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Abstract In this paper we propose an Improved Kernel Linear Discriminant Analy-
sis algorithm to analyze the distribution differences between cover images and stego-
images in the reduced dimensional space. We observe that the hidden information,
the information hidden in the cover images, of stego-images are clustered in a plane
while all other information of cover images are scattered more evenly in the whole
space and have no other clusters. Based on this fact, we develop a steganalysis scheme
to discriminate stego-images from innocent images. The experiment results show the
effectiveness of the propose approach.

Keywords Dimension reduction ·Data distribution ·Steganalysis

1 Introduction

Steganography is a technique for covert communication by embedding secret infor-
mation into a cover medium such as digital images. A cover image becomes a stego-
image when secret information is embedded into the cover image. As a counterpart
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of steganography, steganalysis [11, 14] is the method to detect the existence of stego-
images. There are two major kinds of steganalysis: specific steganalysis that can
detect a specific steganography, and blind(universal) steganalysis that can detect the
existence of hidden messages without knowing details of steganography algorithms.
Finding a suitable way to analyze the features of the stego-images is critical for
an efficient blind steganalysis method. The Probability Density Function (PDF)
moment and Characteristic Function (CF) moment are two typical statistic features
frequently used in blind steganalysis algorithms.

Steganalysis can be categorized as either active or passive. Estimation of the length
of embeddedmessages in stego-images is important to active steganalysis.Active ste-
ganalysis methods are powerful in length estimation such as in regular singular (RS)
and sample pairs analysis (SPA) steganalysis schemes, but they become invalid in
frequency domain. Passive steganalysis methods can discriminate stego-images from
suspicious images in both spatial and frequency domains, such as in Lyu and Fraid’s
[6] steganalysis scheme, but they cannot estimate the length of the hidden messages.

Lou et al. [5] proposed an active steganalysis algorithm which analyzes the
characteristics of histogram changes during the data embedding procedure to dis-
criminate cover images from stego-images. Their research [5] found that the original
histogram’s peak will disappear and becomes concave after data embedding. This
phenomenon is called “pair effect”. Ding and Ping [9] proposed a steganalysis
method based on the analysis of the pulse positions of histograms of cover and stego
speech. They found that although the influence of steganographic embedding differs
for different cover signals, the trend is that the pulse positions of the histogram be-
comes smoother after consistent embedding. Steganographicmethods randomize the
pulse positions distribution, therefore the pulse positions of the histogram for stego
signal is smoother than that of the cover signal. Xuan et al. [15] proposed a novel
steganalysis scheme which uses the adequate information of co-occurrence matrix to
capture the changes before and after data embedding. The energy differences be-
tween the gray-level co-occurrence matrix of the original cover image and the stego-
image are expected to be able to capture the changes caused by the data embedding.

Dimension reduction is a hotspot inmachine learning and data mining. Traditional
statistical approaches have difficulties in directly modeling data in high dimensional
spaces. Dimension reduction techniques play an important role in alleviating the
difficulty of high dimensional problems. Dimension reduction techniques can be
categorized as linear or nonlinear methods. Linear methods are limited to discov-
ering the structure of data lying on or near a linear subspace of the high dimensional
input space. The most widely used linear dimensional reduction methods include the
classic Principal Component Analysis (PCA) [8] and Linear Discriminant Analysis
(LDA) [1, 18]. These methods have been applied to a wide range of signal processing
problems such as feature transformation and signal analysis. A low dimensional
submanifold may have a highly nonlinear structure that linear methods could fail
to handle. Recently, a number of manifold learning (also referred to as nonlinear
dimensionality reduction) algorithms such as ISOMAP, LLE, Laplacian Eigenmap,
etc. have been proposed to overcome the limitations of linear methods. These meth-
ods have been successfully applied to a number of benchmarkmanifold problems and
have also been proved useful in several pattern recognition applications. In the past
few years, the kernel trick has also been widely applied to extend linear dimension
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reduction algorithms to nonlinear ones by a kernelmapping function. Linear discrim-
inant analysis (LDA) seeks to reduce dimensionality while preserving as much of the
class discriminatory information as possible. The limitation of LDA is that if the
distributions are significantly non-Gaussian, the LDA projections may not preserve
complex structure in the data needed for classification. Recently, the Gaussian scale
mixture (GSM) [7] has been proposed to model the natural images in wavelet
domain. Laplacian Eigenmaps find a low-dimensional data representation by pre-
serving local properties of themanifold. In Laplacian Eigenmaps, the local properties
are based on the pairwise distances among near neighbors. Laplacian Eigenmaps
compute a low dimensional representation of the data in which the distances between
a data point and its k nearest neighbors are minimized. Laplacian Eigenmaps
can mostly preserve the distances among nearest neighbors while maximizing the
distances among points that are not the nearest neighbors. Despite the success of
the LDA algorithm in many real world applications, it still has some drawbacks in
efficiency. For example, it cannot keep the intrinsic geometry property of data in
most cases and has limited efficiency in classifying sample data. In order to effectively
exploit favorable attributes of both LDA and Laplacian and avoid their unfavorable
ones, we try to solve the steganalysis problem in the graph embedding framework.
Graph embedding framework [17] can be used to develop new dimension reduction
algorithms to overcome the limitations of LDA. Another important aspect of dimen-
sion reduction is that if the high dimension is reduced properly, it will show great
values in pattern recognition and data visualization.

The contribution of this paper are as follows: (1)We propose a passive steganalysis
scheme to analyze the characteristics of distribution changing of the dimension
reduction space to discriminate the cover images from stego-images. (2) We develop
a new dimension reduction algorithm, i.e., Improved Kernel Linear Discriminant
Analysis (IKLDA), to extract the hidden information of stego-images and find that
they are clustered in a plane while cover images are scattered more evenly and have
no other clusters. The rest of the paper is organized as follows: Section 2 introduces
the IKLDA algorithms; Section 3 presents our experimental results; and Section 4
concludes the paper.

2 Algorithm

2.1 LDA algorithm and its improvement

LDA is a supervised method. It searches the project axes on which the data points
of different classes are as far from each other as possible while the data points of the
same class are as close to each other as possible. Suppose we have a set of samples
x1,x2,. . . xl ∈ Rd, which belongs to C classes, where d is the original dimension.
Regarding supervised learning problem, let z∈(1,2,. . . ,C) be a class label, where C is
the number of classes as mentioned above. Let X be the matrix representation of the
whole sample set, i.e., each sample is treated as a column of X. Let Y∈ Rr(1≤r≤ d) be
the projection of X, where r is the dimension of the lower dimensional space.We first
consider the linear dimension reduction methods. We define a d× r transformation
matrix α such that the low dimensional data representation Y is given by: Y = αTX.
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The goal of LDA is to look for a transformation matrix α to characterize the intra
class compactness and the inter class separability, i.e., to find αlda such that

αlda = argmax
αTSbα
αTSwα

(1)

Sb =
c∑

k=1

lk(uk − u)(uk − u)
T

(2)

Sw =
c∑

k=1

(
lk∑

i=1

((xki − uk)(xki − uk)
T
)

)
(3)

St =
l∑

i=1

(xi − u)(xi − u)T (4)

St = Sb + Sw

where u is the total sample mean vector, lk is the number of samples in the k-th class,
uk is the average vector of the k-th class and xki is the i-th sample in the k-th class,
Sw is called intra class scatter, a metric to measure intra-distances and Sb is called
inter class scatter, a metric to measure the inter-distances. So, the purpose of LDA
is to find a transformation matrix αlda to maximize the linear separability of data
points belonging to the different classes while minimize the linear compactness of
data points within the same classes.

The maximization problem of obtaining αlda in (1) can be converted to solve the
following generalized eigenproblem:

Sbφ = λSwφ

Let {φk}dk=1 be the eigenvectors of the generalized eigen problem corresponding to
the eigenvalue λk, where λ1 ≥ λ2 ≥ . . . ≥ λd. Then, the eigenvectors [φ1, φ2 . . . φd]
form the columns of the linear transformation matrix αlda and Y can be computed
by mapping X onto the linear basis matrix αlda. That is,

Y = αT
ldaX

In order to improve LDA on the ground of graph embedding framework, intra class
scatter Sw can be transformed to pairwise expressions. As uk is the average vector of
the k-th class, i.e.,uk = 1

lk

∑lk
j=1 x

k
j , (u

k)T = 1
lk

∑lk
i=1 x

k
i , from (3), we obtain:

Sw =
c∑

k=1

(
lk∑

i=1

(
(xki − uk)(xki − uk)

T
))

=
c∑

k=1

lk∑

i=1

xki (x
k
i )

T −
c∑

k=1

1

lk

lk∑

i, j=1

xki (x
k
j )

T

= 1

lk

c∑

k=1

lk∑

i, j=1

xki (x
k
i )

T − 1

lk

c∑

k=1

lk∑

i, j=1

xki (x
k
j )
T

= 1

2 × lk

l∑

i, j=1

(
xi(xi)T + x j(x j)

T − xi(x j)
T − x j(xi)T

)

= 1

2 × lk

l∑

i, j=1

(xi − x j)(xi − x j)
T (5)
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For the same reason, inter class scatter Sb has also a pairwise expression. As μ is
the total sample mean vector, i.e., μ = 1

l

∑l
j=1 x j, μT = 1

l

∑l
i=1 xi. From (2), we have:

Sb = St − Sw

=
l∑

i=1

(xi − μ)(xi − μ)T − Sw

=
l∑

i=1

xixiT − 1

l

l∑

i, j=1

xix j
T − Sw

= 1

l

l∑

i, j=1

xixiT −
l∑

i, j=1

xix j
T − Sw

= 1

2 × l

l∑

i, j=1

(xi − x j)(xi − x j)
T − 1

2 × lk

l∑

i, j=1

(xi − x j)(xi − x j)
T (6)

In the process of deduction of (5) and (6), a connotative condition that xi and
x j belong to the same class has been added, because neighbor points are mostly
possible in the same class labels. In graph embedding framework, we combine the
advantage of Laplacian method that nearby points remain nearby and far apart
points remain far apart in dimension reduction and the advantage of LDA method
that concentrating the points of intra-classes and repulsing the points of inter-classes.
To this end, we employ the matrix representation of the graph G which takes the
samples xi(i = 1 . . . l) as its vertices. We denote by W=(Wi, j) the representation
matrix of G, i.e., Wi, j =1 if xi and x j are neighbors; otherwise, Wi, j = 0. That is,

Wi, j =
{

1 i f xi ∈ Nk(x j) or x j ∈ Nk(xi)

0 else
(7)

where Nk(xi) denotes the set of k nearest neighbors of xi. Equation (7) can be
upgraded to Euclidean distance based on Gaussian distribution. Wi, j is defined by:

Wi, j =

⎧
⎪⎨

⎪⎩
exp

(
−‖xi − x j‖2

δiδ j

)
i f xi ∈ Nk(x j) or x j ∈ Nk(xi)

0 else

(8)

where δi = ‖xi − xi(k)‖, in which xi(k) is the k-th nearest neighbors of xi. The
diagonal matrix D and the Laplacian matrix L of a graph G can be defined as:

L = D−W;Dii =
∑

i�= j

Wi, j (9)

The idea of the algorithm of graph embedding framework is to find an appropriate
low dimensional representation which can keep the neighborhood property of the
vertices of the graph G. Let Y=[y1,y2,. . . ylk ]

T be the low dimensional space to
be found, where yi is the low dimensional representation of vertex xi. The data
points in embedding space should have the same geometric properties as that of the
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original data. For example, the k-nearset points of yi in the embedding space should
corresponding to the k-nearset points of xi. As consequence, the nearby points in the
high dimensional space are also projected to nearby points in the low dimensional
representation. In fact, a rough low dimensional representation can be obtained by:

Y =argmin
yT By = d

∑

i�= j

‖yi − y j‖2Wi, j=argmin
yTBy = d

yTLy (10)

where d is a constant and B is a constraint matrix to avoid multi-solutions. To obtain
a better result, we need to find a more suitable projection matrix, still denoted by w,
which satisfies Y= xTw. w can be obtained by optimizing the following equation.

W = argmin
wTxBxTw = d

∑

i�= j

‖wTxi − wTx j‖2
Wi, j

= argmin
wTxBxTw = d

wTxLxTw (11)

where x is the matrix of taking the samples xi(i = 1 . . . l) as its columns as mentioned
above.

2.2 Kernel LDA algorithm

The algorithms mentioned above are linear methods which are usually not good
for the classification problems with nonlinearly distributed data. Therefore, it is
necessary to introduce a new kernel trick to handle data with nonlinear distributions.
In machine learning, the use of the kernel functions has been introduced to find
a close-to-optimal projection based on different sample distributions. The kernel
matrix implicitly maps the data into a nonlinear feature space. The choice of the
kernel is crucial to incorporate a priori knowledge in application. Each kernel
can be expressed as: k(x,y)=< φ(x), φ(y) >, in which < φ(x), φ(y) > is the scalar
product,where φ(x) is a dimensional elevating mapping. We call the dimensional
elevated space as the Reproducing Kernel Hilbert Space (RKHS). Examples of
kernels are as follows:

⎧
⎪⎪⎨

⎪⎪⎩

Gaussian : k(x, y) = exp
(
−‖x−y‖2

2δ2

)

Polynomial with degree d : k(x, y) = (c+ 〈x, y〉)d
Sigmoid : k(x, y) = tanh(〈x, y〉 + α)

(12)

In this paper, we choose Gaussian kernel k(x,x’)= exp

(
−‖x−x

′ ‖2

2δ2

)
, δ > 0 as the

kernel function and denote as ki, j = k(xi, x j) =< φ(xi), φ(x j) >.
To obtain an even better projection matrix, we consider the following optimization

problem:

β = argmin
wTkBkTw = d

∑

i�= j

‖βTki − βTk j‖2
Wi, j

= argmin
wTkBkTw = d

wTkLkTw (13)
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where ki indicates the i-th column vector of the kernel gram matrix K and w is
defined in (11). The solutions of (13) can be converted to the following generalized
eigenvalue problem:

KBKβ = λKLKβ (14)

where L is defined in (9). To obtain the weight coefficient Sweightw of intra class scatter
matrix, we need to optimize Sw in (5) and the expression of Sweightw is as follows:

Sweightw = 1

lk
(15)

Similarly, optimizing (6) we can obtain the solution of Sb as follows:

Sweightb = 1

l
− 1

lk
(16)

We cannot directly solve the generalized eigenproblem of (14), since it is ill posed
as mentioned in KLK [12]. Instead, we solve its following regularization problem:

KBKβ = λ(KLK + εI)β (17)

where ε is a constant with small value. As mentioned above, the core idea of our
IKLDA is to combine the advantages of LDA and Laplacianmethod. That is, the ad-
vantage that the nearby points remain nearby and far apart points remain far apart in
dimension reduction and the advantage that concentrating the points of intra-classes
and repulsing the points of inter-classes. In fact, the former advantagemeans that the
intrinsic geometric property of the data is well preserved during dimension reducing.
In addition, the weights Wi, j defined in (8) means that the influence of the data on
Sweightw and Sweightb may be reduced as the increase of the distances among the points
of the data.

Many improvements of LDA algorithms are based on the redefinitions of weight-
ing factors of Sweightw and Sweightb . For example, Loog et al. [4] proposed a criterion
called approximate pairwise accuracy (aPAC); Sugiyama [12] proposed the LFDA
algorithm by setting S

′
w = 1

lk
Sw ,S

′
b = 1

l Sb + (1 − 1
lk
)eleTl + 1

l elke
T
lk; Yan et al. [16]

proposed a cluster algorithm, named ICBKM, by setting S
′
w = I − ∑c

k=1
1
lk
elkeTlk,S

′
b =

∑c
k=1

1
lk
elkeTlk − 1

l ele
T
l

According to (15)–(17), we redefine the weight factors Sw and Sb as follows:

⎧
⎨

⎩
S

′
w = α

√
1
lk
KLK where 0 < α < 1;Dii = ∑

i�= j Wi, j; L = D−W

S
′
b = (1 − α)

(√
1
l − 1

lk

)
KLK same as above

(18)
Equation (17) can be expressed as follows:

S
′
bβ = λ(S

′
w + εI)β (19)
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Form the above (8), (9), (12), (18), (19), we obtain the following optimization
equation of our IKLDAmethod:

(1 − α)

(√
1

l
− 1

lk

)
KLKβ = λ

(
α

√
1

lk
KLK + εI

)
β (20)

where K= exp(−‖x−x
′ ‖2

2δ2 ), L is defined in (9).
Let {βi}ri=1 be the eigenvectors of (20) corresponding to the leading eigenvalues

λ1 ≥ λ2 ≥ . . . ≥ λr. The reduced dimension Y of the data points in X is thus can be
given by Y= βTK.

For the sake of completeness we will use correlation dimension to describe the
assumed inner structure. Intrinsic dimensionality is the minimum number of para-
meters that is necessary account for all information in the data. It is hard to say how
many dimensions are appropriate to describe the data set in real world applications.
The fewer dimensions, the fewer properties that may fall short of describing the
abundance of images, and thereforemay lead tomisclassification. However, themore
the dimensions the feature vector has, the higher probability the redundancy and de-
pendency exists. Usually, such redundancy or dependency of the feature vector tends
to induce misclassification. Techniques for intrinsic dimensionality estimation can be
divided into two groups: those based on local properties, and those based on global
properties of the data. Local intrinsic dimensionality estimators are based on the fol-
lowing principle: the number of data points covered by a hypersphere around a data
point with radius r grows proportional to rd, where d is the intrinsic dimensions. So d
can be estimated by measuring the number of data points covered by a hypersphere
with a growing radius r.

Correlation dimension estimator [2] is roughly one kind of local estimator, the
relative amount of data points in a hypersphere with radius r are as follows:

C(r) = 2

n(n− 1)

n∑

i=1

c∑

j=i+1

c where c =
{

1 i f‖xi − x j‖ � r

0 i f‖xi − x j‖ > r
(21)

We use C(r) to estimate the dimensions d:

d = limr→0
logC(r)

log r (22)

It is pretty hard to solve (22), so we use the following expression instead:

d̄ = log(C(r2)− C(r1))

log(r2 − r1)
(23)

By (23) we calculate the intrinsic dimensions and get 2.91741 in the steganalysis
data set.

3 Experimental results

The purpose of this section is to verify the efficiency of our IKLDA method in
steganalysis by observing the difference of the distributions between stego-images
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and cover images of the dimension reduced data. The experimental results show that
the detective rate of steganalysis is also increased.

To this end, we implement two groups of experiments. The first group involves five
data hiding methods and the second includes one data hiding method. We take 1096
sample images from different picture sets, such as Nature, Ocean, Food, Animals,
Architecture, Places, Leisure, Misc, of CorelDRAW Version 10.0 software CD�3
to complete the first group of experiments. The following five typical data hiding
methods [11] are used in our first group of experiments: Cox et al.’s non-blind SS,
Piva et al.’s blind SS, Huang and Shi’s 8 by 8 block SS, a generic QIM (0.1 bpp(bit per
pixel)), and a generic LSB(0.3 bpp, both the pixel position used for embedding data
and the to-be-embedded are randomly selected). For each sample cover image, five
stego-images are generated with these five data hiding methods, respectively. For
all the data hiding methods, different random signals are embedded into different
images. The evaluation of the proposed steganalysis system is hence more general.

Shi et al. [11] use the statistical moments of the characteristic functions of wavelet
subbands as features for steganalysis. The characteristic function (CF) and the PDF
(here, histogram) are similar to a Fourier transform pair. We denote the histogram
by h(x j), and the characteristic function by h( fk),The n-th statistical moment of a
characteristic function Mn is defined as follows:

Mn =
∑N/2

k=1 f nk |H( fk)|
∑N/2

k=1 |H( fk)|

where H( fk) is the magnitude of the CF.
In order to handle the noise introduced by data hiding, Shi et al. [11] proposed to

predict each pixel grayscale value in the original cover image by using its neighboring
pixels’ grayscale values, and obtain the prediction-error image by subtracting the
predicted image from the test image. If the hidden data are unrelated to the cover
media, the prediction-error image can remove all other informations other than that
caused by data hiding and this makes the steganalysismore efficient. Fortunately, the
hidden data are usually unrelated to the cover media.

In this first group of experiments, each test image is applied with Haar wavelet
transformation three times to obtain a 3-level decomposition. For each level, there
are four subbands, resulting in 12 subbands in total. If the original image is referred
to level-0 LL subband, we have a total of 13 subbands. For each subband, the first
threemoments of characteristic functions are derived, resulting in a set of 39 features.
Similarly, for the prediction-error image, another set of 39 features can be generated.
Thus, a 78-Dimention feature vector is produced for a test image. In fact, the exper-
iments show that using more than three-level wavelet decomposition and employing
more than the first three order moments cannot further improve the steganalysis
performance other than leading to higher computational complexity. Hence the 78-
Dimention feature vectors are used in this proposed steganalysis system.

We use the Improved Kernel Linear Discriminant Analysis algorithm to project
the sample image data onto R3 which is good enough for image steganalysis.
Figures 1, 2, 3, 4 and 5 show the spatial distributions obtained from IKLDA to
capture the statistical differences between cover images and stego-images. All the
results show that the distributions of the projected stego-images are exactly clustered
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Fig. 1 Cox et al.’s spread spectrum

in a plane, respectively, while the distributions of the projections of all cover images
are scattered more evenly and have no other clusters. Based on this distribution
analysis, we get a 100 % detective rate after further projecting the projected data
in R3 into one dimensional space.

Any image is decomposed into four subimages after applying a wavelet transfor-
mation and the four subimages are called horizontal, vertical, diagonal and lowpass
subbands, respectively, and denoted by H-subband, V-subband, D-subband and
L-subband, respectively.

In the second group of experiments, we also test IKLDA for other data sets. To
complete the second group of experiments, we choose a number of 1813 gray-scale
JPEG images which are 256 × 256 pixel and are embedded data by using steghide
[10](a steganographymethod that is able to hide data in various kinds of images).We
first fuse the feature space for each data set by two different methods to produce a to-
tal of 150 features. The first 72 features are from the method of Lyu and Farid [6] and
the remaining 78 features are from the method of Shi et al. [11]. The first 72 features
include the mean, variance, skewness and kurtosis of the subbands H1, V1, D1, H2,
V2, D2, H3, V3, D3, EH1, EV1, ED1, EH2, EV2, ED2, EH3, EV3, ED3, where H1,
V1, D1, H2, V2, D2, H3, V3, D3 are the H-subbands, V-subbands and D-subbands
obtained by applying wavelet transformation three times and EH1, EV1, ED1, EH2,
EV2, ED2, EH3, EV3, ED3 are corresponding to that of the prediction-error image.
We arrange these 72 features as follows: 1:meanV, the mean of V1, 2:meanH, 3:me-
anD, 4:varV, 5:varH, 6:varD, 7:kurV, 8:kurH, 9:kurD, 10:skeV, 11:skeH, 12:skeD,
13:meanEV, 14:meanH, 15:meanED, 16:varEV, 17:varEH, 18:varED, 19:kurEV,
20:kurEH, 21:kurED, 22:skeEV, 23:skeEH, 24:skeED. Similarly, the corresponding
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Fig. 2 Piva et al.’s spread spectrum
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Fig. 3 Huang and Shi’s spread spectrum

values of the second level and third level are put into components from 25th to
48th and from 49th to 72nd, respectively. The rest 78 features are as follows: 1st–
3rd features are the mean, variance and kurtosis of the original images; 4th–6th
features are the mean, variance and kurtosis of the prediction-error image; from
7th to 42nd is followed by the means, variances and kurtosises of the H-subbands,
V-subbands, D-subbands and L-subbands LLi, HLi, LHi, HHi, i=1,2,3, obtained by
applying Haar wavelet transformation three times, say meanLL1, varLL1, kurLL1,
meanHL1, varHL1, kurHL1, meanLH1, varLH1, kurLH1, meanHH1, varHH1,
kurHH1, meanLL2, varLL2, kurLL2, meanHL2, varHL2, kurHL2, meanLH2,
varLH2, kurLH2, meanHH2, varHH2, kurHH2, meanLL3, varLL3, kurLL3,
meanHL3, varHL3, kurHL3, meanLH3, varLH3, kurLH3, meanHH3, varHH3,
kurHH3; finally, from 43rd to 78th positions the values of the prediction-error image,
corresponding to that from 7th to 42nd.

We index +1 for any original image and −1 for any stego-image. The following
experiments show the efficiency of IKLDA for steganalysis after projecting the
above 150 features onto R3, by comparing the difference between the cover image
and the stego-image, obtained by steghide, in the reduced dimensional space.

In order to show how IKLDAworks, we consider two of its important parameters
ε and α in (20) and their functions of impacting on the distributions of features of the
cover images and stego-images in the reduced dimension. ε is a small constant. By
fixing α and changing ε, we get feature clouds for steganalysis: from Fig. 6a–f we can
observe that the less value of ε,the farther between the inter-classes and the closer
in intra-classes. But with ε decreasing, a downturn appears; after that, a better result
shows up again.
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Fig. 6 The distributions of IKLDA with the changing of parameter ε
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Fig. 7 The distributions of IKLDA with the changing of parameter α

Similarly, Fig. 7a–d are obtained by fixing ε and changing α in (20). The feature
clouds of Fig. 7a–d show that, with the increasing of α, the samples in one intra-
class are getting closer while samples in the other intra-class are getting farther. The
samples between inter-classes are also getting farther.

In the second group of experiments, we still compare IKLDA with other dimen-
sion reduction methods [13] to show the efficiency of IKLDA. The goal is to find out
which method can map the input data into a feature space in which samples from
different classes can be clearly separated.

The possibilities of distributions can be classified into three cases: (1) the distances
of the samples among inter-classes are maximized while that of intra-classes are
maximized as well; (2) the distances of the samples among inter-classes are max-
imized while that of intra-classes are minimized; (3) the distances of the samples
among inter-classes are minimized while that of intra-classes are minimized. From
the following experiments we can get their corresponding distributions where Fig. 8a
is the reduced dimension space obtained from IKLDA(ε = 0.0001) which can
maximize the distances of the samples among inter-classes while minimize that of
intra-classes. Figure 8b is the reduced dimension space obtained from Laplacian
eigenmap which can get a nice symmetry geometry structure but fail in maximizing
the distances of the samples among inter-classes. Figure 8h is the reduced dimension
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Fig. 8 The distributions of different dimension reduction methods

space obtained from Isomap, Fig. 8d is the reduced dimension space obtained from
Diffusion Map and Fig. 8e is the reduced dimension space obtained from LTSA,
they show that their methods can minimize the distances of the samples among
intra-classes but fail in maximizing that of inter-classes. Figure 8c is the reduced
dimension space obtained from Hessian LLE, Fig. 8f is the reduced dimension
space obtained from LDA, Fig. 8g is the reduced dimension space obtained from
PCA, Fig. 8i is the reduced dimension space obtained from LFDA, Fig. 8j is the
reduced dimension space obtained from MDS, Fig. 8k is the reduced dimension
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Fig. 8 (continued)

space obtained from LPP and Fig. 8l is the reduced dimension space obtained from
LPP’s kernel extension called KLPP, they cannot get favorable results either. The
distributions of visualization experiments show that our new IKLDA algorithm gets
better performance in our steganalysis scheme and is better than the other traditional
dimension reduction methods.

Most important of all, we should investigate the way the reduced dimensional
space by our improved kernel linear discriminant analysis algorithm will work for
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the image steganalysis. We compare this phenomenon with that of Kocal’s to the
best of our knowledge. Since Koçal et al. [3] found chaotic-type features for speech
steganalysis where Lyapunov exponents (LE) and fraction of false neighbors (FNFS)
have been used as chaotic features to detect the existence of the speech stego signal.
The rest may be deduced by analogy, considering that data hiding within a speech
signal can distort the chaotic properties of the original speech signal. Although there
is no direct evidence for the existence of chaotic phenomena in image signals, which
linear modeling cannot cover, there should be self-similar distribution in typical
natural images. We would like to call this inner structure a possible fractal structure.
Data hiding within image signals has distorted this inner structure and characteristic
distribution of these signals, resulting in a change in distribution characters of the
reduced dimension. Exploring this changemade by data hiding can lead to the design
of a learning-based steganalyzer.

Furthermore, the data-hiding affects the neighborhood distances between cover
and stego-images in the proposed reduced dimension. The details of the data hiding
effects can be shown in the above mentioned experiments. In speech steganalysis,
some similar patterns come into effect that there is more significant distinction
between cover and stego speech signals in phase space representation than in time-
series representation. Accompanied with the image steganalysis, the reduced dimen-
sional feature can uncovermore useful information if proper reduction algorithm has
been proposed.

In order to go a step further and explore our steganalysis schema in another way,
we take speech steganalysis in phase space for example. The Lyapunov exponent, a
quantitative measure for the divergence of nearby trajectories, should be calculated
for all of the nearest neighbor pairs on different trajectories. A positive exponent
means that the trajectories, which are initially close to each other, move apart over
time (divergence); while for negative exponents, the trajectories move closer to each
other (convergence); the magnitude of the exponent determines how rapidly the
trajectories move. In image steganalysis our IKLDA is to maximize the distances
of the samples among inter-classes and minimize that of intra-classes in the proposed
reduced dimension space, and the key parameters in (20) act as the ratio to control
how well this process will go, just as the Lyapunov exponent does in speech
steganalysis.

As explained above, a new steganalysis scheme is proposed which focuses on the
alteration and differences of statistical self-similarity features of stego-images which
are formed by embedding algorithms, and has something to do with the distribution
characters of stego-images. We believe that the proposed reduced dimensional space
can act as characterization and modeling of image steganalysis and have the same
effect as the phase-space used to distinguish stego-signals from cover signals in
speech steganalysis.

4 Conclusions

In this paper, we propose an Improved Kernel Linear Discriminant Analysis al-
gorithm to analyze the distribution difference between the cover image and the
stego-image in the dimensional reduced space. We observe that after dimension
reduction the steganographically embedded hidden information in stego-images are
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clustered in a plane while all other information of cover images are scattered more
evenly in this space and have no other clusters. Based on this fact, we develop a
passive steganalysis scheme to discriminate stego-images from innocent images. The
experiment results verify the effectiveness of the propose approach.
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