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Abstract Gesture recognition is a technology often used in human-computer inter-
action applications. Dynamic time warping (DTW) is one of the techniques used in
gesture recognition to find an optimal alignment between two sequences. Oftentimes
a pre-processing of sequences is required to remove variations due to different
camera or body orientations or due to different skeleton sizes between the reference
gesture sequences and the test gesture sequences. We discuss a set of pre-processing
methods to make the gesture recognition mechanism robust to these variations.
DTW computes a dissimilarity measure by time-warping the sequences on a per
sample basis by using the distance between the current reference and test sequences.
However, all body joints involved in a gesture are not equally important in computing
the distance between two sequence samples. We propose a weighted DTW method
that weights joints by optimizing a discriminant ratio. Finally, we demonstrate the
performance of our pre-processing and the weighted DTW method and compare our
results with the conventional DTW and state-of-the-art.
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1 Introduction

Interacting with computers using human motion is commonly employed in human-
computer interaction (HCI) applications. One way to incorporate human motion into
HCI applications is to use a predefined set of human joint motions i.e., gestures.
Gesture recognition has been an active research area [12, 19, 26, 39], and involves
state-of-the-art machine learning techniques in order to work reliably in different
environments. A variety of methods have been proposed for gesture recognition
including Dynamic Time Warping [26], Hidden Markov Models [12], Finite State
Machines [13], hidden Conditional Random Fields (CRFs) [35] and orientation his-
tograms [11]. In addition to these, there are methods employed in gesture recognition
that are not view-based. Examples of these are the use of Wii controller (Wiimote)
[29] and DataGlove [23].

DTW measures similarity between two time sequences which might be obtained
by sampling a source with varying sampling rates or by recording the same phe-
nomenon occurring with varying speeds [37]. The conventional DTW algorithm is
basically a dynamic programming algorithm, which uses an iterative update of DTW
cost by adding the distance between mapped elements of the two sequences at
each iteration step. The distance between two elements is oftentimes the Euclidean
distance, which gives equal weights to all dimensions of a sequence sample. However,
depending on the problem a weighted distance might perform better in assessing the
similarity between a test sequence and a reference sequence. For example in a typical
gesture recognition problem, body joints used in a gesture can vary from gesture
class to gesture class. Hence, not all joints are equally important in recognizing a
gesture.

We propose a weighted DTW algorithm that uses a weighted distance in the cost
computation. The weights are chosen so as to maximize a discriminant ratio based
on DTW costs. The weights are obtained from a parametric model which depends
on how active a joint is in a gesture class. The model parameter is optimized by
maximizing the discriminant ratio. By doing so, some joints will be weighted up and
some joints will be weighted down to maximize between-class variance and minimize
within-class variance. As a result, irrelevant joints of a gesture class (i.e., parts that
are not involved in a gesture class) will contribute to the DTW cost to a lesser extent,
while keeping the between-class variances large.

Our system first extracts body-joint features from a set of skeleton data that
consists of six joint positions, which are left and right hands, wrists and elbows. We
have observed that the gestures in our training set, which have quite different motion
patterns, require the use of all or a subset of these six joints only. These obtained
skeleton features are used to recognize gestures by matching them with pre-stored
reference sequences. Pre-processing is needed to suppress the noise due to different
body and camera orientations, and different body sizes. After pre-processing is done,
the matching is performed by assigning a test sequence to a reference sequence
with the minimum DTW cost. By removing the variations in the data, the DTW
cost becomes more reliable in classification as demonstrated by the increase in the
discriminant ratio values.
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2 Related work

One commonly used technique for gesture recognition is using HMMs for modeling
gesture sequences. HMMs are especially known for their application to speech
recognition, gesture recognition, etc. HMMs are statistical models for sequential data
[3, 4], and therefore can be used in gesture recognition [12, 18, 32]. The states of
an HMM are hidden and state transition probabilities are to be learned from the
training data. However, defining states for gestures is not an easy task since gestures
can be formed by a complex interaction of different joints. Also, learning the model
parameters i.e., transition probabilities, requires large training sets, which may not
always be available. On the other hand, DTW does not require training but needs
good reference sequences to align with.

After DTW was introduced in 1960s [5], it has been used in solving different
problems such as speech recognition to warp speech in time to be able to cope
with different speaking speeds [2, 22, 28], data mining and information retrieval
to deal with time-dependent data [1, 24], curve matching [10], online handwriting
recognition [34], hand shape classification [17]. In gesture recognition, DTW time-
warps an observed motion sequence of body joints to pre-stored gesture sequences
[9, 17, 25, 36]. Although we present the theory of the general DTW and its implemen-
tation issues, in this paper we focus more on its application to gesture recognition.
Comprehensive surveys about the general DTW algorithm can be found in [21, 30].
This work is the extended version of our work in [7].

Using a weighting scheme in DTW cost computation has been proposed for
gesture recognition [26]. The method proposed in [26] uses DTW costs to compute
between-class and within-class variations to find a weight for each body joint. These
weights are global weights in the sense that there is only one weight computed for a
body joint. However, our proposed method computes a weight for each body joint
and for each gesture class. This boosts the discriminative power of DTW costs since
a joint that is active in one gesture class may not be active in another gesture class.
Hence weights has to be adjusted accordingly. This helps especially dealing with
within-class variation. To avoid reducing the between-class variance, we compute
weights by optimizing a discriminant ratio using a parametric model that depends
on body joint activity. Another type of weighting in DTW for aligning time series is
proposed in [15]. Their goal is to modify DTW so that the similarity between two 1D
time series is robust to outliers. An outlier at a particular time instant can create a
large error, which dominates distances in other time instants. To avoid this, a robust
distance function instead of the L1 norm (i.e., absolute distance), or the L2 norm
(i.e., Euclidean distance) is used. Hence, the weighting is for different distance values
between the two samples of 1D time series. However, we propose to weight each
dimension of a multi-dimensional signal, where each dimension is a joint position.
This work is complimentary to our work in the sense that a robust distance function
that penalizes the outliers to a lesser degree, can also be used in our method.

The goal of dynamic time warping is the alignment of two time sequences via a
dynamic cost minimization. The final DTW cost, which is a dissimilarity measure be-
tween two time sequences, is also used for classification. Oftentimes, a test sequence



3048 Multimed Tools Appl (2014) 72:3045–3062

is aligned to a set of templates via DTW and the test sequence is matched to the
minimum cost template. A novel approach is presented in [20], to separate the
alignment and classification tasks. First, alignment is performed using DTW.
The aligned sequences are classified by using feature generation methods from
Machine Learning theory. Our proposed method can be used in the alignment phase
of the technique proposed in [20].

With Microsoft’s launch of Kinect in 2010, and release of Kinect SDK in 2011,
numerous applications and research projects exploring new ways in human-computer
interaction have been enabled. Some examples are gesture recognition [26], touch
detection using depth data [38], human pose estimation [14], implementation of real-
time virtual fixtures [27], real-time robotics control applications [33] and the physical
rehabilitation of young adults with motor disabilities [8]. In the next section we
discuss data acquisition and feature pre-processing.

3 Data acquisition and feature pre-processing

We use Microsoft Kinect sensor [31] to obtain joint positions. Kinect SDK tracks 3D
coordinates of 20 body joints given in Fig. 1 in real time (30 frames per second). The
Kinect algorithm uses depth images to predict joint positions and the predicted joint
positions are quite robust to color, texture, and background.

In our experiments we have focused on hand-arm gestures. Six out of the 20
joints available in Kinect’s skeleton model are informative in recognizing a hand-
arm gesture, which are left hand, right hand, left wrist, right wrist, left elbow and
right elbow joints. However, there is no limitation on the number of joints used in
our proposed method. For hand-arm gestures the relevant body joints are obvious,

Fig. 1 Kinect joints
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but for more complex gestures the most informative joints for the recognition
task can be selected by using feature selection techniques from the classification
literature in machine learning [6]. For example Sequential Backward Elimination
(SBE) technique, which starts with all the 20 joints, and eliminates joints one by one
based on the discriminant ratio change can be utilized.

In our method, a feature vector consists of 3D coordinates of these six joints and
is of dimension of 18 as given below

fn = [X1, Y1, Z1, X2, Y2, Z2, . . . X6, Y6, Z6], (1)

where n is the index of the skeleton frame at time tn. A gesture sequence is the
concatenation of N such feature vectors.

After N feature vectors are concatenated to create the gesture sequence, they
are pre-processed before the DTW cost computation. The pre-processing consists of
three stages. First stage is the normalization stage which translates all skeletons to
the center of the field of view. This could be done by subtracting the hip center joint
position from the other joint positions. Note that the reference frames are already
recorded at the center of the field of view. The second pre-processing stage removes
the rotational distortion caused by different orientations of human bodies. Contrary
to the reference gestures, where trained performers are used, it is highly possible to
have different orientations or positionings of users with respect to camera in real-life
cases. Such occasions are problematic for gesture recognition since they will result in
rotationally distorted skeleton frames (See Fig. 2). To cope with these occasions,
our pre-processing system rotates the skeleton frames if necessary, such that the
skeleton frames will be orthogonal to the principal axis of the camera. To this end,
we define two vectors by using spatial coordinates of the right shoulder, left shoulder
and hip center which are obtained from Kinect sensor. One of the vectors is defined
from the midpoint of right and left shoulder to hip center, while the other vector
is defined from the same midpoint to the right shoulder. Using these two vectors,
we calculate the three angles, α, β, θ , of the skeleton with respect to the camera’s
coordinate system, and compute the rotation matrices Rα

x , Rβ
y , Rθ

z , respectively. The

Fig. 2 Two skeletons with
different orientations
(left: ground-truth reference
frame, right: rotationally
distorted test frame due to
improper body orientation)
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Fig. 3 Camera A is used to
record the ground-truth
reference gestures with
perpendicular angles,
Camera B is used to record a
rotationally distorted test
sequence. β is the desired
angle to rotate the skeleton in
Y axis. After this rotation, the
skeleton will be rotated in
other axes if needed until it
will be perpendicular to all
axes

rotation is then applied using these angles with the appropriate order. See an example
rotation in Y axis with Rβ

y in Fig. 3. The third and the last pre-processing stage is
the elimination of variations in the feature vectors due to different skeleton ratios
(broad-shouldered, narrow-shouldered). All feature vectors are normalized with the
distance between the left and the right shoulders to account for the variations due to
a person’s size. Note that the reference sequences are recorded with people who has
average skeleton ratios. Next, we present a more detailed discussion on DTW.

4 Dynamic time warping for gesture recognition

DTW is a template matching algorithm to find the best match for a test pattern out
of the reference patterns, where the patterns are represented as a time sequence of
features. In Fig. 4 we show an example matching of two sequences.

Let R = {r1, r2, . . . , rN}, N ∈ N and T = {t1, t2, . . . , tM}, M ∈ N be reference and
test sequences (sequence of set of joint positions in our case), respectively. The
objective is to align the two sequences in time via a nonlinear mapping. Such a
warping path can be illustrated as an ordered set of points as given below

p = (p1, p2, . . . , pL), pl = (nl, ml),

Fig. 4 DTW used to match
two sequences, reference
sequence and test sequence
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where pl =(nl, ml), denotes mapping of rnl to tml . pl ∈ [1 : N] × [1 : M] for l ∈ [1 : L],
where L is the number of mappings. The total cost D of a warping path p between R
and T with respect to a distance function d(ri, t j), i ∈ [1 : N] and j ∈ [1 : M], is defined
as the sum of all distances between the mapped sequence elements

Dp =
L∑

l=1

d(rnl , tml ), (2)

where Dp is the total cost of the path p and d(ri, t j) measures the distance between
elements ri and t j. For gesture recognition, distance can be chosen as the distance
between the corresponding joint positions (3D points) of the reference gesture, R,
and the test gesture T.

A mapping can also be viewed as a path on a two-dimensional (2D) grid, also
known as the cost matrix, which is of size N × M (see Fig. 5), where grid node
(ri, t j) denotes the distance between ri and t j. The node (r1, t1) which starts the
alignment by matching the first sequence elements is conventionally placed on the
left-bottom corner of the grid. Each path p on the 2D grid (i.e., the cost matrix) is
associated with a total cost D given in (2). Note that among all possible paths, we are
mostly interested in the path which makes the total accumulated cost minimum while
satisfying the desired constraints. Hence, optimal path denoted by p∗ is the path with
the minimum total cost. The DTW distance between two sequences is defined by the
distance associated with a total cost D given in (2) using the optimal path, i.e.:

DTW(R, T) = Dp∗(R, T). (3)

Some well-known restrictions on the warping path have been proposed to elim-
inate unrealistic correspondences between the sequences [21, 28]. The most funda-
mental constraints which are applied in various topics as well as gesture recognition,
are the following:

(i) Boundary conditions: p1 = (1, 1), pL = (N, M).
(ii) Step size condition: pl+1 − pl ∈ {(0, 1), (1, 0), (1, 1)} for l ∈ [1 : L − 1].

Fig. 5 Accumulated cost
matrix of two sequences R and
T with sizes N and M,
respectively. Global constraint
region, R, Sakoe–Chiba band
[28], is shown with gray color
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The boundary conditions require the whole reference sequence to be mapped to
the whole test sequence, and can be modified if this is not strictly desired. The step
size condition requires that only one element of both sequences can be skipped at
each cost computation step of Bellman’s principle. Hence, optimal path can progress
from a restricted set of predecessor nodes as shown in Fig. 6. Since all the elements
are ordered in time, the set of predecessor nodes are to the left and bottom of a
current node.

First, let’s define C(nl, ml) as below

C(nl, ml) = DTW(R(1 : nl), T(1 : ml)). (4)

Note that C(N, M) is equal to DTW(R, T). Let’s further assume that the total costs
of the optimal paths to three predecessor nodes denoted by (nl − 1, ml), (nl, ml − 1),
and (nl − 1, ml − 1) have been computed. Since the (l − 1)th position of the path
(i.e., (nl−1, ml−1)) is restricted to be one of these three nodes on the 2D grid,
Bellman’s principle leads to

C(nl, ml) = min{C(nl, ml − 1),

C(nl − 1, ml),

C(nl − 1, ml − 1)} + d(rnl , tml ). (5)

Finally, the minimum cost path aligning two sequences has cost C(N, M) =
DTW(R, T), and the test sequence is matched to the reference sequence that has
the minimum cost among all reference sequences.

Although (5) outputs the minimum cost between two sequences, it does not output
the optimal path. To find the optimal path, which can be used to map test sequence
elements to reference sequence elements, one needs to backtrack the optimal path
starting with the final node. Note that if the boundary condition is satisfied, i.e., the

Fig. 6 Predecessor nodes used
in Bellman’s principle where
nl ∈ [1 : N], ml ∈ [1 : M] and
l ∈ [2 : L]. Note that
(nl−1, ml−1) ∈ {(nl − 1, ml),
(nl, ml − 1), (nl − 1, ml − 1)}
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whole test sequence is mapped to the whole reference sequence, than (nL, mL) =
(N, M) and (n1, m1) = (1, 1).

4.1 Boosting the reliability of DTW

Global constraints define a set of nodes on the 2D grid to be searched for finding the
optimal path. Imposing global constraints not only reduces the DTW computational
complexity, but also increases the reliability of DTW’s dissimilarity measure by
omitting unrealistic paths. We used a well-known global constraint region, Sakoe–
Chiba band [28] given in Fig. 5. The Sakoe–Chiba band effectively limits the warping
amount, i.e., slowing down or speeding up of a sequence in time. For example a
gesture can be performed with different speeds in time depending on the performer
but it is logical to expect that there is a limit to how slow or how fast a gesture is
performed.

Another problem that degrades DTW’s reliability in gesture recognition is due to
unknown beginning and ending times of gesture samples. A gesture in a test sequence
can often begin later or end sooner than the gesture in the reference sequence
stored for that gesture class. Boundary conditions assume that all gestures start at the
beginning of the sequence and finish at the ending of the sequence. Hence, imposing
boundary conditions in such cases decreases the reliability of DTW costs. To boost
the reliability, we relaxed the boundary conditions by changing the total cost given
in (2) as below

Dp =
L∑

l=1

αld(rnl , tml ), (6)

where αl is a weight that is equal to 1 everywhere except the regions close to
the starting node (i.e., left-bottom node denoted by (r1, t1)) and the ending node
(i.e., right-top node denoted by (rN, tM)). To infer the proximity of the current node

to starting and ending nodes the length of the path, ||pl|| =
√

n2
l + m2

l , is utilized. The
distance terms coming from the beginning and ending of the sequence is weighted
down by computing αl from the below formula

αl =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

||pl||
τ

if ||pl|| < τ

L − ||pl||
τ

if L − ||pl|| < τ

1 otherwise,

(7)

where L is the length of the longest path and τ is a threshold value.

4.2 Weighted DTW

The conventional DTW computes the dissimilarity between two time sequences by
aligning the two sequences based on a sample based distance as in (5). If the sequence
samples are multi-dimensional (18 dimensional for the gesture recognition problem),
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using an Euclidean distance gives equal importance to all dimensions. We propose to
use a weighted distance in the cost computation based on how relevant a body joint
is to a specific gesture class. The relevancy is defined as the contribution of a joint to
the motion pattern of that gesture class. To infer a joint’s contribution to a gesture
class we compute its total displacement (i.e., contribution) during the performance
of that gesture by a trained user by

Cg
j =

N∑

n=2

Dist j(f g
n−1, f g

n ), (8)

where g is the gesture index, j is the joint index and n is the skeleton frame number.
Dist j() computes the displacement of jth joint’s two consecutive coordinates in
feature vectors f g

n−1, and f g
n . By summing up these consecutive displacements one

can find the total displacement of a joint in a selected reference gesture.
After the total displacements are calculated, we filter out the noise (e.g, shaking,

trembling) and threshold them from the bottom and the top. This prevents our
parametric weight model to output too high or low weights as given below

Cg
j =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Ca if 0 ≤ Cg
j < T1

Cg
j − T1

T2 − T1
(Cb − Ca) + Ca if T1 ≤ Cg

j < T2

Cb otherwise,

(9)

where Ca and Cb are threshold values, and T1 and T2 are experimentally determined
boundary values for threshold assignment.

Using the total displacement to asses the contribution of a joint in performing a
gesture, the weights of gesture class g are calculated via

w
g
j =

1 − e−βCg
j

∑
k

(
1 − e−βCg

k
) , (10)

where w
g
j is joint j’s weight value for gesture class g. Note that in this formulation a

joint’s weight value can change depending on the gesture class. For example, for the
right-hand-push-up gesture, one would expect the right hand, right elbow and right
wrist joints to have large weights, but to have smaller weights for the left-hand-push-
up gesture.

To incorporate these weights into the cost, the distance function d(rn, tm) becomes
a weighted average of joints distances between two consecutive frames and is defined
to be

d(rn, tm) =
∑

j

Dist j(rn, tm)w
g
j , (11)

which gives the distance between nth skeleton frame of reference gesture R and mth
skeleton frame of test gesture T, where R is a sequence known to be in gesture class
g and T is an unknown test sequence.
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The weights are obtained from the model given in (10), which has a single
parameter β. Our objective is to choose a β value that minimizes the within-
class variation while between-class variation is maximized. Between-class variation
maximization and within-class variation minimization can be achieved by making
irrelevant joints contribute less to the cost (e.g., reducing the weights of right hand in
left-hand-push-up gesture) and not reducing (or possibly increasing) the weights of
joints that can help to discriminate different gestures. We try to achieve this goal by
maximizing a discriminant ratio similar to Fisher’s Discriminant Ratio [16]. To this
end, we define Dg,h(β), as the average weighted DTW cost between all samples of
gesture class g and gesture class h using weights calculated with β. Then between-
class dissimilarity is the average of all Dg,h(β)’s (h �= g) as the following:

DB(β) =
∑

g

∑

h
h �=g

Dg,h(β), (12)

which measures the sum of average distances between gesture classes. This helps us
infer the average distance between a gesture and the rest of the gestures for a given β.

Within-class dissimilarity is the sum of within-class distance Dg,g(β) for all gesture
classes,

DW(β) =
∑

g

Dg,g(β), (13)

which sums the average distance Dg,g(β) between the samples of gesture classes
for all g.

The discriminant ratio of a given β, R(β), is then obtained by

R(β) = DB(β)

DW(β)
. (14)

The optimum β, β∗, is chosen as the one that maximizes R:

β∗ = arg max
β

R(β). (15)

5 Results

Our experiments were performed on our gesture database which was recorded with
38 participants. It took approximately one week to finish all the recordings. All
participants performed 12 different gestures with six samples per gesture class. Bad
records due to a bad gesture performance (e.g., incomplete gesture) or Kinect’s
human-pose recognition failure, correspond to approximately 30 % percentage of all
recorded gestures. They were manually deleted by using an OpenGL based gesture
visualizer. The physical factors (e.g., distance from the Kinect sensor to the user,
illumination in the room) are kept constant during the recording of all records. Each
gesture sample includes 20 joint position data per frame in addition to time stamps of
each skeleton frame. The gesture databases used in the experiments, source code for
visualization of gestures, source code used to produce the results in this paper and
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more results are publicly available.1 We are hoping that the databases can be used in
testing other gesture recognition algorithms as well.

We tested the performance of our feature pre-processing technique and proposed
weighting method on our three discrete gesture databases to show the improvements
separately: (i) Rotationally distorted gesture database: In this database we recorded a
set of noisy gestures in terms of the rotational orientation of the body with respect
to the Kinect sensor in X, Y and Z axes (See Fig. 3). The gestures are performed by
trained users. This database is designed in order to see the effect of pre-processing
on the recognition performance. It has 12 different gesture classes and 21 gesture
samples per gesture class. (ii) Relaxed gesture database: In this database there is
no intentionally generated rotational distortion, instead, these gesture samples are
performed more relaxed in terms of the movement of body parts other than the
active joints involved in gesture performance. For example in one sample of this
database, performer scratches his head with his left hand while he performs the right-
hand-push-up gesture. This database has 8 gesture classes and 1116 gesture samples
in total. (iii) Rotationally distorted and relaxed gesture database: In this database
performers recorded gestures relaxed in terms of both rotation and body movement.
This database has 12 gesture classes and 198 gesture samples in total. We use this
database to show the overall performance of the system. All the three databases are
created using Microsoft Kinect Sensor.

In addition to these databases, there is a set of reference samples per gesture class,
performed properly by trained users without any rotational distortion and without
any undesired movements. These reference samples are used in learning the total
distance measures of each joint in each class, which is required by our weight model
in (10). Two sample reference gestures are shown in Fig. 7.

In the first experiment, we test our pre-processing method using the rotationally
distorted gesture database. We first calculated the discriminant ratios (See (14)) of
21 samples for each 12 gesture class without using any of the pre-processing methods.
Then, we used the same gesture samples to calculate the discriminant ratios again,
but this time using our proposed pre-processing methods. Note that uniform weights
were used in order to see the performance of the pre-processing method alone. The
improved achieved by pre-processing can be seen in Fig. 8.

In the second experiment we compared our weighted DTW algorithm against the
conventional DTW method and a weighted DTW method proposed by [26] using
the relaxed gesture database. The confusion matrices for the three algorithms for six
chosen gesture classes are given in Tables 1, 2, and 3. Note that the recognition rates
for these classes are consistent with recognition rates of other classes(i.e. classes that
are not presented in the confusion matrix), but only these classes are shown for the
sake of brevity.

After creating the confusion matrices, we computed the overall recognition
accuracies according to the following formula:

A = 100 · Trace(C)∑m
i=1

∑n
j=1 C(i, j)

, (16)

where A denotes the accuracy, and C denotes the confusion matrix.

1http://mll.sehir.edu.tr/mtap2013

http://mll.sehir.edu.tr/mtap2013
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Fig. 7 Two sample reference gestures in the gesture database: Right Hand Push Up and Left Hand
Wave

Our proposed method outperforms the weighted DTW method in [26] by a large
margin as given in Table 4. The reason is that their weights are global weights, i.e., a
joint’s weight is independent of the gesture class. However, in our proposed method
a joint can have a different weight depending on the gesture class we are trying to
align with. This degree of freedom in computing the associated DTW cost increases
the reliability of DTW cost significantly.

In the third and the last stage, we tested the overall performance of our sys-
tem using the rotationally distorted and relaxed gesture database. The purpose
of this operation is to determine the overall improvement of the pre-processing
and the weighting on the recognition performance using a larger database. These
experiments clearly demonstrate the performance boost provided by our proposed
techniques. The results are given in Table 5.

BH Pull Down BH Push Up LH Pull Down LH Push Up LH Swipe L LH Swipe R LH Wave RH Pull Down RH Push Up RH Swipe L RH Swipe R RH Wave
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Fig. 8 Discriminant ratios for with and without pre-processed gesture samples using the rotationally
distorted gesture database. Note that the discriminant ratios are increased, on average, 42 % with
the proposed pre-processing method. There are 21 gesture samples in each gesture class. The gesture
classes are, namely, Both Hands Pull Down, Both Hands Push Up, Left Hand Pull Down, Left
Hand Push Up, Left Hand Swipe Left, Left Hand Swipe Right, Left Hand Wave, Right Hand Pull
Down, Right Hand Push Up, Right Hand Swipe Left, Right Hand Swipe Right, Right Hand Wave,
respectively
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Table 1 Confusion matrix for the conventional DTW

RH push up LH push up RH pull down LH pull down RH swipe L RH swipe R

RH push up 93.9 0 0 2.3 3.8 0
LH push up 2.4 94.6 0.6 0 2.4 0
RH pull down 0 0 98.6 1.4 0 0
LH pull down 2 0 0.7 97.3 0 0
RH swipe L 0 0.8 0 4 95.2 0
LH swipe R 5.6 0 2.1 22.6 0.7 69

Table 2 Confusion matrix for the weighted DTW in [26]

RH push up LH push up RH pull down LH pull down RH swipe L RH swipe R

RH push up 96.2 1.5 0 0.8 1.5 0
LH push up 3 97 0 0 0 0
RH pull down 0 1.4 98.6 0 0 0
LH pull down 2 0 0 98 0 0
RH swipe L 0 2.4 0 2.4 95.2 0
LH swipe R 7.8 0 0 25.3 0.7 66.2

Table 3 Confusion matrix for our proposed weighted DTW

RH push up LH push up RH pull down LH pull down RH swipe L RH swipe R

RH push up 100 0 0 0 0 0
LH push up 0 100 0 0 0 0
RH pull down 0 0 100 0 0 0
LH pull down 0 0 0 100 0 0
RH swipe L 0.8 0 0 0 99.2 0
LH swipe R 0 0 0 0 2.8 97.2

Table 4 Accuracies of the three methods

Method Accuracy

Classical DTW 84.41 %
State-of-the art 86.56 %
Proposed method 97.13 %

Note that not only six gesture classes given in Tables 1–3 are used, but all eight gesture classes are
taken into consideration

Table 5 Overall performance
comparison using the
rotationally distorted and
relaxed gesture database

Method Accuracy (% )
Traditional DTW 62.41
Pre-processing + traditional DTW 76.26
Weighted DTW 84.13
Pre-processing + weighted DTW 96.64
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6 Conclusion

We have developed a weighted DTW method to boost the discrimination capability
of DTW’s cost, and shown that the performance increases significantly. The weights
are based on a parametric model that depends on the level of a joint’s contribution
to a gesture class. The model parameter is optimized by maximizing a discriminant
ratio, which helps to minimize within-class variation and maximize between-class
variation. We have also developed a pre-processing method to cope with real life
situations, where different body shapes and user orientations with respect to the
depth sensor may occur. Our weighted DTW, enables noise in skeleton joints as long
as they do not make a gesture of one class similar to a gesture of another class. This
is because weights are selected by maximizing between-class variation. We hope that
the proposed method will enable more natural remote control of different devices
using pre-defined commands for a given context/situation. As long as the noise in
a joint does not overlap with another gesture class, the user is free to naturally use
his/her other joints.
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