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Abstract Speech applications, which operate a system by voice commands, facilitate web
access for disabled and visually impaired users. Human-computer interactions, such as speaking
and listening to web applications, provide options for developing a multimodal interaction tool
in the accessible design of an intelligentweb. Speaker identification and verification are essential
functionalities for intelligent web programs with speech applications. This paper proposes an
enhanced Gaussian mixture model (GMM) method by incorporating the information derived
from the support vector machine (SVM), called EGMM-SVM, for web-based applications with
speaker recognition. The EGMM-SVM improves the accuracy of the estimated likelihood
scores between the speech frame and the GMM. In EGMM-SVM, SVM plays a crucial role in
transmitting the quality information of the utterances from a test speaker, through the GMM
when performing GMM likelihood calculations. The experimental results show that speaker
recognition by using the developed EGMM-SVM with an accurate operation mechanism for
Gaussian distribution derivations yields a higher recognition rate than does a conventional
GMM without any considerations on the quality of test speech utterances.

Keywords EGMM-SVM . Gaussian mixture model . Support vector machine . Speaker
recognition . GMM likelihood score

1 Introduction

Web-based social media services enable users to easily access information and web services
anywhere and anytime through network connections. A user-friendly interface facilitates
convenient access for users, and multimodal interfaces make web-based social media
technology easier to use, more efficient, and more acceptable to end-users. Applications
allowing people to interact on the web through speech provide the most practical and natural
mode of communication [9]. Intelligent web-based speech applications typically include
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popular automatic speech recognition (ASR) and speaker recognition, which provide security
when using voice commands to access personal, business or public information online.

Recently, speaker recognition techniques belonging to a type of audio-based identity
recognition have provided effective security in surveillance, remote homecare, and web service
applications. Compared with facial recognition [15, 17], fingerprint recognition [1, 7] and
gesture recognition [10], which are categorized as video-based identity recognition techniques,
speaker recognition adopts the biomedical features of acoustic data and acts as an auxiliary
recognition technique that reflects the auditory aspect of the reality in the context. Speaker
recognition technology is rapidly becoming as developed as speech recognition [8], and
numerous computational techniques for speaker recognition have been observed in recent years
[2, 4, 5, 11, 12, 14, 18–20]. Nevertheless, the most crucial problem in speaker recognition is
recognition accuracy.

Speaker recognition may be further divided into two categories: speaker identification and
speaker verification. Speaker identification is used to determine the identity of a person. A
speaker verification system verifies the identity of a person based on his or her uttered voice, and
evaluates whether the speaker is acceptable or not. When GMM-based speaker recognition is
adopted [16] for speech-pattern recognition, it performs more effectively in speaker
identification. When SVM-based speaker recognition is employed [3] as a speech pattern
classifier, it provides a more favorable option for executing speaker verification. This study
focused on GMM-based speaker identification tasks.

Although the GMMapproach is the optimal choice for performing speaker identification, the
recognition accuracy of the overall speaker recognition system is still inferior to that of a human
listener. Recent studies have shown improvement in the performance of GMM speaker
recognition [4, 11, 12, 18, 19]. The enhancement of GMM speaker recognition is further
categorized into two types of techniques: model-based and feature-based improvement
approaches. Model-based improvement methods aim to enhance the GMMclassificationmodel
when training the GMM [11, 12]. A new algorithmwas proposed in [11] for speaker verification
applications in discriminative training of the GMM with diagonal covariances under a large-
margin criterion. For training a large-scale generative model of speaker and session variability,
Kenny et al. (2007) presented a corpus-based approach to GMM speaker verification, in which
maximum-likelihood II criteria were used [12].

Feature-based improvement methods for GMM speaker recognition focus on emitting the
unexpected noise of the input test speech signal, or developing an acoustic feature that facilitates
characterization of a speaker’s information [4, 18, 19]. You et al. developed a Bhattacharyya-
based GMM-distance to measure the distance between two GMM distributions, allowing the
speaker’s information to be exploited not only from themean vectors of GMMbut also from the
covariance matrices [18, 19]. In addition, several feature extraction and channel compensation
techniques in a GMM speaker recognition system were analyzed and discussed in [4].

Although model-based and feature-based enhancements to GMM speaker recognition
increase the recognition accuracy of the system, those approaches cannot ensure that a
satisfactory recognition performance is maintained when substandard test data for recognition
are encountered. Related research on the validation and evaluation of test data is rarely seen in
the field of GMM speaker identification. Inadequate test data with an ambiguous class tendency
would jeopardize the recognition performance of a GMM speaker recognition system. For
general speech-pattern recognition techniques, including GMM-based speaker identification,
the quality of test data is most essential for recognition accuracy. To address this problem, the
SVM that is popularly adopted in speaker verification for evaluating and verifying the
availability of the data from a test speaker was used. This paper proposes an enhanced GMM
method with the support of the SVM, called EGMM-SVM, for speaker identification. In

5132 Multimed Tools Appl (2015) 74:5131–5140



EGMM-SVM, the SVM is integrated into the conventional GMM-based speaker identification
scheme to evaluate the availability of the test data. The information derived from SVM
verification is evaluated by the GMM classifier when performing the likelihood calculation
between the speech frame and the GMM speaker models. The proposed EGMM-SVM speaker
identification with the assistance of the SVM speaker verification offers several advantages:

& It decreases unreliable recognition decisions in conventional GMM-based speaker
identification methods by incorporating the SVM for assessing test data;

& It provides a new scheme, combining the SVM speaker verification and GMM speaker
identification for practical speaker recognition applications;

& It achieves more robust recognition using the improved likelihood estimate of GMM
classifiers, especially in adverse conditions, in which the test data are of extremely
inferior quality.

2 GMM-based speaker recognition

As mentioned, modeling schemes are the mainstream techniques for speaker recognition, and
the modeling of speech patterns implemented in the Gaussian mixture model is by far the
most popular and widely used scheme. The operational architecture of GMM speaker
recognition and the modeling methodology of GMM speaker models are introduced in the
following sections.

2.1 Operation architecture of GMM speaker recognition

Figure 1 illustrates the overall operational architecture of a GMM-based speaker recognition
system, in which there are two primary processing phases in the speaker recognition
framework: the training\establishment phase of GMM speaker models, and the
test\recognition phase of GMM classifiers. When performing speaker recognition in a
practical application, the input utterances acquired from a speaker are segmented into the
frame sequence from which acoustic features are extracted to determine the degree of
likelihood for all trained GMM speaker models through the operation of GMM classifiers.
The recognizing operation is then completed and the decision to categorize the test speaker as
one of all speaker classes can be made after accumulating the degree of likelihood estimates
for all of the GMM speaker models in a predefined time period.

2.2 GMM and speaker modeling

In this work, a GMM is adopted in the development of a speaker recognition system [16].
Mathematically, a GMM is a weighted sum of M Gaussians, denoted as

λ ¼ wi;μi;Σif g; i ¼ 1; 2; :::;M ;
X
i¼1

M

wi ¼ 1 ; ð1Þ

where wi is the weight, μi is the mean and Σi is the covariance.
To determine the GMM parameters for a certain speaker class, the E-M algorithm

suggested in [6] is readily applicable. Before running the E-M algorithm, it is crucial to
initialize the model by assigning starting values to the parameters. These can be realized by a
binary splitting vector quantization algorithm [13]. With the parameter settings of the initial
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model, the E-M process starts iteratively, maximizing the likelihood estimate of the training
data from the speaker by adjusting the initial model parameters. The expectation and
maximization steps in the E-M process are repeated so that the parameter set as
λ ¼ wi;μi;Σif g; i ¼ 1; 2; :::;M of the GMM converges to an equilibrium state.

2.3 GMM classifier for likelihood score calculations

After completing the training of the GMM, the speaker recognition procedure can then
be executed based on these trained GMM. Note that the speaker identification used
here is a GMM classifier consisting of multiple GMM speaker models, which are
categorized into two types: the valid speaker models and the imposter models. The
classifier operates with a decision window (or its equivalent, over an interval) covering
n acoustic feature vectors of D dimensions, X={xi|i=1,2,...,n}, combined with n GMM
speaker models, λ1, λ2,…, λn.

During the recognition phase, the class of X is determined by maximizing a posteriori
probability P(λs|X) [16],

bs ¼ argmax
s¼ 1;2;:::;nf g

P λs

���X� �
¼ arg max

s¼ 1;2f g

f X
���λs

� �
f Xð Þ ⋅P λsð Þ ð2Þ

Note that

f xi
���λs

� �
¼

X
j¼1

M

wj⋅bs j xið Þ; ð3Þ
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Fig. 1 Operational architecture of a GMM-based speaker recognition task
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and

bs j xið Þ ¼ 1

2πð ÞD=2⋅ Σs j

�� ��1=2 ⋅exp −
1

2
xi−μs j

� �T
Σs j

� �−1
xi−μs j

� �� �
: ð4Þ

However, in real implementation, Eq. (1) is replaced by

bs ¼ arg max
s¼ 1;2;:::;nf g

X
i¼1

n

log f xi
���λs

� �
; ð5Þ

for simplicity. At the end of the recognition procedure, the signal Χ is then recognized as one
of the n speaker classes indicated by bs .
3 Enhanced GMM by the information from SVM (EGMM-SVM)

In a practical speaker recognition application, the operational performance of the GMM
classifier has a definitive influence on the accuracy of speaker recognition. An excellent GMM
classifier with outstanding recognition performance is necessary. The operational performance
of a GMM classifier depends strongly on the quality of the test utterances obtained from the
speaker. The higher the degree of discrimination is in the test utterance, the more qualified the
utterance would be. However, when performing speaker recognition in practical online
applications, the test data acquired from a speaker are usually viewed as substandard if the data
lack in distinguishability. To address this problem and increase the recognition accuracy of
GMM speaker recognition, the test data are first verified using an SVM mechanism. The
appraised data derived from the SVM are then accounted for when the GMM classifier is
performing. The overall speaker recognition process includes SVM speaker verification and
GMM speaker identification, which are depicted in Fig. 2.

3.1 Analysis of test data by SVM

This section introduces the SVM classification schemes that were adopted for analyzing the
availability of a test utterance and for evaluating the differentiation degree of the utterance. In
most applications, the SVM is used as a data classifier [3]. The SVM is based on the theory of the
structural risk minimization of statistics. The SVM classifies new input data by using a
separating hyperplane. To determinewhether an input speech datumbelongs to the valid speaker
set, the SVM first attempts to locate the SVM model for the valid speaker set in the SVM
database. The separating hyperplane of the SVMmodel for the valid speaker set then classifies
the input speech datum as either valid or invalid (the imposter). In this study, the trained SVM
model for speaker verification was established in a supervised-mode environment where two
categories of training speakers, valid speakers and imposters (those not in the group of valid
speakers), were collected, and the class label for each training sample was known before training
the SVM.

SVM classifier for
speaker verification

GMM classifier for
speaker identification

Reliable likelihood
scores
for

Speech frame ix
ix)( ixd

Proposed EGMM-SVM

Fig. 2 Proposed EGMM-SVM for GMM-based speaker identification
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Suppose a set of labeled training points is (x1,y1), (x2,y2),…,(xn,yn). Each training point xi
belongs to either of two classes and is assigned a label,yi∈{−1, 1}, for i=1,2,...,n. Based on
these training data, the hyperplane is

w⋅xþ b ¼ 0; ð6Þ
which is defined by the pair (w,b), such that the point xi can be separated according to the
function

f xið Þ ¼ sign w⋅xi þ bð Þ ¼ 1; if yi ¼ 1
−1; if yi ¼ −1

�
ð7Þ

The set S is linearly separable if a pair (w,b) exists such that the inequalities

w⋅xi þ bð Þ≥1; if yi ¼ 1;
w⋅xi þ bð Þ≤−1; if yi ¼ −1;

�
i ¼ 1; 2; :::; n; ð8Þ

are valid for all elements of set S. Equation (3) can be rewritten as one set of inequalities as
follows:

yi w⋅xi þ bð Þ−1≥0; ∀i: ð9Þ

This study used the SVMmodel to determine the quality of each test datum. A trained SVM
hyperplane was selected to separate the valid speakers from the imposters and to verify the ith
test speech frame xi. The index dSVM(xi), indicating the distance between the speech frame xi and
the SVM separating hyperplane, could effectively govern the degree of availability of the ith
speech frame xi. Figure 3 clearly shows themeaning of the index dSVM(xi) in the SVMseparation
hyperplane classification space.

3.2 Proposed EGMM-SVM

The quality of the test data obtained from a speaker for the GMM classifier calculation in the
recognition phase immediately affects the classification accuracy of the GMM classifier in the
online operational phase. As mentioned, inaccurate GMM recognition calculation caused by
inadequate test data with an indefinite class tendency is alleviated when the SVM classifier
evaluates the test data before performing theGMMclassification. Incorporating an SVMclassifier
into the GMM-based speaker recognition process to estimate the availability of test data before
recognition calculation further enhances the robustness of GMM speaker recognition.

In conventional GMM-based speaker recognition, the likelihood score of certain speech
frame is determined by Eq. (3). However, Eq. (3) does not show information about the quality of
the speech frame xi revealed. For speaker recognition techniques, includingGMM, the quality of
test data for GMM classification calculation is the most crucial consideration. Inadequate test
data with an ambiguous class inclination would most likely lead to an unreliable estimate of
GMM likelihood scores, which inevitably jeopardizes the recognition performance of a speaker
recognition system. To address this problem, an EGMM-SVM method is proposed. EGMM-
SVM provides an effective formula for estimating GMM likelihood scores as follows:

f xi
���λs

� �
¼ dSVM xið Þ

C
⋅
X
j¼1

M

wj⋅bs j xið Þ; ð10Þ

where dSVM(xi) could be used to effectively govern the degree of availability of the ith speech
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frame, and xi is the distance between the speech frame xi and the SVM separating hyperplane;C
is a constant denoting the scaling factor of dSVM(xi).

In Eq. (10), ∑
j¼1

M
wj⋅bs j xið Þ denotes the likelihood score of the frame xi for a certain GMM,

λs, and the score could be precisely governed by the index dSVM (xi). In Eq. (10) the accuracy
of the likelihood score f (xi|λs) could be effectively regulated by the index dSVM (xi). When the
quality of ith speech frame xi is in doubt because it falls within the scope of the SVM margin
and the distance from the SVM hyperplane is small [i.e., dSVM (xi) is small], then the
unreliable GMM likelihood score is calculated due to this inadequate test data that have
indefinite class inclination. In this case, the GMM likelihood score should be less referenced.
Conversely, when a large dSVM (xi) is calculated, the ith speech frame xi is well-qualified, and
facilitates distinction between the valid and imposter speaker classes. In this case of standard
test data, more references should be given to the well-estimated GMM likelihood scores.

4 Experiments and results

In this study, speaker recognition is designed to include speaker verification and speaker
identification. The utterance from the test speaker is first evaluated for its validity and effectiveness in
speaker verification processing, and then sent to speaker identification processing for an identity
decision. The speaker recognition experiments were designed using an access control system

margin

H1: Valid speakers

0bxwy i

1)( bxwsign i

1)( bxwsign i

(SVM separation hyperplane)

speakersvalidofsidetheasclassifiedxframe i:

postersside of imtheasclassifiedxframe i:

H2: Imposters

)( iSVM xd

)( iSVM xd

Fig. 3 Index dSVM(xi) was derived from the SVM classification space for use in the GMM classifier calculation

Multimed Tools Appl (2015) 74:5131–5140 5137



application in which the test speaker was requested to speak his or her name as the access key.
Speaker recognition experiments contain two main phases: the training phase, in which SVM and
GMM classification models are established, and the recognition phase for the performance
evaluation of the proposed EGMM-SVM.

All the speech data were recorded in an office with a close-talking microphone. The speech
signal was sampled at 44.1 kHz and recorded on the mono channel with 8-bit resolution. The
analysis frames were 20-ms wide with a 10-ms overlap. For each frame, a 10-dimensional
feature vector was extracted. The feature vector for each frame was a 10-dimensional cepstral
vector.

The training data were collected from 27 male speakers. During speaker verification, 13
speakers were chosen as the valid speakers and 14 speakers were chosen as imposters. Each
of the 27 speakers was asked to offer 20 utterances of his or her name in Mandarin as the
training data for establishing the SVM. Training this SVM separation hyperplane involved
540 training utterances. In the speaker identification phase, the same 540 training utterances
from the same 27 speakers in SVM training were used for GMM establishments. Twenty-
seven GMM speaker models were trained, each of which represented the corresponding
identity of the speaker.

In the recognition and test phase, each of the 27 speakers in the training phase was again
requested to provide an additional 20 utterances of his or her name in Mandarin as test data,
which were divided into 27 test databases, DB–1 to DB–27, each of which contained 20
utterances from a specific speaker. Table 1 reveals the comparative recognition accuracy
between the conventional GMM without any evaluation scheme for the test data, and the
EGMM-SVMwith the support of SVM.Note that the parameterC denoting the scaling factor of
dSVM(xi) in Eq. (10) is a fixed constant, and its value is set in an empirical procedure to ensure

that dSVM xið Þ
C is not larger than 1. The proposed EGMM-SVM approach in Table 1 shows a clear

improvement in recognition performance. The EGMM-SVM achieves an average recognition
rate of 87.75 %, which is more efficient than the average recognition rate of 75.5 % in a
conventional GMM.

Table 1 A comparison of speaker
recognition accuracy between the
EGMM-SVM and the convention-
al GMM

Test data set Recognition rates (%)

Speaker recognition methods

EGMM-SVM Conventional GMM

DB-1 100 90

DB-2 100 100

DB-3 70 40

⋯ ⋯ ⋯
DB-13 95 70

DB-14 85 50

DB-15 85 50

⋯ ⋯ ⋯
DB-26 90 90

DB-27 90 80

AVG. 87.75 75.5
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5 Conclusion

This paper proposes an EGMM-SVMmethod to improve the conventional GMM used in web-
based speaker recognition applications. The proposed EGMM-SVM is an enhanced-version of
the GMM, which considers the quality of the test data by incorporating an SVM classifier when
performing GMM likelihood score calculations. EGMM-SVM speaker recognition is a GMM-
based speaker identification with the support of SVM speaker verification. Compared with the
conventional GMM scheme, which does not consider the appropriateness of the speaker’s test
data, EGMM-SVM is more comprehensive and achieves more efficient performance in
recognition accuracy.
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