Multimed Tools Appl (2015) 74:63-83
DOI 10.1007/s11042-013-1497-6

Improving write amplification in a virtualized
and multimedia SSD system

Dingding Li - Hai Jin - Xiaofei Liao - Jia Yu

Published online: 15 June 2013
© Springer Science+Business Media New York 2013

Abstract Due to offering fast random-access disk I/O, it appears that solid-state
drives (SSD), which is based on NAND flash memory, can suit well with the
environment of cloud computing, especially for the cloud providing video streaming
services. However, by investigating a practical virtual desktop system, where runs
video streaming workloads, we find that importing this kind of SSDs into a virtualized
system is not as simple as merely a mechanical replacement. Because a large
proportion of disk I/O being included in the video streaming workload is write I/O,
the inherent weaknesses of NAND flash memory, write amplification (WA), will be
magnified in a guest operating system (OS). Worse, some useful remedies in a native
OS become disabled or inefficient due to the interposition of hypervisor layer. This
paper describes and analyzes these problems based on a practical virtual desktop sys-
tem, and then proposes a tailor-made method to relieve them. By evaluating realistic
user workloads and several typical benchmarks, the result shows that our method can
effectively improve these problems in our virtualized SSD system.

Keywords Solid state drive - Virtualization - Write amplification

1 Introduction

In a typical virtualized environment, host machine uses virtual machine monitor
(VMM or hypervisor) to multiplex the scarce hardware resource and then provides
guest operating systems (guest OS) with an exclusive illusion. In such a way, various
guest OSes can be consolidated into a single physical server, with strong isolation for
each other, thus improving the hardware utilization and power consumption.

D.Li(X) - H. Jin - X. Liao - J. Yu

Services Computing Technology and System Lab,

Cluster and Grid Computing Lab, School of Computer Science and Technology,
Huazhong University of Science and Technology, Wuhan, 430074, China
e-mail: dingly.hust@gmail.com

@ Springer

64 Multimed Tools Appl (2015) 74:63-83

However, there is a trade-off between these benefits and I/O performance [17].
If multiple guests are running I/O intensive workloads simultaneously, the related
1/O devices, with slower processing speed than CPU or memory subsystem, will be
quickly saturated. As a result, a performance bottleneck in the system is formed,
where severely disturbs the subsequent I/O operations.

Disk I/O is such a typical example [10]. Unfortunately, the common rotating disk
device (also called hard disk drive, HDD) will further deteriorate the above issue. In
a general case, different guests have different image files. When dealing with the con-
current I/O requests from different guests, the magnetic head of a rotating disk may
do irregular movement among the image files, even these I/O flows are logically se-
quential from the perspective of their own guests. Therefore, this fragmental pattern
produces random disk I/O and contradicts the physical characteristics of a rotating
disk device. Eventually, the virtualized system presents a poor disk I/O performance
to upper guest applications.

Instead of using electromechanical devices containing spinning disks and movable
heads, SSD is often built with microchips which retain data in non-volatile flash
memory chips and contain no moving parts [1]. In this way, access latencies are sub-
millisecond, thus exhibits high random access performance. By considering many
other advantages, such as lower power consumption, less susceptible to physical
shock, and less noise, SSD has the potential to revolutionize the storage system
landscape [19].

Nevertheless, SSD has its own Achilles’ heel—Write Amplification (WA). Due
to its inherent nature, flash memory must be erased before it can be rewritten.
Therefore, a rewrite operation may invoke an extra and undesirable process—
read-modify-erase-write, in which consumes the internal bandwidth inside the flash
memory and thus reduces the incoming write performance on SSD [9].

Although many researchers and manufactures have proposed many methods to
improve WA at device level [5], through a case study based on a virtualized SSD
system, we find three features could directly trap a guest OS into one severe and
interminable WA storm.

Application likes to write Compared with traditional applications, the proportion of
write I/O in modern ones is increasing. For an example, iPhoto [3], a typical desktop
multimedia application, can call £sync thousands of times in even the simplest of
tasks [11]. This feature can spawn many write operations in a moment.

Rewrite is everywhere This is caused by the fact that when a guest deletes a file from
its file system, the host file system only correspondingly delivers several block level
writes into the meta data portion of guest image file to update the related blocks [12].
This action does not physically erase any data at host-level. In this way, after a guest
image file is exhausted its specified capacity, any writes from this guest will become
rewrites at host level, no matter how the guest cleans its virtual disk space. Worse, be-
cause of hypervisor cutting the semantic bridge of guest’s deletion off, it also disables
TRIM semantic [14] in guest OS.!

ITo avoid the WA as much as possible, a native SSD system often uses TRIM command to physically
delete the invalid files in its NAND flash memory for increasing the clean space.

@ Springer

Multimed Tools Appl (2015) 74:63-83 65

Limited on-board cache in a shared SSD On-board cache inside a SSD can
effectively relieve the WA issue [14], because a write request is complete immedi-
ately after arriving at this cache, before the data are actually written to flash memory.
However, this kind of caches inside a SSD often has limited capacity [23]. Consider-
ing virtualization technology consolidates more workloads atop a single disk device,
there exists a wide gap between the performance requirement of increasing work-
loads and the limited size of a on-board disk cache. Therefore, combined with the first
two features, a virtualized system could use up the limited disk cache much quicker,
allowing more rewrite operations to rush into flash memory of the shared SSD.

To improve above problem, we propose VFlashCache—a block level write cache
tailor-made for a virtualized SSD system, especially for those who only have inex-
pensive commodity SSD devices. This dedicated write cache reinforces the limited
on-board cache in a virtualized SSD device, allows each guest has a special cache
structure to buffer and absorb rewrite operations, presenting a symmetric caching
scale to fit the multiplied workloads in the environment of server consolidation. Fur-
thermore, by devising a tailor-made management policy on this cache, VFlashCache
effectively reduces the number of rewrite operation that necessarily touching the
flash memory. This even can benefit SSD’s endurance.”

VFlashCache locates in hypervisor layer, where is isolated from the upper guest
instances and the bottom SSD hardware device. Therefore, it is a drop-in method,
regardless of the specific virtualization technology (e.g. para-virtualization or hard-
ware virtual machine), the specific type of guest file system (e.g. NTFS on Windows
or Ext3 on Linux) and the specific kind of SSD device (e.g. produced by Intel
or Kingston, target low or high ends of market). This makes VFlashCache highly
compatible for existing systems.

It should be noted that a write cache can be somewhat inapplicable to some ap-
plications [22], because a power outage would make the data lost from the cache. To
solve this issue, VFlashCache provides an option disk I/O path to these applications
which require strict write semantic. This renders VFlashCache quite desirable in
practice.

We implement our method in Xen hypervisor and evaluate its performance. The
result shows that VFlashCache can effectively improve the WA issue in a virtualized
system.

In summary, we have made the following contributions in this paper:

— First, we have studied the issue of write amplification in a practical virtualized
SSD system based on realistic user traces.

— Second, we have carefully designed a drop-in and general method, called VFlash-
Cache, to relieve WA in our virtualized SSD system.

— Third, we have implemented VFlashCache in Xen hypervisor and evaluated its
performance and shown the effectiveness of improving the WA through realistic
user workloads and typical benchmarks.

— Finally, we have assessed the inherent overhead in hypervisor layer, which is
brought by VFlashCache.

2Flash memory can only be programmed and erased a limited number of times. This is often referred
to as the maximum number of program/erase cycles (P/E cycles) it can sustain over the life of the
flash memory. This metric largely depends on the number of rewrite that SSD has served.

@ Springer

66 Multimed Tools Appl (2015) 74:63-83

The rest of this paper is organized as follows. In Section 2, we discuss our
motivation, which is derived from a practical virtual desktop system. Sections 3 and 4
introduce the design and implementation of our solution respectively. We present
our evaluation in Section 5. Section 7 describes the related work. The last section
discusses and concludes this paper.

2 Motivation
2.1 ClouDesk

ClouDesk [18] is a typical virtual desktop system, which is deployed on a set of Intel
blade servers. These servers often have enterprise-level CPU and memory subsys-
tems, but without a special storage pool. It uses the local and inexpensive commodity
storage device to act as its back-end storage. Therefore, there is a challenge to meet
the demands of performance and reliability on the storage layer of ClouDesk.

End-users in ClouDesk incline to edit documents, browse web pages, and watch
P2P streaming video [21]. These applications often contain heavy write I/O [11]. For
an example, P2P streaming media software usually download playing files ahead into
local storage to get a better watching experience. In particular, when users are watch-
ing hot live TV simultaneously on a single machine, the write I/O upon the shared
storage is quite intensive. Therefore, workloads in ClouDesk are often present
multimedia and text-editing style.

We give a detail introduction of ClouDesk as follows: (1) An end-user can use ter-
minal device, such as the common PC or tablet PC, to connect his own virtual desktop
environment. This desktop environment is provided by a special guest OS, which is
hosted by one of Intel blade servers. (2) Each Intel blade server in ClouDesk has
dual Quad-Core Intel Xeon 1.6 GHZ processors, 8 GB DDR2 RAM, a typical and
popular SSD device with 80 GB capacity and 32 MB on-board disk cache,® and dual
Full-duplex Intel Pro/1000 Gbit/s NIC. (3) A VNC-like remote desktop protocol will
maintain the interaction between guest OS and end-user, through a 1000Mb network.
(4) Xen hypervisor is installed inside each Intel blade server. The driver domain (also
called Dom 0) is running 64-bit Fedora 14 distribution with ext4 file system and the
hypervisor is Xen 4.0.1 with Linux 2.6.34.6 kernel. Guest OSes (also called Dom
Us) are running CentOS 5.6 with Linux 2.6.18.8 kernel and use ext4 as their file
systems based on gcow format. A 8 GB upper limit is enforced on the size of each
virtual disk. Each Dom U is allocated 512 MB memory. The block device driver is
Blktap [24] with gcow protocol.

2.2 Methodology

We choose one of Intel blade servers as our experimental machine and boot eight
Dom Us to provide equivalent end-users with desktop service. The typical user
operation includes document editing, web-page browsing, and code development. To
have a comprehensive comparison, we also install a HDD device in this experimental

3This SSD device has similar specification with Intel X25-M G2.

@ Springer

Multimed Tools Appl (2015) 74:63-83 67

machine, which is a 160 GB SATA II hard drive with 7200 RPM and 64 MB on-board
disk cache.

We install an agent inside Dom 0 to collect the guest disk I/O traces at block
level. To rule out the interference of local disk I/O, all logs from the agent will be
transferred into another special Intel blade server. These logs will be organized as
the form of raw trace files and each of them corresponds to a certain Dom U. Every
trace file uses four fields to identify a unique guest read/write: (1) stime, it denotes the
system time when a request arrived on Dom 0; (2) fd, it refers to the file description
of a certain guest image file; (3) of fset, points to the data location in the image file; (4)
resp, the request response time, indicates the necessary time to complete this request.
We record guest requests as appending manner, and so eight raw trace files, which
marshal the read/write records with ascending order based on the stime field, can be
finally obtained.

Algorithm 1 Reducing raw trace file
Input: F
Output: Outputfile
top = 0;
WriteLatency = 0;
Output Array = NULL;

while Not at end of F do

WriteLatency = GetNextWriteLatency (F);

if top=0 or ABS(WriteLatency — OutputArray[top — 1]) > 200us then
| OutputArrayltop + +] = WriteLatency;

end

end

for i=0 to top do

Write(Output file,Output Arrayli]);
i+ +

end

return;

We first conduct this process upon the HDD device. This process lasts about one
week. At the end, we have gathered 18,475,296 write records and 25,339,195 read
records, respectively.

Then we conduct the same process upon the SSD device, which lasts about three
weeks. In the first two weeks we collect a total of 16,890,614 write records and
20,408,037 read ones. In the third week we also obtain a log containing a total of
9,638,711 write records and 14,724,955 read ones.

To clearly present the overall view of disk I/O as system wide, in each case we
merge all collected guest raw trace files into a single textual file, denoted by F, in
which sorting these I/O records based on their stime field.

Due to large volume data, we only choose write requests from F* and then reduce
them into a smaller set by using Algorithm 1. This reduced trace file uses write
segment as its unit.

4To clarify the point that how a virtualized SSD device affects guest write in this paper, we ignore
all read requests on figure plotting. However, we will include them into the trace analysis by strictly
referencing the original trace file.

@ Springer

68 Multimed Tools Appl (2015) 74:63-83

2.3 Problem description

Figure 1 shows our trace results. In the case of HDD, most write latencies, which
are logarithmic, varied between the y-axis range of 10,000 and 20,000 with some ab-
normal points even exceeding 100,000. By investigating the involved write segments
and raw trace files, we find this fluctuation is caused by concurrent disk I/O flows
during a short period. Taking one of them that rounds the 12,500th scale on x-axis as
an illustrative example (we marked a label 1 in Fig. 1), a time interval, only across
about five seconds, is filled up with 3,753 raw write requests from five guest instances
and 10,049 raw read ones from six guest instances. Not surprisingly, this congestion
arouses random disk I/O and thus degrades their write latencies.

In the case of SSD is collected in the first two weeks (as the blue symbols in Fig. 1),
SSD provides great improvement to the write latency: its performance is generally
over two orders of magnitude higher than that of HDDs. Note that several abnormal
points with high latency are being dotted sporadically along the x-axis (we marked a
label 2 in Fig. 1). By investigating the raw trace files, we find that there are intensive
random-write flows nearby these involved write segments. Therefore, we speculate
the corresponding abnormal points incurring a mild WA. Nevertheless, SSD still
greatly benefits the performance of concurrent I/O flows in our system.

However, in the case of SSD collected in the third week (as the symbols with light
green color in Fig. 1), we can see that there is a quite large fluctuation on guest write
performance. It spans four orders of magnitude of write latencies on y-axis. From
the label 3 in Fig. 1, we can clearly see that the fluctuation of write latency happens
so often and so severely that end-users even can perceive the delay when they are
interacting with their own desktops. According to the user-feedback survey report
from this stage, this high delay directly affects the user experience if end-users watch
their P2P streaming videos, browse web pages, and even operate a file.

By investigating the current status of experimental machine, we determine that the
situations are caused by WA issue in a virtualized SSD system. The 80 GB capacity
on the shared SSD is almost exhausted. Therefore, the coping mechanisms at device-
level, such as garbage collector and over-provision [13], are difficult to run efficiently
to receive rewrite requests.

le+06 ‘Write latencies on a virtualized HDD *
3 WA storm on a virtualized SSD
«Write latencies on a virtualized SSD =
£ 100000
>
Q
=
2
S 10000
Q
12}
g
% 1000 The shorter trace 4length infiicales
&~ a more steady write latencies
100

0 2500 5000 7500 10000 12500 15000 17500 20000 22500 25000
Write Segments Sequence

Fig.1 Write latency on ClouDesk, the y-axis is logarithmic

@ Springer

Multimed Tools Appl (2015) 74:63-83 69

2.4 Discussion on potential solutions

According to the storage protocol stacks of a typical virtualized system, there are
three layers can be embedded with the related improvements to relieve above WA
issue: guest layer, hypervisor layer, and device layer (or their collaboration).

2.4.1 Guest layer

By tweaking its inherent configuration, a guest can reduce the number of rewrite
that must touch the SSD’s surface. For example, delaying the execution of periodical
flush routine could effectively absorb rewrites inside guest file system. However this
kinds of method is exposed to a guest and thus it is also visible to the upper users.
This may motivate a guest, who can arbitrarily modify its default configurations and
intentionally spawn massive writes to disturb write performance of the shared SSD
device. This result is disastrous to the virtualized system based on end-users’ expe-
rience, such as ClouDesk, in which the user experience in a same physical machine
would become bad and even hard to use. Therefore, from security perspective, we
leave the improvements implemented inside guest.

2.4.2 Device layer

Some methods at device-level have been proposed recently. For example, CAFTL
[5], a content-aware flash translation layer, can remove the duplicated content inside
SSD and thus produce more clean erase-blocks to receive rewrite requests. Since a
part of guest instances shares the same kind of OS, this novel technology may suit
ClouDesk well. Displacing current PC-level SSD devices with these novel ones is a
potential solution, in which the later often has the larger internal cache to relieve the
WA issue.

Nevertheless, this kind of improvement inside device would largely increase our
production costs. We conduct a survey on the recent Amazon online shopping [2],
finding that the newly released SSD products, which contain novel technologies or
large on-board cache, are usually launched with double or triple price over popular
ones. Furthermore, these novel techniques based on hardware level are usually desig-
nated at the manufacturing process. Some of them are only verified in the simulated
environment, such as DiskSim [1, 7]. Therefore, we do not expect SSD manufacturers
willing to redesign or reproduce the SSD devices for our virtualized system now.

2.4.3 Hypervisor layer

Limiting improvements within hypervisor layer has two advantages: (1) it is un-
perceived to the upper guest OSes; (2) it is transparent to the bottom storage
device. Both of them make improvements inside hypervisor layer presenting a one-
size-fits-all style. This convenience feature is quite suitable to ClouDesk since we
provide end-users with a lot of choices on their preferred OSes. For example,
ClouDesk has two kinds of OS template: Linux and Windows. Each of them further
consists of different distributions and combinations with different file systems, such
as Fedora 14 with ext3, Windows XP with NTFS and Ubuntu 11 with btrfs.
An improvement inside hypervisor layer could get them all in a general way, largely
reducing our intrusion cost to original systems.

@ Springer

70 Multimed Tools Appl (2015) 74:63-83

Like Google File System (GFS) [8] running on inexpensive commodity hardware,
another benefit from this kind of improvements is that ClouDesk can keep inex-
pensive commodity SSD device to act as its back-end storage, as the performance
level of these inexpensive storage devices are transparently enhanced. Therefore, we
can avoid an extra expenditure on special hardware such as the 0CZs Z-Drive R4
CloudServ [20] and Fusion I/0° [4].

However, importing these improvements into original system complicates the
hypervisor layer, where is the kernel component in a typical virtualized system.
Therefore, implementing any extraneous components into this layer should undergo
a careful design.

3 Solution

In this section, we first describe the overview of our solution. Then we give a
set of specific design considerations that have guided our solution and present its
structure—VFlashCache. Finally, we describe the detail caching behaviors inside
VFlashCache.

3.1 Overview

We interpose a block level write cache into hypervisor layer, called VFlashCache.
This cache is used for absorbing the duplicated guest rewrites while presenting
the asymmetric write performance to defend the upper applications from directly
suffering WA storm.

VFlashCache intercepts guest write into hypervisor’s address space and allows this
I/O operation to be returned in advance, rather than directly driving it into the SSD
device. When a duplicated rewrite is arrived in hypervisor, VFlashCache is capable
of overlapping the early intercepted data with the newest one. In such a way, it
reduces the number of rewrite that necessarily touch the SSD surface, thus indirectly
improves the SSD’s write performance and even endurance. Even if a virtualized
SSD is incurring WA storm, on the other hand, VFlashCache raises opportunities
for interleaving the flush flows from different guest OSes, and provides SSD device
with a breathing space to receive rewrite request with higher-efficiency. Therefore,
guest writes in VFlashCache can be flushed into SSD as a more elegant manner. We
call this SSD-aware flush mechanism in VFlashCache as FlushCtrl.

3.2 Design considerations
VFlashCache’s design is based on three high-level themes.

Performance How to improve WA in a virtualized SSD system is our main concern.
Meanwhile, the read performance is also needed to be kept.

5This kind of SSD devices usually have a good performance on handling rewrite operations but often
trading with expensive price.

@ Springer

Multimed Tools Appl (2015) 74:63-83 71

Generality Virtualization technology can simultaneously host a variety of guest
OSes in a single machine, thus VFlashCache should be compatible to these various
guest instances and even different hypervisors. Furthermore, a write cache may
violate the guest write semantic. VFlashCache should provide an alternative disk I/O
path to these guests who require strict write semantic. Finally, VFlashCache needs to
provide agnosticism and isolation to the bottom SSD device, which may spans dozens
of manufactures and hundreds of products.

Simplicity Due to server consolidation, a virtualized system is usually resource-
restrained. Therefore, VFlashCache’s design should follow the lightweight pattern
as much as possible. A compact design can also benefit the system’s reliability.

3.3 System structure

Figure 2 shows an overview of VFlashCache’s architecture. Generally, VFlashCache
adopts a local-based design. Namely, VFlashCache allocates an exclusive cache
space, called VDiskcache, to each guest instances, used for buffering guest write
I/O. A combination of these cache spaces forms our VFlashCache in hypervisor layer.
In each VDiskcache, a flush handler, called FlushCtr1, will flush these buffered
writes back into SSD device, depending on specific situations described in Table 1.

VFlashCache is located in the hypervisor layer, where has two potential benefits
for implementing our design considerations. First, due to being required to multiplex
the shared I/O resource, hypervisor needs to validate each I/O instruction from guest
OS. This can expose a drop-in interface to VFlashCache, allowing VDiskcache to
intercept guest write requests without intrusive modification on an original system.
Second, since certain isolation has been enforced by hypervisor, VFlashCache does
not need to involve any correlations with specific guest or SSD device. All of design
of VFlashCache is encapsulated at the hypervisor layer and hidden from guest and
SSD device.

Not like a system-wide method that uses the file cache in a host file system to buffer
guest writes, VFlashCache’s design follows a simpler manner which is local-based.

Hypervisor

. S

/

"4

Fig. 2 Structure of VFlashCache. A flush handler inside VFlashCache, called FlushCtrl, will flush
these buffered writes back into SSD device, depending on specific situations described in Table 1

@ Springer

72 Multimed Tools Appl (2015) 74:63-83

Table 1 Trigger conditions of FlushCtrl

Event Description

Timer FlushCtrl will be invoked periodically to flush guest data back into
persistent storage.

Space management When a VDiskcache is full, FlushCtrl must invoke a flush handler
to conduct a write-back process.

Guest migration When a guest is being migrated to other host, FlushCtrl should
flush its dirty-data back into SSD device.

Guest close When a guest is closed by user or administrator, FlushCtrl is
invoked to flush its dirty-data.

Guest crash The associated VDiskcache in VFlashCache can catch the event

of guest crash by a heartbeat mechanism.

Namely, each VDiskcache’s management only focuses on a single guest. Consider
hypervisor is the kernel component in a virtualized system, this simplicity is impor-
tant to maintain the reliability and succinctness of whole system.

More importantly, this local-based design can provide an alternative disk I/O path
for those guests which require strict write semantic, to bypass VFlashCache and then
to directly talk with SSD device, such as the Guest 3 in Fig. 2.

Finally, as the dotted arrow showing in Fig. 2, the memory resource used by
VFlashCache comes from guest itself, rather than being directly allocated from
hypervisor. Thus, it has less influence on the scalability of original virtualized system.

Algorithm 2 Write behavior of VFlashCache

Input: W;, denotes a block-level write request
Output: A;, indicates the acknowledgment of W;

Let N be the set of old versions of W; in VDiskcache;
Let 0 be the flush threshold of VDiskcache;
Let ¢ be the current number of write request in VDiskcache;

N = NULL;

N = SearchInVDiskcache(W;);
if IsHit(N,W;) then
InsertVDiskcache(W;);
ClearFlushFlag(N);
SetFlushFlag(W;);

[S VI

© 0w N o u

10 end
11 else if NotHit(N) then
12 ‘ InsertVDiskcache(W;);

13 SetFlushFlag(W;);

14 end

15 ¢+ +;

16 if ¢ == 0 then

17 FlushVDiskcache();

18 /*only flush the write request with flush flag.*/;
19 c=0;

20 end

21 return (4;);

@ Springer

Multimed Tools Appl (2015) 74:63-83 73

3.4 Caching behavior

Generally, VFlashCache uses basic FIFO (First-In-First-Out) replacement policy to
manage its space. While a replacement algorithm based on LRU (Least-Recently-
Used) may obtain better performance, VFlashCache must keep the constraints of
guest I/O ordering. For example, when guest is writing to an unallocated region of
a file, we must flush the file data before writing the meta data, otherwise it risks
exposing uninitialized data to users.

To reduce the number of guest rewrites that would flush into SSD’s flash mem-
ory, FlushCtrl only flushes the newest data, if an incoming write in the current
VDiskcache has any old versions. In this way, we not only keep the basic write
ordering between meta data and regular data in a guest file system, but also provide a
critical chance to improve WA issue by reducing the number of rewrites. Algorithms
2 and 3 describes the caching behavior of VDiskcache for dealing with the guest write
and read requests respectively. It should be noted that the read request from a guest
must find its target in VDiskcache first, to keep data consistency.

Algorithm 3 Read behavior of VFlashCache

Input: R;, denotes a block-level read request
Output: A;, indicates the acknowledgment of R;
Let N be the hit set of R; in VDiskcache;
N = NULL;
N = SearchInVDiskcache(R;);
if IsHit(N,R;) then
R;=ReadtheNewestOneFrom(N);
return (A;);
end
ReadFromSSD(R;);

return (A4;);

To FlushCtrl, there are five types of event will launch it to do a real write-
back process in a VDiskcache, as Table 1 summarizing. During each flush process,
FlushCtrl always starts from the head of a VDiskcache and then scans forward. If
a cached write request has been cleared its flush flag, which indicates that it will be
rewritten later, FlushCtrl just ignores it and keeps on going.

Finally, a mutex is used in VDiskcache for ensuring only one flush handler can
operate at a certain time.

4 Implementation

We have implemented VFlashCache in Xen hypervisor, an open-sourced and popu-
lar virtual machine monitor. Although our work is focused on a specific virtualized
SSD system, the main idea can be easily applied to other systems.

We add a new protocol, named ssd, into Blktap driver, which uses Tapdisk as
VDiskcache for caching the guest writes. Our implementation on Xen hypervisor
totally consists of 990 lines of code on the user-space of Dom 0.

There are two kinds of meta-data used to manage each VDiskcache: a linked-
list and a hash table. The linked-list is used to store information on write requests.

@ Springer

74 Multimed Tools Appl (2015) 74:63-83

Each node in the list corresponds to a specific write. Data nodes in the linked-list are
arranged in an order from head to tail according to their arrival times. The hash table
is used for effective data searching according to the offset field,® in which the nodes
with same value on offset field in the linked-list can be quickly identified.

For the implementation of FlushCtrl, we interpose those flush handlers into
the related functions or routines in Tapdisk. For an example, to trigger the flush
procedure when Dom U is terminated or migrated, we insert the flush handler into
unmap_disk () in Tapdisk and xc_domain_save () in Xen tools.

5 Evaluation

In this section, we present the evaluation of VFlashCache. By using real user work-
loads on virtual desktop, we first show its direct improvement on ClouDesk. Next, we
show the performance of VFlashCache under several synthetic workloads and typical
realistic workloads. Finally, we discuss the overhead that VFlashCache enforces on
driver domain.

We compare VFlashCache with the original Blktap driver with gcow protocol.
To have an apple-to-apple comparison, we allocate each guest on VFlashCache with
only 448 MB memory and enforced an upper limit of 64 MB (namely 6 described
on Algorithm 2) on their own VDiskcaches. The timer of periodical flush handler on
VFlashCache is set to 10 min. On the flipped side, the memory size of each guest on
original Blktap is set to 512 MB.

5.1 VFlashCache on ClouDesk

We use the added protocol ssd in Blktap to boot all eight Dom Us in our experimental
node, where succeeds the context from Fig. 1 that has suffered WA storm. We finally
get eight raw trace files after one week, which contains a total of 8,902,217 write
records and 29,744,419 read ones. By excluding read requests and using Algorithm 1
to reduce their datasets, a processed trace file with only 1,237 write segments is
obtained. Figure 3 shows the result.

VFlashCache greatly relieves the WA storm. This improvement is reflected by the
elimination on those write requests with high delay, which exceed the scale 100,000
on y-axis. The distribution of write latency on VFlashCache mainly concentrated on
four areas in Fig. 3, and we have marked the corresponding labels.

Write segments around label 1 refers to those guest writes only touching the
VFlashCache. Since they are returned before entering into SSD surface, all of them
avoid the possible WA storm, and obtain an extra performance improvement in
contrast to the case without our cache.

Label 2 represents the write segments who trigger a flush handler in VFlashCache.
They are required to wait for the completion of flush procedure and thus incur a
performance penalty.

Write segments around label 3 and 4 denote another type of write segments. They
are involved in the concurrent foreign flushes, which are derived from another guests.

The offset field refers to an offset from the starting position of a guest image file.

@ Springer

Multimed Tools Appl (2015) 74:63-83 75

1e+06

WA storm on a virtualized SSD
Write latencies on VFlashCache x

100000

10000

1000

Response Latency (is)

100
2500 5000 7500 10000 12500 15000 17500

Write Segments Sequence

Fig. 3 Write latency on ClouDesk, the y-axis is logarithmic

Note that the points with a higher latency around label 4 implicate they are suffering
amore concurrent foreign flush flows. Therefore, due to bandwidth congestion inside
SSD, the relevant write segments still incur a relatively severe WA. However, they
are minor, and part of them will be defused by the background writes inside a guest
file system, such as pdflush thread. Therefore, users may not directly perceive
this delay during their interactions. According to the user-feedback survey report
recently, most users have not observed the influence of WA, even in the multimedia
scenario.

Figure 4 shows the corresponding CDF plot of write delay for ClouDesk. Com-
pared with a virtualized SSD incurring WA storm, it can be clearly seen that the
proportion of write requests with high latency, which exceeds 1,000, are substantially
reduced on VFlashCache.

On the other hand, VFlashCache can reduce the number of rewrites that necessar-
ily touching the SSD surface. Denoting the total number of guest writes intercepted
in VFlashCache as W, the total hit number of guest write as w, the write hit rate

is defined as 3. Figure 5 presents the write hit rate of the eight user workloads,

Fig. 4 CDF plot of write —®— A virtualized HDD
latencies on ClouDesk, which —e— A virtualized SSD
is compiled by the raw trace 7 |—4— WA storm on a virtualized SSD)
files. The x-axis is logarithmic 1.0 [=f=Write on VFlashCache
0.8 1
0.6 1
&9
[a)
©]
0.4 1
0.2 1
0.0 1

T T T T T T T T T 1
100 1000 10000 100000 1000000

@ Springer

76 Multimed Tools Appl (2015) 74:63-83

with their corresponding read hit rate on VFlashCache. The write hit rates across
the 8 workloads range from 14 % (VM 7) to 31 % (VM 4). We also can see that
the read one ranges from 4 % (VM 1) to 11 % (VM 5). The low hit rate of read
request is caused by the fact that most hot user files are cached in the guest page
cache, and make the flushed guest data in VFlashCache to be read less frequent. On
the contrary, a higher write hit rate indicates a feature on ClouDesk: a few files are
being operated or edited by users for a time, and they are saved more often.

5.2 Synthetic workloads

For comprehensive evaluating the performance of VFlashCache, we also use some
typical benchmarks to simulate the common workloads. We first boot three Dom
Us on our experimental node, and then in turn run the same benchmark on them
simultaneously.

Figure 6 shows their results. The length of each bar indicates the relative per-
formance between original Blktap driver and VFlashCache, which is based on the
average score of three Dom Us. The first group of bars shows the result of DBench
benchmark. Every Dom U has 20 virtual user connections. It clearly shows that
VFlashCache can bring double performance in contrast to the original one. This
is caused by the fact that the flush operation in DBench has a large proportion of
overall score. VFlashCache just allows most of these flush operations to return in
advance, thus avoids the interference of WA and acquires the extra performance
benefit. On the other hand, VFlashCache absorbs some rewrites that necessarily
touch the SSD surface. This workload in VFlashCache has a read/write hit rate of
8.4 % and 15.5 %.

In the second group, the performance of Linux kernel compilation (version
2.6.38) is evaluated. This workload reads massive source files, creates many object
files, and thus generates a large number of operations for meta data update and
journal synchronization to the file system. The result shows that VFlashCache has
almost identical performance with its counterpart. While VFlashCache can relieve
WA for these update operations on guest file system, the smaller memory size,
which leads Dom Us to a smaller working set, makes this benefit to be somewhat

Fig. 5 Read-Write hit rate on

ClouDesk with VFlashCache — [JWrite
[_JRead

w
o

N
[&]

N
o
|

N
o
L

Write/Read Hit Rate (%)
i
|
|
|
|
|

()]
|

Rl

VM1 VM2 VM3 VM4 VM5 VM6 VM7 VMS

@ Springer

Multimed Tools Appl (2015) 74:63-83 77

Fig. 6 Relative performance
of original Blktap with gcow
protocol and VFlashCache

W

C—1BlkaptQCOW| [
[VFlashCache

~

w

[\S}
1

—_
1

Relative performance to "Blktap+QCOW"

DBench Linux Compilation File Server Web Server OLTP Mixture

counterbalanced by the event of read missing in guest page cache. Moreover, because
this workload contains the process of computer intensive compilation, the proportion
of I/O operations is consequently faded. VFlashCache totally achieves a read/write
hit rate of 0.7 % and 7.9 % in this workload, respectively.

Then we use IOmeter to simulate four kinds of workload: file server, web server,
OLTP, and their mixture. Each testing file during this experimental group is set to
1 GB/

We first run file server workload in all three Dom Us simultaneously, the transfer
request size is set to 64KB and the read/write ratio is 4:1 with 100 % random manner.
The result shows VFlashCache can bring about 38 % improvement to the IOPS of
server. A read/write hit rate of 19.2 % and 15.5 % is obtained on VFlashCache.

To web server workload, we set the transfer request size to 512KB and all of them
are read operations with 100 % random manner. The result shows that VFlashCache
incurs an approximately 5 % performance penalty on server IOPS. It is caused by the
read intensive feature and a smaller page cache. VFlashCache achieves a read/write
hit rate of 21.2 % and 1.8 % in this workload, respectively. While part of read
requests are hit in VFlashCache, they are required to experience a context switch
between guest and hypervisor layer, thus suffers a longer I/O path.

To OLTP case, the transfer request size is set to 8 KB, and read/write ratio is 3:1
with 100 % random manner. The result shows that VFlashCache obtains up to 4.75
times improvement over its counterpart on the IOPS. Considering this workload has
the read/write hit rate of 7.2 % and 22.7 % in our cache, respectively, we conclude
this bigger improvement mainly comes from the higher reduction of rewrites.

The next one is Mixture. We deploy the above three configurations of IOmeter
into the equal number of Dom Us and run them simultaneously. The result shows
that VFlashCache has about 45 % improvement over original Blktap driver.

7We also conduct a series of experiments by using 2 GB and 4 GB testing file size. But we find that
the result of relative performance between VFlashCache and its counterpart is quite similar with the
case of 1 GB size (the margin of error is about 1.5 percentage points). Therefore, we ignore them in
this paper.

@ Springer

78 Multimed Tools Appl (2015) 74:63-83

100000+ Original Blktap driver 4100000
—— VFlashCache
2
> 10000+ 410000
3
o 10004 41000
s
53
= 1004 1100
10 T T T T T T T T T 10
0 250 500 750 1000 1250 1500 1750 2000 2250 2500
Seconds

Fig. 7 Variation of write latency on synthetic multimedia workload, the y-axis is logarithmic

VFlashCache in the mixed workload has a read/write hit rate of 14.2 % and 6.7 %,
respectively.

Finally, we use a synthetic multimedia workload to measure VFlashCache. In
detail, we deploy PPStream, a popular P2P video software, on our all three exper-
imental guests. Then we launch these applications and connect them to an available
program source which lasts about 40 min. During this process, PPStream will respec-
tively create a 1 GB temporary file, ppsdg.pgf, on their virtual disks to act as buffer
role, thereby producing many read and write requests upon it. Similar with section
I1.B, we collect write requests at block level in driver domain, but without using
Algorithm 1 to reduce the final raw trace file. According to the stime filed, these write
request from three guests will be arranged in chronological order in raw trace file. If
multiple write requests share the same value of stime, we merge them and take their
median. Figure 7 shows the variation of write latency across this duration of 40 min
(2400 s), on original Blktap driver and VFlashCache respectively. It can be seen
clearly that the write latency on VFlashCache has the lower delay and better stability.

§ 20% —— Original Blktap driver
£ 189 —e— VFlashCache
S 18%

0 50 100 150 200 250 300 350 400
Seconds

Fig.8 CPU overhead in driver domain, the size of each testing file is set to 1 GB

@ Springer

Multimed Tools Appl (2015) 74:63-83 79

5.3 Overhead in driver domain

To measure the necessary overhead of VFlashCache in Dom 0, we boot all eight
Dom Us in our experimental node. We run I0zone benchmark on these guest file
systems simultaneously and produce numerous small writes (4 KB) with synchronous
manner. In such a way, VFlashCache in Dom 0 is required to deal with the highly
concurrent writes. Since this situation is almost impossible to happen on realistic
user workloads, we treat this experimental scenario as the upper limit of overhead
in VFlashCache. The result is shown in Fig. 8. Generally, VFlashCache consumes
about twice CPU resource to maintain eight vContext structures running, but the
peak value is still resided below the scale 30 % on y-axis.

6 Related work

It is commonly known that SSD has the potential to replace traditional rotating disk
device, especially for its read performance. However, it falls into a dilemma due to
the limitation of P/E cycles. Recently, Grup et al. [9] further indicates that NAND
flash memory has a bleak future due to the WA issue and the marketing strategy of
manufacture. Therefore, currently we do not lay our hopes on the SSD itself. Instead,
we try to seek a solution from the software layer, to strike a balance between its
impressive read and apprehensive write.

There are many previous works at device level to study and improve the WA’s
problem of flash memory on a SSD device. A survey in [6] has summarized these
works. We here only describe the works which are most related to a virtualized SSD.

Chen et al. have proposed CAFTL [5], a device-level method used to reduce write
traffic to flash memory by removing unnecessary duplicate writes. In this way, some
space consumptions on a flash memory can be saved, allowing the inherent coping
mechanisms in a SSD controller, such as garbage collector and over-provision, can
be run as optimal state and thus maintain the write performance to upper workloads.
This method may suit our system well, since some guest instances in ClouDesk
share the same kind of OS, in which a majority of data redundancies may happen
on their image files. However, this technique requires SSD to be redesigned and
reproduced. Consider currently CAFTL is only be implemented and verified in a
simulated environment (e.g. DiskSim [7]), this kind of device-level methods are
inapplicable to be used in practice.

More recently, Kim et al. have devised FTRIM [16], a support for running TRIM
command in a virtualized environment, which makes SSD device be aware of the
file deletion inside guest OS. As a result, the real SSD device in host can utilize
the space of the deleted files and thereby maintain the rewrite performance from
guest instances. Compared with VFlashCache, FTRIM requires the guest kernel to
be modified, in which needs adding TRIM support into the specific virtual block
driver. Therefore, this method violates our design consideration based on generality
to various guest OSes.

Jo et al. have presented a hybrid virtual disks (HVD) that combines SSD and
HDD for virtualization [15]. In this hybrid architecture, HVD places a read-only tem-
plate disk image on a SSD, while write requests are isolated to the HDD. In this way,
the disk I/O in a guest OS benefits from the fast read access of the SSD and precludes

@ Springer

80 Multimed Tools Appl (2015) 74:63-83

write operations from degrading flash memory performance. It differs from our
work in that VFlashCache focuses on a single storage structure based on SSD.

7 Conclusion

Through a case study of the practical virtual desktop system, we first confirm that the
problem of write amplification in a virtualized environment will become severe due
to the characteristic of virtual disk device. By interposing a block-level write cache
into hypervisor layer to reinforce the limited on-board cache in a shared SSD device,
our method can effectively improve the WA problem on a realistic workload. We also
evaluate our method with some typical synthetic workloads, the result shows that it
can improve the read-write mixed workloads and maintain the performance of read-
intensive ones. We finally measure the inherent overhead enforcing on hypervisor
layer, which is brought by our method. The result shows that this cost is reasonable.

Acknowledgements This work is supported by China National Natural Science Foundation
(NSFC) under grants 61272408, 61133006, National High-tech R and D Program of China (863
Program) under grant No. 2012AA010905 and Hubei Funds for Distinguished Young Scientists
under grant No. 2012FFA007.

References

1. Agrawal N, Prabhakaran V, Wobber T, Davis JD, Manasse M, Panigrahy R (2008) Design trade-
offs for SSD performance. In: Proceedings of the USENIX 2008 annual technical conference
(USENIX 2008). USENIX Association, Berkeley, CA, pp 57-70

2. Amazon.com (2012) http://www.amazon.com

. Apple—iPhoto (2012) http://www.apple.com/ilife/iphoto/

4. Application Acceleration Enterprise Flash Memory Platform (2012) http://www.fusionio.com/
solutions/virtualization/

5. Chen F, Luo T, Zhang X (2011) CAFTL: a content-aware flash translation layer enhancing the
lifespan of flash memory based solid state drives. In: Proceedings of the 9th USENIX conference
on file and storage technologies (FAST 2011). USENIX Association, Berkeley, CA

. Gal E, Toledo S (2005) ACM Comput Surv (CSUR) 37(2):138

. Ganger G (2011) The DiskSim simulation environment (v4.0). http://www.pdl.cmu.edu/DiskSim/

. Ghemawat S, Gobioff H, Leung ST (2003) The Google file system. In: Proceedings of the 19th
ACM Symposium on Operating Systems Principles (SOSP 2003). ACM, New York, NY, pp 29—
43
9. Grupp L, Davis J, Swanson S (2012) The bleak future of NAND flash memory. In: Proceedings

of the USENIX conference on file and storage technologies (FAST)

10. Gulati A, Merchant A, Varman P (2010) mClock: handling throughput variability for hypervisor
10 scheduling. In: Proceedings of the 9th USENIX conference on operating systems design and
implementation (OSDI 2010). USENIX, Vancouver, BC, pp 437-450

11. Harter T, Dragga C, Vaughn M, Arpaci-Dusseau AC, Arpaci-Dusseau RH (2011) A file is not
a file: understanding the I/O behavior of apple desktop applications. In: Proceedings of the 23th
ACM symposium on operating systems principles (SOSP 2011). ACM, New York, NY, pp 71-83

12. Hildebrand D, Povzner A, Tewari R, Tarasov V (2011) Revisiting the storage stack in virtualized
NAS environments. In: Proceedings of the 3rd conference on I/O virtualization (WIOV 2011).
USENIX Association, Berkeley, CA

13. Hu XY, Eleftheriou E, Haas R, Iliadis I, Pletka R (2009) Write amplification analysis in
flash-based solid state drives. In: Proceedings of the Israeli experimental systems conference
(SYSTOR 2009). ACM, New York, NY, pp 10:1-10:9

14. Intel Solid-State Drive Optimizer (2009) http://download.intel.com/design/flash/nand/mainstream/
Intel_SSD_Optimizer_White_Paper.pdf

(98]

[e BN o)

@ Springer

http://www.amazon.com
http://www.apple.com/ilife/iphoto/
http://www.fusionio.com/solutions/virtualization/
http://www.fusionio.com/solutions/virtualization/
http://www.pdl.cmu.edu/DiskSim/
http://download.intel.com/design/flash/nand/mainstream/Intel_SSD_Optimizer_White_Paper.pdf
http://download.intel.com/design/flash/nand/mainstream/Intel_SSD_Optimizer_White_Paper.pdf

Multimed Tools Appl (2015) 74:63-83 81

15.

16.

17.

18.

19.

20.

21.
22.
23.

24.

Jo H, Kwon Y, Kim H, Seo E, Lee J, Maeng S (2009) SSD-HDD-Hybrid virtual disk in consoli-
dated environments. In: Proceedings of the 2009 international conference on parallel processing
(EuroPar 2009), pp 375-384

Kim S, Kim J, Maeng S (2012) Using Solid-State Drives (SSDs) for virtual block devices.
In: Proceedings of the runtime environments, systems, layering and virtualized environments
(RESoLVE’12)

Le D, Huang H, Wang H (2012) Understanding performance implications of nested file systems
in a virtualized environment. In: Proceedings of the USENIX conference on file and storage
technologies (FAST)

Liao X, Jin H, Hu L, Liu H (2010) Towards virtualized desktop environment. Concurrency and
Computation: Practice and Experience 22(4):419-440

Narayanan D, Thereska E, Donnelly A, Elnikety S, Rowstron A (2009) Migrating server stor-
age to SSDs: analysis of tradeoffs. In: Proceedings of the 4th ACM European conference on
computer systems (EuroSys 2009). ACM, New York, NY, pp 145-158

OCZ LAUNCHES Z-DRIVE R4 CLOUDSERV (2012) http://www.ocztechnology.com/
aboutocz/press/2012/481

Open Source P2P video Streaming Software (2012) http://www.scvi.net/stream/soft.htm
Rosenblum M, Waldspurger C (2011) I/O virtualization. ACM Queue 9(30):30-39

Shimpi A (2010) Kingston SSDNow V+100 review. http://www.anandtech.com/show/4010/
kingston-ssdnow-v-plus-100-review

Warfield A, Hand S, Fraser K, Deegan T (2005) Facilitating the development of soft devices. In:
Proceedings of the annual conference on USENIX annual technical conference (USENIX 2005).
USENIX, Anaheim, CA, pp 379-382

Dingding Li is a Ph.D student working with Prof. Hai Jin in the Services Computing Technology
and System Laboratory (SCTS) at Huazhong university of Science and Technology (HUST). His
research is focused around I/O virtualization and cloud computing.

@ Springer

http://www.ocztechnology.com/aboutocz/press/2012/481
http://www.ocztechnology.com/aboutocz/press/2012/481
http://www.scvi.net/stream/soft.htm
http://www.anandtech.com/show/4010/kingston-ssdnow-v-plus-100-review
http://www.anandtech.com/show/4010/kingston-ssdnow-v-plus-100-review

82 Multimed Tools Appl (2015) 74:63-83

Hai Jin received his B.S., an M.A. and a Ph.D. degree in computer engineering from Huazhong
University of Science and Technology (HUST) in 1988, 1991 and 1994, respectively. Now he is
a Professor of Computer Science and Engineering at HUST in China. He is now the Dean of
School of Computer Science and Technology at HUST. In 1996, he was awarded German Academic
Exchange Service (DAAD) fellowship for visiting the Technical University of Chemnitz in Germany.
He worked for the University of Hong Kong between 1998 and 2000 and participated in the
HKU Cluster project. He worked as a visiting scholar at the University of Southern California
between 1999 and 2000. He is the chief scientist of the 973 project “ChinaV” and the largest grid
computing project, “ChinaGrid”, in China. His research interests include virtualization technology
for computing system, cluster computing and grid computing, Peer-to-Peer computing, network
storage, network security, and high assurance computing. He is the member of Grid Forum Steering
Group (GFSG). He is a senior member of IEEE and member of ACM.

Xiaofei Liao received his Ph.D. degree in computer science and engineering from Huazhong
University of Science and Technology (HUST), China, in 2005. He is now an associate professor
in the school of Computer Science and Engineering at HUST. He has served as a reviewer for many
conferences and journal papers. His research interests are in the areas of virtualization technology
for computing system, P2P system, cluster computing and streaming services. He is a member of the
IEEE and the IEEE Computer Society.

@ Springer

Multimed Tools Appl (2015) 74:63-83 83

Jia Yu gets his master’s degree in Computer Science at Huazhong university of science and
Technology (HUST) in June 2012. His research is focused around virtualization and computer
architecture.

@ Springer

	Improving write amplification in a virtualized and multimedia SSD system
	Abstract
	Introduction
	Motivation
	ClouDesk
	Methodology
	Problem description
	Discussion on potential solutions
	Guest layer
	Device layer
	Hypervisor layer

	Solution
	Overview
	Design considerations
	System structure
	Caching behavior

	Implementation
	Evaluation
	VFlashCache on ClouDesk
	Synthetic workloads
	Overhead in driver domain

	Related work
	Conclusion
	References

