[
d

(
|∇ f idt(x, y)|
kdt(x, y)

)
.∇ f idt(x, y)

]
(20)

where i = 1, 2, 3 and 4 represents the four directions of four neighbors at location
(x, y) respectively for calculation of ∇ f idt(x, y).

3.2.1 Interpretation of k(x, y) and k0

The proposed diffusion scheme in this study is dependent on the value of threshold
function k(x, y) and constant k0 respectively. In (15), the value of k(x, y) varies
according to local gray level variance at each pixel of the image. If, a large k0 is used
when the local neighborhood area has small gray level variance, the value of k(x, y)
increases which speeds up the smoothing effect. On the contrary, in the area of large
gray-level variance, the value of k(x, y) decreases for a small value of k0 which stops
the diffusion process. Conclusively, the high gray level edges and fine details are both
restored. The position where gray level variance is constant over the entire image,
then, k(x, y) will become constant value and in such condition proposed diffusion
equation will behave like normal Perona-Malik diffusion equation [17]. The curve in
upper graph of Fig. 4 shows the variation of diffusion coefficient function for Perona
andMali [17] and the proposedmodified diffusion with respect to the different values
of local gray level variance at a fixed gradient magnitude. It is evident from plot of
Fig. 4 that the diffusion coefficient function in Perona andMalik model [17] becomes
constant while in the proposed diffusion scheme, the diffusion coefficient function
varies based on the local gray level variance to control the emphasis of diffusion
adaptively for varying image structure. Accordingly, smoothing of the image takes
place which preserves the blurred edge regions of noise reduced image. The lower
graph in Fig. 4 demonstrate the variation of diffusion coefficient function d(x, y) in
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Fig. 4 (Upper Curve) Graphical representation showing the variation of DCF in accordance with
local gray level variance at a fixed value of gradient; (Lower Curve) Graph of theDCFwith variations
in gradient magnitude and local gray level variance

accordance with the variation of local gradient∇ f (x, y) and local gray level variance
σ 2(x, y). The following four cases are observed:

– Case 1: If, ∇ f (x, y) > k(x, y) and σ 2(x, y) > k0, then (x, y) is the position where
image intensity changes abruptly and the value of local gray level variance is
very high. In such position, the diffusion coefficient function decreases fast which
slows down the smoothing process preserving the high gradient as well as high
gray level inter-region edges and fine details.

– Case 2: If, ∇ f (x, y) > k(x, y) and σ 2(x, y) < k0, then (x, y) is the position where
image intensity changes abruptly and the value of local gray level variance is very
low. In such position, the diffusion coefficient function decreases which slows
down the smoothing process preserving the high gradient inter-region edges and
fine details.

– Case 3: If, ∇ f (x, y) < k(x, y) and σ 2(x, y) > k0, then (x, y) is the position where
image intensity does not change abruptly and the value of local gray level
variance is very high. In such position, the diffusion coefficient function increases
or decreases with respect to high or low values of k(x, y) respectively. This helps
to smooth the defective background of very low gray level regions and recover
the inter-region edges and fine details of high gray level values.

– Case 4: If, ∇ f (x, y) < k(x, y) and σ 2(x, y) < k0, then (x, y) is the position where
image intensity does not change abruptly and the value of local gray level
variance is very low. In such position, the diffusion coefficient function increases
which results in fast smoothing of homogenous defective background having low
gradient as well as low gray level values.
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4 Experimental results and discussions

The proposed method has been implemented on MATLAB R2009b and the
effectiveness of the same is validated on various test images taken from the internet
sources. One of the most popular and frequently used ‘Lena’ image of size 677 × 598
and the images of ‘Cameraman’, ‘Coins’, ‘Baboon’ and ‘Pyramid’ of sizes 204 × 204,
297 × 243, 225 × 225 and 225 × 225 respectively have been demonstrated in this
paper. The original images have been corrupted by RVIN from 10 % to 50 %
noise densities artificially. The detailed demonstration of the proposed method is
shown through ‘Lena’ image. During experimentation, it was observed that the
proposed diffusion results are very much affected by the threshold constant k0 in
diffusion coefficient function and number of diffusion iterations T2. The variation
of neighborhood size M × N for the calculation of local gray level variance σ 2(x, y)
also effects the diffusion results. Moreover, the choice of threshold Th and number
of iterations T1 during SOD operation are also important. In the following sections,
we discuss the choice of these parameters and comparison of the proposed diffusion
results with some existing methods independently used for edge preservation and
impulse noise reduction.

4.1 Choice of parameters in pre-reduction of impulsive noise

During the impulsive noise reduction process, we tested the SOD result on ‘Lena’
image by varying the values of threshold Th. The graph in Fig. 5 shows variation
of the peak signal to noise ratio (PSNR) value with respect to different values of
Th for 20 to 50 % RVIN densities in ‘Lena’ image. It is observed from the graph of
Fig. 5 that a fixed value of Th can not be used for all noise densities. Therefore, in this
work, we have considered the average threshold Th = 35 which shows the best PSNR
performance at different noise densities. Another important parameter in SOD
operation is the number of iterations T1. We studied the behavior of SOD operation

Fig. 5 Graphical
representation of PSNR(dB)
value at different threshold
values in SOD for 20 % to
50 % corrupted Lena images
respectively
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for different values of number of iterations T1 varying from 1 to 5. The variation of
PSNR for fixed value of threshold Th = 35 against the number of iterations is plotted
in Fig. 6. It is evident from Fig. 6 that for the noise densities from 20 to 50 %, the
best PSNR is achieved at T1 = 5. Therefore, Th = 35 and T1 = 5 are used for SOD
operation for rest of the images processed in this work. The original image, noisy
image by 30 %RVIN and the de-noised image of ‘Lena’ by the SOD operation using
Th = 35 and T1 = 5 are shown in the top row of Fig. 7.

4.2 Choice of parameters in modified anisotropic diffusion

During the edge restoration of SOD filtered image, we evaluate the effects of
different combinations of the edge threshold constant k0 in diffusion coefficient
function and the number of diffusion iterations T2. Initially, the value of k0 is
taken as the global gray level variance of the ‘Lena’ image which is varied for
different iterations to get the better edge preservation. The first middle row of Fig. 7
presents the diffusion results on ‘Lena’ image (from left to right respectively) under
varying values of k0 = 10, 15, 20,25 respectively in diffusion coefficient function for
a fixed number of diffusion iterations T2 = 50. On doing a perceptional analysis, it
is observed that at k0 = 10, best diffusion results are obtained. Therefore, in these
four values of k0, the optimal k0 = 10 is selected for rest of the images in this
experiment. Similarly, the choice of an appropriate number of diffusion iterations T2

is made by comparing the effect of the number of iterations T2 = 50, 100,150,200
respectively for a fixed threshold constant k0 = 10. The diffusion results under
varying number of iterations are shown in the secondmiddle row of Fig. 7. The above
experiments reveal that at T2 = 50, the proposedmethod show good diffusion results
with well-preserved edges. Based on the above experimental observations, we use
10 and 50 respectively as optimal values of k0 and T2 for rest of the images in this
experiment.

Fig. 6 Graphical
representation of PSNR(dB)
value at different numbers of
iterations with Th = 35 in
SOD for 20 to 50 % corrupted
Lena images respectively
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Fig. 7 a Original Lena image; b Corrupted Lena image by 30 % RVIN; c Restored SOD filtered
image by the SOD operation of the proposed method with Th = 35 and T1 = 5; d–gDiffusion results
by the proposed method with k0 = 10, 15, 20, 25 respectively at T2 = 50; h–k Diffusion results by
the proposed method with T2 = 50, 100, 150, 200 respectively at k0 = 10; l–nDiffusion results under
different sizes of local neighborhood M × N: (3 × 3), (5 × 5) and (9 × 9) respectively at Th = 35,
T1 = 5, k0 = 10 and T2 = 50

4.2.1 Ef fect of variation in neighborhood size

The size of the local neighborhood size M× N for calculation of local gray level
variance σ 2(x, y) in the proposed thresholding method is another important para-
meter which affects the diffusion results. The size of the neighborhood area M × N
should be as small as possible in order to preserve lowest possible fine details in the
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Table 1 List of parameters
and their optimal values used
in the proposed method

Parameters Optimal values

Pre-reduction of impulsive noise
Threshold (Th) 35
No. of iterations (T1) 5

Anisotropic Diffusion
Edge threshold (k0) 10
No. of iterations (T2) 50
Neighborhood size (M× N) 3 × 3

image and to keep the computational burden as low as possible.We have selected the
regions of three smallest sizes 3 × 3, 5 × 5 and 9 × 9. The diffused images obtained
using the three smallest sizes of local areas with Th = 35, T1 = 5, k0 = 10 and T2 = 50
are shown in bottom row of Fig. 7 which indicates the best result is obtained for
window size 3 × 3.

The list of all the parameters and their optimal values used in the proposed
method discussed in above Sections are shown in tabulated form in Table 1.

4.3 Comparison with existing diffusion methods

The accuracy of the proposed diffusion scheme has been tested by comparing
the diffusion results with that of the other existing anisotropic diffusion methods
independently used for edge preservation and impulse noise reduction.

4.3.1 Comparison of edge preservation

To test the accuracy of edge preservation by the proposed diffusion scheme, the de-
noised image of ‘Lena’ by the SOD operation is diffused by Perona-Malik diffusion
(PMD)[17], Chao-Tsai diffusion (CTD) [4] and proposed diffusion respectively. The
diffusion results for 20 % and 40 % impulse noise densities are shown in the top and
bottom rows of Fig. 8 respectively. We choose an optimal value of threshold k = 4
in PMD [17] as suggested by Perona and Malik because a high value of k tends to
oversmooth the entire image. In CTD [4] and proposed scheme, we used k0 = 10 with
number of diffusion iterations T2 = 50 respectively. It is evident from Fig. 8 that the
proposed diffusion method better preserves the edges and fine details as compared
to that of the other diffusion methods. To compare quantitatively, the performance
of edge preservation by the three methods, we computed the Pratt’s figure of merit
(FOM) [18]. FOM is a parameter used to evaluate the edge preservation ability of
any method and is defined as:

FOM = 1

max[Pdetected, Poriginal]
Pdetected∑
i=1

1

1 + d2
i

9

(21)

where Pdetected and Poriginal are number of detected and original edge pixels respec-
tively. di is the Euclidean distance between the ith detected edge pixel and the closest
original edge pixel. The range of values of FOM starts from 0 and varies upto 1 for
the ideal edge preservation. The FOM values for the representative ‘Lena’ image
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Fig. 8 a–c Diffusion results of SOD filtered 20 % corrupted Lena image by PMD [17], CTD [4] and
proposed method respectively; d–f Diffusion results of SOD filtered 40 % corrupted Lena image by
PMD [17], CTD [4] and proposed method respectively

at different noise densities are demonstrated in Fig. 9 which shows the better edge
preservation by the proposed method as compared to PMD [17] and CTD [4]. In
addition to this, a quantitative comparison of the proposed diffusion results with that
of the PMD [17] and CTD [4] in terms of PSNR values for the representative ‘Lena’
image at different noise densities are shown in Table 2. It is evident from Table 2 and

Fig. 9 FOM curves for
comparison of edge
preservation under
different noise conditions
on Lena image
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Table 2 Comparison of
PSNR(in dB) for SOD filtered
Lena images at different noise
densities by the three diffusion
methods: PMD[17], CTD[4]
and the proposed method

RVIN (%) PMD[17] CTD[4] Proposed method

10 25.67 27.23 33.86
20 23.54 26.55 32.88
30 21.84 24.86 30.74
40 19.79 22.54 29.52
50 17.56 19.93 27.96

Fig. 9, that the proposed method is better than the two existing diffusion methods
[4, 17].

4.3.2 Comparison of impulse noise reduction

The proposed diffusion results have also been compared with Jian Wu’s diffusion
method (JWD) [25] which has been specifically developed for impulse noise reduc-
tion. The impulse noisy images of ‘Lena’ at different noise densities are restored
by JWD [25] and the proposed method. The diffusion results for 20 % and 40 %
impulsive noise densities by the two methods are shown in Fig. 10 and the values
of PSNR at 10 % to 50 % noise densities are shown in Table 3. We observed that
there is not much difference between the appearance of the resultant images of the
two methods. However, as the noise density increases, JWD [25] tends to leave the
noisy pixels and destroys the thin edges. On the other hand, the proposed diffusion
scheme reduces the impulsive noisy pixels along with reduced blurring of the image.
Through the above comparison with existing diffusion methods independently used
for impulse noise removal and edge preservation, it can be concluded that the

Fig. 10 a–b Restored 20 %
corrupted Lena image by JWD
[25] and proposed method
respectively; c–d Restored
40 % corrupted Lena image by
JWD [25] and proposed
method respectively
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Table 3 Comparison of PSNR(in dB) for original Lena image at different noise densities by
JWD[25] and the proposed method

RVIN 10 % 20 % 30 % 40% 50 %

JWD [25] 31.71 30.17 28.83 27.08 25.66
Proposed method 33.86 32.88 30.74 29.52 27.96

prior removal of impulsive noise before the application of diffusion process is
advantageous over the direct application of diffusion for removing the impulsive
noise.

4.4 Comparison with median filter based methods

We also compared the results of the proposed method with some of the median filter
based methods i.e., adaptive center weighted median filter (ACWM) [8], directional
weighted median filter (DWM) [11] and fast two phase image de-noising method
(FTPID) [2] used for the reduction of impulsive noise. The restored results are
shown in top and bottom rows of Fig. 11 for 20 % and 40 % of impulse noise
density respectively. The magnified sections of the respective restored images of
Fig. 11 are shown in Fig. 12 to demonstrate the effectiveness of proposed method
for edge preservation along with RVIN reduction over the three median filter based
methods [2, 8, 11]. The values of PSNR by the four methods at 10 to 50 % of the
impulsive noise densities for the same experiment are demonstrated in the form
of graphical representation in Fig. 13. From the simulation results, we observe that
the proposed method outperformed the other methods up to 50 % of the impulsive

Fig. 11 a–d Restored 20 % corrupted Lena image by ACWM[8], DWM[11], FTPID[2] and the
proposed method respectively; e–h Restored 40 % corrupted Lena image by ACWM[8], DWM[11],
FTPID[2] and the proposed method respectively
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Fig. 12 a–d Magnified sections of restored 20 % corrupted Lena image by ACWM[8], DWM[11],
FTPID[2] and the proposed method respectively; e–hMagnified sections of restored 40 % corrupted
Lena image by ACWM[8], DWM[11], FTPID[2] and the proposed method

noise densities. However, the performance of the proposed method slightly degrades
for noise densities beyond 50 % as compared to (DWM) [11] because at high noise
densities, some noisy pixels still remain in the image in the form of patches or spikes
which corresponds to the region of high gray level variance. Thus, these patches or
spikes gets restored by the proposed diffusion method too.

On comparing quantitatively the performance of edge preservation of the pro-
posed method with that of DWM [11], a significant improvement in terms of FOM

Fig. 13 Graphical
representation of PSNR(dB)
for original Lena images at
different noise densities by the
four methods: ACWM[8],
DWM[11], FTPID[2] and the
proposed two phase method
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Table 4 Comparison of FOM for original Lena image at different noise densities by DWM [11] and
the proposed method

RVIN 10 % 20 % 30 % 40 % 5 0%

DWM [11] 0.74 0.71 0.66 0.59 0.54
Proposed method 0.86 0.78 0.74 0.70 0.66

is observed which is shown in Table 4. This implies that the proposed method
can preserve the edges effectively with impulse noise reduction as compared to
DWM [11].

4.5 Quantitative comparison on other images

The diffusion results by the proposed method in the rest of the test images of
‘Cameraman’, ‘Coins’, ‘Baboon’ and ‘Pyramid’ are shown in the top row of Fig. 14.
The respective magnified sections for demonstration of edge preservation are shown
in bottom row of Fig. 14. Likewise ‘Lena’ image, the existing methods PMD[17],
CTD[4], JWD[25], ACWM[8], DWM[11] and FTPID[2] are applied on rest of the
four images to compare the results with that of the proposed method. Table 5
summarizes the values of PSNR of the restored images by the above six methods
and the proposed method at 20 to 50 % of impulse noise densities respectively. In
addition to this, the performance of edge preservation is compared with the existing
edge preserving methods in terms of FOM [18] which are shown in Table 6. From
the above quantitative comparison, we observed that the proposed method performs
well in the images with mild edge structures.

Fig. 14 a–d Restored 30 % corrupted images of cameraman, coins, baboon and pyramid by the
proposed method respectively; e–h Magnified sections of the above images respectively showing
edge preservation
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Table 5 Comparison of PSNR(in dB) for images of cameraman, coins, baboon and pyramid at 20 %,
30 %, 40 % and 50 % RVIN by methods: PMD [17], CTD [4], JWD [25], ACWM[8], DWM[11],
FTPID[2] and the proposed method

Images RVIN PMD CTD JWD ACWM DWM FTPID Proposed
(%) [17] [4] [25] [8] [11] [2] method

Cameraman 20 22.13 27.82 30.75 29.50 30.83 31.76 32.45
30 21.22 26.62 30.08 29.23 29.97 30.78 31.13
40 20.46 25.87 27.69 25.34 27.56 29.41 30.10
50 19.59 24.46 26.22 24.76 28.89 28.11 28.88

Coins 20 22.77 26.89 32.14 27.04 30.14 31.11 31.55
30 21.54 26.15 31.10 26.05 29.76 30.14 30.34
40 19.86 25.40 27.23 24.97 28.71 28.98 29.43
50 19.16 24.88 26.76 24.13 28.56 28.02 28.57

Baboon 20 22.67 27.28 31.76 27.11 29.84 30.55 30.86
30 21.13 26.62 30.54 26.17 28.85 29.32 29.70
40 19.34 25.07 26.83 24.82 28.19 28.81 29.16
50 18.86 24.37 25.19 24.14 27.66 28.02 27.63

Pyramid 20 23.39 27.87 30.85 27.76 29.89 30.77 30.78
30 22.52 26.60 29.68 26.20 29.15 29.67 29.97
40 21.32 25.58 28.18 25.33 28.59 28.74 29.22
50 20.36 24.78 27.30 24.44 27.96 27.91 28.27

The analysis of experimental study carried out in Section 4 conjectured that the
proposed diffusion method for impulse noise reduction as well as edge preservation
is more advantageous than the existing methods used only for either impulse noise
reduction or edge preservation.

Table 6 Comparison of FOM for images of cameraman, coins, baboon and pyramid at 20 %, 30 %,
40 % and 50 %RVIN by methods: PMD [17], CTD [4], DWM[11] and the proposed method

Images RVIN PMD CTD DWM Proposed
(%) [17] [4] [11] method

Cameraman 20 0.34 0.72 0.73 0.81
30 0.26 0.61 0.67 0.77
40 0.18 0.58 0.59 0.71
50 0.11 0.51 0.54 0.68

Coins 20 0.37 0.69 0.77 0.85
30 0.31 0.57 0.74 0.79
40 0.26 0.49 0.71 0.73
50 0.17 0.45 0.64 0.67

Baboon 20 0.29 0.58 0.71 0.79
30 0.23 0.53 0.65 0.72
40 0.18 0.46 0.59 0.66
50 0.13 0.39 0.51 0.62

Pyramid 20 0.35 0.73 0.79 0.84
30 0.29 0.62 0.75 0.77
40 0.22 0.56 0.68 0.72
50 0.15 0.48 0.63 0.67
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4.6 Computational complexity

Here, the time complexity of the proposed method has been computed. Since the
proposed method is a two stage process, the computational complexity depends on
the computational parts of the two stages respectively. In the stage of impulse noise
reduction, for window size 3 × 3, there are four directions, but in each direction there
are only three points. During SOD operation, we need 1 addition, 1 subtraction and
1 multiplication in each direction. Therefore, for all the four directions, we need 4
additions, 4 subtractions and 4 multiplications which are much lesser than existing
directional weighted median filter (DWM) [11] where the window size has been
considered as 5 × 5 and to calculate weighted difference in each direction, it needs
4 subtractions, 3 additions and 2 multiplications. Overall, it requires 16 subtractions,
12 additions and 8 multiplications for four directions.

In the diffusion stage of the proposed method, the complexity is dependent on
the computation of local gradient∇ f (x, y) and local gray level variance σ 2(x, y). For
an image of size N × N, the computation of four gradients is O(N2) where as the
computation of local gray level variance σ 2(x, y) is dependent on the neighborhood
window size. If we consider the window size of local neighborhood area as w ×w,
then the local gray level variance σ 2(x, y) of these sub-images can be computed as
shown in Algorithm 1 where I(i, j) and meanI(i, j) are the input image and mean of
the input image respectively at (i, j)th pixel position and initially the local gray level
variance var is taken as 0. The inner two loops run for the window size leading to the
time complexity of O(w2). Then, this window is moved around the entire image of
N × N size which is captured by the outer two loops which give the time complexity
of O(w2N2). As w is taken as 3 and kept constant throughout experimentation, the
computation time increases by a constant multiplier as compared to Perona-Malik
diffusion (PMD) [1]. However, the complexity of the proposed method is almost
same as that of Chao-Tsai diffusion (CTD) [4].

Algorithm 1 Computation of local gray level variance
for all i = 1 to N do

for all j = 1 to N do
for all a = −w to w do

for all b = −w to w do
var = var + ((I(i+ a, j+ b )−meanI(i, j))2)

end for
end for

end for
end for

5 Conclusion

The existing methods of smoothing random valued impulsive noise inherently has
the drawback of blurring the prominent edges in the image. In this paper, an edge
preserving diffusion method has been proposed by applying pre-filtering of impulse
noise. Impulse noisy pixels have been removed by improved second order pixel
difference operation and partial differential equation based modified anisotropic
diffusion has been applied for the restoration of edges destroyed during impulse
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noise reduction process. The proposed diffusion method employs local gray level
variance based adaptive thresholding scheme in diffusion coefficient function which
preserve the destroyed blurred edges and fine details. The proposed diffusion
method has been tested on variety of test images and experimental results have been
compared with some of the existing diffusion methods and advancedmedian filtering
methods. It is observed that the proposed method gives better result upto 50 % of
impulsive noise density in terms of peak signal to noise ratio.

The future work can be extended by exploring the properties of diffusion
coefficient function in anisotropic diffusion in order to deal with the noise content
more than 50 % and better edge preservation. Moreover, exploring the possibility
of developing parameter optimization technique for best quality results is another
important research issue.
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