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Abstract As a natural extension of surface parameterizaiton, volumetric parame-
terization is becoming more and more popular and exhibiting great advantages in
several applications such as medical image analysis, hexahedral meshing etc. This
paper presents an efficient volume parameterization algorithm based on harmonic
1-form. Our new algorithm computes three harmonic 1-forms, which can be treated
as three vector fields, such that both the divergence and circulation of them are zero.
By integrating the three harmonic 1-forms over the entire volumes, we can bijectively
map the volume to a cuboid domain. We demonstrate the power of the technique by
introducing a new application, to transfer the interior structure during the morphing
of two given shapes.
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1 Introduction

Parameterization technique has been an important role in computer graphics com-
munity for decades. The initial driving force of parameterization technique was
texture mapping, to enhance the visual quality of polygonal models. Later on, other
applications such as surface approximation and remeshing have stimulated further
developments as the quickly developing of 3D scanning technology demanding for
efficient compression methods of increasingly complex triangulations.

There have been a lot of surface parameterization techniques after decades de-
velopment. However, the volumetric domain has not drawn too much attention until
recently. In fact, most real-world shapes are volumetric. The needs for volumetric
parameterization is ubiquitous in various research fields. In medical imaging, for
example, the registration between two 3D image data sets can be reduced to building
a map between their underlying parameter domains. In finite element simulations,
hexahedral meshes are a highly desired representation for volumes, while such a
mesh can be easily built out of the parameterization using certain canonical domains.

In this paper, we present a harmonic 1-form based volumetric parameterization
algorithm. Our volumetric parameterization algorithm computes three harmonic 1-
forms, which can be treated as three vector fields, such that both the divergence and
circulation of them are zero. By integrating the three harmonic 1-forms over the
entire volumes, we can bijectively map the volume to a cuboid domain. Compared
to the existing volume parameterization techniques, e.g., [23, 31, 32], the proposed
algorithm is efficient, because intrinsically, the algorithm is to solve sparse linear
systems. Furthermore, the resulted parameterization is guaranteed to be bijective
and singularity free.

We demonstrate the power of our algorithm by introducing a new application: to
transfer the interior structure during the morphing of two given shapes. Morphing is a
very popular technique in computer graphics, various algorithms have been proposed
to realize and improve such a special effect. However, to our knowledge, all the
existing methods focus on the generation of the intermediate shapes between two
given surface models. No work has been done on the transfer of internal structure
of intermediate shapes. In fact, it is highly desirable to transfer the internal structure
during shape transformation. For example, it can be used to show how the skeleton
changes when a person grows up from a child to an adult in medical applications, or
how the specie evolves in biology applications.

Equipped with the 1-forms volumetric parameterization technique, we can realize
a framework for transfer of the interior structure. Given the source shape M1, let
∂M1 denote the boundary surface and I1 ⊂ M1 the interior structure of interests. The
target shape S2 is given by the boundary surface ∂M2. We first find a bijective map φ :
∂M1 → ∂M2 between boundary surfaces ∂M1 and ∂M2. Then we find the bijective
map between two volumes ψ : M1 → M2 using the boundary map constraint φ, such
that ψ |∂M1 = φ. Next, the interior structure I1 is transferred to M2 using the volume
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Fig. 1 The volume parameterization induces the transfer of the interior structure between the
human head and gorilla head

parameterization ψ . An as-rigid-as-possible deformation method is applied to avoid
the artifacts near the boundary surface. We finally generate the interior structure
of each intermediate shape by linear interpolation. Figures 1, 9, 10 are some results
generated with our framework.

The main contributions of this paper includes:

– We propose a harmonic 1-form based method to parameterize topological ball to
a cuboid domain. The proposed method is efficient and can guarantee the map
to be a diffeomorphism.

– We develop a framework that can transfer the interior structure between two
genus-0 handlebodies. By taking advantage of the diffeomorphism property of
the volume parameterization and an as-rigid-as-possible deformation method,
the transfer is smooth and free of artifacts.

The rest of this paper is organized as follows. We briefly review the related work in
Section 2 and introduce the theoretical background of harmonic forms in Section 3.
We present the harmonic 1-form based volume parameterization in Section 4.
Section 5 shows the framework of interior structure transfer. The experimental
results and discussions are presented in Section 6. Finally, we conclude our work
and highlight the future work in Section 7.

2 Related work

2.1 Surface parameterization

Surface parameterization has been extensively studied in the past decades. The
survey papers by Sheffer et al. [18] and Floater and Hormann [5] are good refer-
ence for general interests. Harmonic map is an important technique that maps a
topological disk to a convex 2D domain [9, 10, 16]. To parameterize surfaces of
arbitrary topology, Gu and Yau pioneered the global conformal parameterization
that computes the holomorphic 1-form (a complex 1-form such that both the real and
imaginary parts are harmonic) for each cohomology class [8]. Tong et al. extended
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the space of harmonic 1-form that allows line singularities and singularities with
fractional indices and presented an algorithm to construct quadrilateral meshes [24].
Tarini et al. pioneered the concept of Polycube maps to minimize both the angular
distortion and area distortion [21]. Since then, various effects have been made for
Polycube maps construction [13] and application [14, 27, 28].

2.2 Volume parameterization

Due to its great potential in several applications such as solid texture mapping,
volumetric tetrahedralization for simulation and 3D image data process etc., volume
parameterization attracts more and more attentions. Recently, it has also been
adopted in data management of Wireless Sensor Networks(WSNs) to conquer the
failure of in-network data management schemes when facing with communication
voids in WSNs [17, 34].

Wang et al. generalized the surface harmonic map to volumes and derived the
formula of the the discrete harmonic map on tetrahedral meshes [26]. Li et al. used
the method of fundamental solution to solve the harmonic map between volumes in a
meshless manner [31, 32]. In sharp contrast to the surface harmonic map, volumetric
harmonic map can not guarantee the bijection even though the co-domain is convex.
Thus, the above methods may not work well for the interior structure transfer due to
the artifacts caused by the non-bijectivity.

Martin et al. presented a different way to parameterize volumes to cylindrical do-
main [23]. By choosing a 1-dimensional skeleton inside the volume, they solved a har-
monic map using the skeleton and the boundary surface as the boundary constraints.
Then, they traced the gradient field of the harmonic function and constructed a map
between the volumes and the cylinder. Although this method can produce a bijection,
the skeleton is the singularity of the constructed map. Furthermore, tracing the vector
field inside the volume is computational expensive.

Xia et al. [29] presented a technique for parameterizing star-shaped volumes
using the Green’s functions. They show that the Green’s function on the star
shape has a unique critical point and prove that the Greens functions can induce
a diffeomorphism between two star-shaped volumes. They developed algorithms to
parameterize star shapes to simple domains such as balls and star-shaped polycubes,
and demonstrated the technique in applications such as volumetric morphing and
anisotropic solid texture transfer.

Later on, Xia et al. [30] presented a volumetric parameterization for 3-dimensional
handlebodies that can be decomposed into the direct product of 2-dimensional
surface and a 1-dimensional curve. They first partition the boundary surface into
ceiling, floor and walls. Then harmonic field is computed in the volume with a
Dirichlet boundary condition. By tracing the integral curve along the gradient of
the harmonic function, the volume is parameterize to the parametric domain. The
method is guaranteed to produce homeomorphism for various handlebodies with
complicated topology, including topological balls as a degenerate case. Furthermore,
the parameterization is regular everywhere. The advantage of the method is demon-
strated in hexahedral mesh generation and volumetric check-board texture mapping.

Han et al. [11, 12] developed a method to construct layered hexahedral mesh
for shell objects based on the volumetric parameterization of shell space. Given a
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closed 2- manifold and the user-specified thickness, they constructed the shell space
using the distance field and then parameterized the shell space to a polycube domain.
The volume parameterization induced the hexahedral tessellation in the object shell
space. As a result, the constructed mesh was an all- hexahedral mesh that most of
the vertices are regular, i.e., the valence is 6 for interior vertices and 5 for boundary
vertices. The mesh also had a layered structure that all layers had exactly the same
tessellation.

Gregson et al. [6] presented a deformation-driven framework to build the vol-
umetric mapping between the input model and a PolyCube. Given an isotropic
tetrahedral mesh of an object, they firstly aligns the model’s surface normals with
one of the six global axes with a rotation-driven deformation while preserving shape
as much as possible. Then an position-driven deformation is applied to extract a
PolyCube structure from the sufficiently axis-aligned shape. The deformation gradi-
ents are propagated into the interior vertices during the two deformation step. From
the PolyCube structure and mapping between the input model and the PolyCube,
they can automatically generate good quality all-hex meshes of complex natural and
man-made shapes.

Nieser et al. [15] first designed a frame field with manual input from the designer,
then used the field to guide the interior and boundary layout of a volume parame-
terization. Finally, the parameterization and the hexahedral mesh are computed so
as to align with the given frame field. Theoretical conditions on the singularities and
the gradient frame-field are also derived.

Zeng et al. [35] presented volumetric colon wall unfolding, an efficient and
effective volumetric colon unfolding method based on harmonic differentials. The
method could be used for virtual colon analysis and visualization with valuable appli-
cations in virtual colonoscopy (VC) and computer-aided detection (CAD) systems.

Compared to the existing approaches, the proposed harmonic 1-form based
volume parameterization is efficient as the volumetric harmonic map [26] since it
only solves three sparse linear systems. On the other hand, it also guarantee the
parameterization to be diffeomorphic as the vector field tracing approach [23].

2.3 Shape morphing

Depending on the shape representation, shape morphing methods can be roughly
classified into two groups: boundary mesh methods and implicit surface method. The
former usually relies on an explicit parametrization between meshes, e.g. [1, 33]. The
shape is then transformed from one mesh to the other by moving points along the
parameterized paths of correspondence. Thanks to the explicit mapping, attached
properties such as color can also be transferred easily. The main limitation of these
methods is that they can not handle the change of topology well. In contrast, implicit
surface based methods (e.g., [3, 25]) can handle topology change elegantly and
thus gains more popularity. However, there are no mappings between points of
the different shapes in the transformation. Several methods have been proposed to
resolve the mapping problem for implicit morphing [4, 22].

Although there have been a lot of research efforts on morphing, none of them
discuss the transfer of internal structures. To our knowledge, our work is the first to
address this problem.

Multimed Tools Appl (2015) 74: 31 9–158 143



3 Theoretic background

This section presents the mathematical background of the discrete harmonic 1-forms
which will be used heavily in our volume parameterization algorithm. Suppose M is
a simplicial complex. We use [v0, v1, · · · , vn] to represent a n-simplex. For example,
vertex, edge, face and tetrahedron are simplecies.

3.1 Closed and exact forms

A k-chain γk is a linear combination of all k-simplices in M, γk = ∑
i ciσ

k
i . All

k-chains form a linear space, called the k dimensional chain space Ck. The k-
dimensional boundary operator ∂k : Ck → Ck−1 is a linear operator, defined as taking
the boundary of a k-chain,

∂k

(
∑

i

ciσ
k
i

)

=
∑

i

ci∂k(σ
k
i ),

where σ k
i goes through all k-simplicies in M. On each simplex,

∂k[v0, v1, · · · , vk] =
i∑

i=0

(−1)i[v0, · · · , ṽi, · · · , vk],

where [v0, · · · , ṽi, · · · , vk] represents the (k − 1)-simplex with vertices from v0 to vk

except vi.
A k-form is a linear function defined on the chain space, ωk : Ck → R,

ωk(γk) = ωk

(
∑

i

ciσ
k
i

)

=
∑

i

ciωk(σ
k
i ).

Sometimes, the action of ωk on γk is also denoted as < ωk, γk >. All k-forms form
a linear space, the so-called k-dimensional co-chain space Ck. The k dimensional co-
boundary operator dk : Ck → Ck+1 is a linear operator, defined as the dual operator
of the boundary operator ∂k+1,

< dkωk, γk+1 >=< ωk, ∂k+1γk+1 > . (1)

The above equation is called the Stokes formula.
Suppose ω is a k-form, then ω is an exact form, if there exists a (k − 1)-form τ , such

that ω = dk−1τ ; ω is a closed form, if dkω is 0. It can be verified easily that all exact
forms are closed. Let ω1 and ω2 are closed k-forms, if they differ by an exact k-form,
ω1 − ω2 = dτ , then they are cohomologous. All the cohomologous classes of closed
k-forms form the k dimensional cohomology group of M. Symbolicly,

Hk(M, R) = kerdk

imgdk−1
,

where kerdk represent the kernel of dk, which is the linear space of all closed k-forms;
imgdk−1 represents the image of dk−1, which is the linear space of all exact k-forms.
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3.2 Harmonic forms

Suppose M is embedded in R3, f : C0 → R is a 0-form on M, namely, a function
defined on vertices. Then f can be extended to a piecewise linear function on M.
The harmonic energy of f is defined as

E( f ) =
∫

M
|∇ f |2dv,

where ∇ f is the gradient of f , dv is the volume element on M. ( f is piecewise linear,
therefore ∇ f is well-defined on the interior points of all simplicies, the singular sets
of ∇ f is of zero measure, the integration is well defined.) A harmonic function is a
critical point of the harmonic energy.

Let [vi, v j] be an edge in M, θ
ij
kl represent the dihedral angle on edge [vk, vl] in the

tetrahedron [vi, v j, vk, vl]. The edge weight on [vi, v j] is defined as

wij =
∑

kl

lij cot θ ij
kl.

where lij is the edge length of [vi, v j]. Let f be a 0-form, then discrete Laplacian of f
is a 1-form, defined as


 f (vi) =
∑

j

wij( f (v j) − f (vi)) =
∑

j

wijω([vi, v j]).

where ω = df . It can be easily verified that harmonic functions have zero Laplacians.
Suppose ω is a closed 1-form, ω is harmonic if locally it is the discrete derivative

of a harmonic function. Namely,

∀i,
∑

j

wijω([vi, v j]) = 0.

According to Hodge theorem [7], there exists a unique harmonic 1-form in
each homologous class in H1(M, R). Our work focuses on finding three different
harmonic 1-forms on M, whose existences are guaranteed by Hodge theory.

4 Harmonic 1-form based volume parameterization

Given a genus-0 handlebody M = (V, E, F, T) where V, E, F and T are the vertex,
edge, face and tetrahedron sets respectively, the volume parameterization ψ : M →
R

3 is to assign a triplet (u, v, w) to each mesh vertex.
Inspired by the global conformal parameterization [8] in which an exact harmonic

1-form and its conjugate are computed for each homotopy class, we parameterize
the genus-0 handlebody as follows: first, we partition the boundary surface ∂M into
six patches, namely, front, back, top, bottom, left and right sides. Then, we compute
two harmonic functions u and v using the front-back and left-right sides as Dirichlet
boundary conditions. Next, we compute an non-exact harmonic 1-form dw using the
top-bottom constraint. We solve an optimization problem that scales the three har-
monic 1-forms to make the three vector fields are locally as orthogonal as possible.

Multimed Tools Appl (2015) 74: 31 9–158 145



Finally, the parameters (u, v, w) are obtained by integrating the 1-forms over the
entire volume. The algorithm is shown in the following six steps, see also Fig. 2.

1. Partition the boundary surface into six patches.
2. Compute the harmonic 1-form using the front-back constraint.
3. Compute the harmonic 1-form using the left-right constraint.
4. Compute the harmonic 1-form using the top-bottom constraint.
5. Optimize the three harmonic 1-forms to make them as orthogonal as possible.
6. Integrate the three harmonic 1-forms over the entire volume to map it to a

cuboid.

The algorithmic details are shown in the following subsections.

4.1 Boundary surface partition

This step is to partition the boundary surface ∂M into six patches, �i, i = 1, · · · , 6,
which refer to front, back, left, right, top and bottom sides respectively. Although the
partition is quite arbitrary from the theory point of view, to reduce the distortion, we
do expect the partition follow the structure of the cuboid which is used as the para-
metric domain. Therefore, we parameterize the boundary surface ∂M into a polycube
which has very simple structure that facilitates the surface partition. In our imple-
mentation, we adopt the divide-and-conquer approach developed by He et al. [13].
With the polycube map, we allow the users to set the boundary patches by simple
mouse clicks on the desired polycube faces.

4.2 Computing the harmonic 1-forms ω0 and ω1

To compute the harmonic 1-forms inside the volume using finite element method,
we need to tetrahedralize the given shape M using tetgen [19]. Then we apply the
variational remeshing algorithm [2] to improve the mesh quality.

Fig. 2 Pipeline of the harmonic-1 form based volume parameterization. a Input model M. b The
polycube map of the boundary surface ∂ M. c Construct the tetrahedral mesh of M which is used
to solve the harmonic functions. d The left and right sides. e Volume rendering of the u parameter.
f The front and back sides. g Volume rendering of the v parameter. h Volume rendering of the w

parameter
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With the tetrahedral mesh, we first compute the harmonic function f0 : M → R

by solving the Dirichlet problem on the front and back sides, i.e., �1 and �2,
⎧
⎨

⎩

f0|�1 = 1
f0|�2 = 0

 f0(vi) = 0, vi �∈ ∂M

where 
 f0(vi) = ∑
j wij( f0(v j) − f0(vi)). The gradient ω0 = df0 is an exact harmonic

1-form.
Similarly, another exact harmonic 1-form ω1 can be computed by solving the

following Dirichlet problem on the left and right sides,
⎧
⎨

⎩

f1|�3 = 1
f1|�4 = 0

 f1(vi) = 0, vi �∈ ∂M

Again, the gradient ω1 = df1 is an exact harmonic 1-form.

4.3 Computing the harmonic 1-form ω2

Let h be a 0-form (i.e., a scalar function) on M, such that h|�5 = 1 and h|�6 = 0, h is
arbitrary on other vertices. Then we define a closed 1-form ω on M, such that

ω([vi, v j]) := dh([vi, v j]).
The harmonic 1-form ω is closed. Let ω2 be the unique harmonic 1-form on M
homologous to ω. Then ω2 and ω differ by an exact 1-form df2, where f2 is a 0-form.
By the harmonicity condition,

∑

j

wij( f2(v j) − f2(vi) + ω([vi, v j])) = 0,∀vi /∈ ∂M

the scalar function f2 can be uniquely determined by solving the linear system.
Therefore, harmonic 1-form ω2 = df2 + ω can be constructed.

4.4 Optimizing 1-forms

After computing the harmonic 1-forms ω0, ω1, ω2, we convert them to three piecewise
constant vector fields e0, e1, e2. Let ω be a closed 1-form, on each tetrahedron
[vi, v j, vk, vl], we find a vector e, such that

ω([vi, v j]) =< v j − vi, e >

We find three constants c0, c1, c2, such that the vector fields c0e0, c1e1, c2e2 locally
form a frame in R3; the frame is as close to an orthogonal frame as possible.
Therefore, we minimize the following energy:

E(c0, c1, c2) =
∑

i, j,k

∫

M
|cic jei × e j − ckek|2dv.

where {i, j, k} traverse all the cyclic permutations of {0, 1, 2}.
For convenience, we still use ω0, ω1, ω2 to denote the scaled harmonic 1-forms.
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4.5 Integration

The following integration algorithm flattens the volume M to a cuboid. We denote
the mapping as ψ : M → R

3.

1. Choose a base vertex v0 in �1, set ψ(v0) = (0, 0, 0). Put v0 in a queue.
2. While the queue is non-empty:

(a) Pop the head of the queue, denoted by v.
(b) Find all the neighboring vertices w.
(c) If w has not been accessed, compute

ψ(w) = ψ(v) + (ω0([v, w]), ω1([v, w]), ω2([v, w])).
(d) Put w in the queue.

Note that the above integration algorithm is simply the breadth-first searching
algorithm, thus, can be executed very efficiently.

4.6 Diffeomorphic property

The proposed harmonic 1-form based volume parameterization can guarantee that
the mapping is a diffeomorphism in the interior. We sketch the proof in the following.

Given the three harmonic 1-forms, ωi, i = 1, 2, 3, suppose dfi = ωi, where fis are
harmonic functions with Dirichlet boundary conditions. According to maximal value
principle, the harmonic functions fi reach extreme points on the volume boundary.
Thus, there is no extremal point in the interior. Therefore, for any harmonic function
fi, the gradient of fi, dfi is non-zero in the interior.

Harmonic 1-forms are closed, therefore, they are integrable. The Jacobian matrix
of the mapping (x, y, z) → ( f0, f1, f2) is given by (df0, df1, df2)

T . Assume at some
interior point p, the Jacobian matrix is degenerated, then there is a constant αk, such
that

α0du + α1dv + α2dw = (0, 0, 0)T ,

where αk’s are not all zeros.
Define f = α0 f0 + α1 f1 + α2 f2, then f is a harmonic function, and f is not

constant, because it has non-constant boundary values. But ∇ f (p) = 0, it has an
extremal interior point p, contradiction.

Therefore, the Jacobian matrix is of full-rank for all interior points. According
to inverse function theorem, the mapping is invertible. Because harmonic forms are
infinitely smooth, therefore, the mapping is a diffeomorphism.

5 Interior structure transfer

We have detailed the 1-forms based volumetric parameterization technique in
previous sections. In this section, we demonstrate the advantage of the new algo-
rithm by applying the technique to the transfer of interior structure during shape
transformation.

Figure 3 illustrates the flowchart of the interior structure transfer framework. We
firstly map the source surface ∂M1 and target surface ∂M2 onto a common polycube
domain which induces the consistent boundary partition of ∂M1 and ∂M2. Then,
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Fig. 3 Flowchart of interiror
structure transfer: first row, we
parameterize the two given
models onto polycube; second
row, we can then generate a
morphing sequence based on
the polycube
parameterization; third row,
we do volumetric
parameterization for the
source shape M1 and the
target shape M2; fourth row,
the interior structure I1 is
embedded into M1 and
transferred to M2 to generate
I2. The interior structure of
each intermediate shape is
then generated by linear
interpolation of I1 and I2

we parameterize M1 and M2 using the proposed volume parameterization method.
Next, we embed I1 into M1 and the volume parameterization transfers I1 to M2 . We
finally generate the interior structures of intermediate shapes by linear interpolation
between I1 and I2(the one transferred to M2).

To transfer the interior geometric structure I1 of shape M1 to shape M2, we firstly
embed I1 into M1 by calculating the parameterization coordinate of each vertex vi

on the interior structure according to the mapping f1 : (x, y, z) → (u, v, w):

u1
i = f1(x1

i )

The vertex position of each point in the transferred structure I2 could then be
computed by the inverse mapping f −1

2 : (u, v, w) → (x, y, z):

x2
i = f −1

2 (u1
i ) (2)

Due to the distortion in parameterization, direct update of the vertex position in
I2 with such a simple method may lead to artifacts as shown in the first row of Fig. 4.
We adopt a least-square strategy to update I2 so as to eliminate the artifacts.
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Fig. 4 Elimination of artifacts:
the f irst row shows the
artifacts generated in direct
update; the second row shows
the improved result with
as-rigid-as-possible update

The basic idea is to initialize I2 with I1 and then deform I2 in an as-rigid-as-
possible manner [20] with the vertex coordinate computed by (2) as position con-
straints. The surface of I2 is thought to be coverred with small overllapping cells, and
we try to find an ideal deformation that can keep the transformation for the surface
in each cell as-rigid-as possible.

We define a cell Ci as the one ring neighbour triangles of each vertices vi in I1. For
cell Ci and its deformed version C′

i, we could find an approximate rigid transforma-
tion Ri between the two cells by solving the following minimization problem:

E(Ci, C′
i) =

∑

j∈N(i)

wij ‖ (x′
i − x′

j) − Ri(x1
i − x1

j) ‖2,

The cotangent weight formula is used for the weighting wij = 1
2 (cotαij + cotβij).

Denote Mi = ∑
j∈N(i) wijeije′T

ij , the optimal rotation Ri could be derived from the
singular value decomposition of Mi = Ui

∑
i VT

i :

Ri = ViUT
i .

The detail derivation could be found in [20].
We seek to minimize the following objective function during the deformation

process:

E(S′) =
n∑

i=1

wi E(Ci, C′
i) +

n∑

i=1

‖ x′
i − x2

i ‖2 (3)
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The objective function consists of a rigid energy Er = ∑n
i=1 wi E(Ci, C′

i) and a posi-
tional energy Ep = ∑n

i=1 ‖ x′
i − x2

i ‖2. The partial derivatives of Er w.r.t v′
i could be

written as:

∂ Er

∂x′
i

=
∑

j∈N(i)

4wij

(

(x′
i − x′

j) − 1

2
(Ri + R j)(x1

i − x1
j)

)

We then arrive the following overdetermined linear system by setting ∂ Er
∂x′

i
= 0 and

∂ Ep

∂x′
i

= 0:

[
L

Wp

]

x =
[

r
b

]

(4)

L is the laplacian matrix of I2, Wp is a diagonal matrix filled by the positional
weighting wp. Both of them are n × n matrices, n is the number of vertices in I2.
ri = ∑

j∈N(i)
wij

2 (Ri + R j)(x0
i − x0

j) and bi = wpx2
i .

To minimize (3), we firstly estimate the local rotation Ri with the vertex position
calculated by (2) as the initial guess x′

0. New position x′
1 could be obtained by solving

the linear system (4). We can iterative apply the process to further minimize the
objective function. We conduct 5 iterations in our current implementation Because
the rigid transformations Ri only influence the right-hand side of the linear system,
the system matrix only depends on the initial mesh. Thus we can firstly factorize the
system matrix, and then perform back substitution only to solve the system.

6 Experimental results and discussions

We have implemented the techniques mentioned above with C++.
Figures 5, 6, 7 and 8 show extra volumetric parameterization results. Figures 1, 9

and 10 show more examples of interior structure transfer. Table 1 shows the statistics
of volume parameterization, the program is run on a Pentium Xeon 2.67GHz CPU
with 8.0G RAM. Compared with previous curve-tracing based method [12, 23, 29,
30], our method gains great advantage on efficiency. It only cost about half a minute
in total to parameterize a tetrahedral mesh with the size around 90,000 vertices.

Fig. 5 Volume
parameterization of pierrot
model
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Fig. 6 Volume
parameterization of maneki
model

Fig. 7 Volume
parameterization of moai
model

Fig. 8 Volume
parameterization of squirrel
model
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Fig. 9 Transfer of torso skeleton from venus body to armadillo body

Fig. 10 Transfer of knot structure from a sphere to a cube

Table 1 Statistics of harmonic
1-form based volume
parameterization

Figure Size Time (sec)

u v w

Figure 1 ∂ M1 90,031 3.9 3.7 15.3
∂ M2 90,022 3.7 3.8 21.9

Figure 5 90,001 3.9 4.3 25.3
Figure 6 90,050 4.2 3.9 22.6
Figure 7 90,013 3.5 3.3 16.0
Figure 8 90,039 3.2 3.7 21.1
Figure 9 ∂ M1 90,000 3.3 2.9 18.6

∂ M2 90,000 3.2 3.6 16.0
Figure 10 ∂ M1 90,004 3.9 4.1 18.8

∂ M2 90,010 3.8 4.0 24.6

Table 2 Statistics of interior
structure transfer

Figure Size Time (sec)

Figure 1 11,507 2.88
Figure 3 3,477 0.87
Figure 9 12,479 2.24
Figure 10 5,808 1.89
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Table 2 lists the statistics for the as-rigid-as-possible update of interior structure. The
optimization only cost several seconds.

6.1 Limitations

There are still several limitations in our algorithm. One need to be listed separately is
that our volumetric parameterization technique is only applicable for cuboid object.
Obvious distortion may present for object far from a cuboid such as the example
model shown in Figs. 7 and 8 (notice the large distortion of solid texture on the head
part of the moai model).

7 Conclusions

A novel framework for the transfer of interior structure during shape transformation
is presented in this paper. We firstly parameterize the source surface and the target
surface onto a common polycube domain and generate a morphing sequence based
on the correspondence of polycube map. We then generate tetrahedral mesh for both
surfaces and conduct a harmonic 1-form based volume parameterization to construct
a bijective mapping between the two volume space. After that, the interior structure
is transferred from the source to the target based on the volume mapping. Finally,
we generate the interior structures of intermediate shapes by linear interpolation
between the source interior structure and the target interior structure.
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