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Abstract This paper proposes a methodology for building fuzzy multimedia on-
tologies dedicated to image annotation. The built ontology incorporates visual,
conceptual, contextual and spatial knowledge about image concepts in order to
model image semantics in an effective way. Indeed, our approach uses visual and
conceptual information to build a semantic hierarchy that will serve as a backbone
of our ontology. Contextual and spatial information about image concepts are then
computed and incorporated in the ontology in order to model richer semantic rela-
tionships between these concepts. Fuzzy description logics are used as a formalism to
represent our ontology and the inherent uncertainty and imprecision of this kind
of information. Subsequently, we propose a new approach for image annotation
based on hierarchical image classification and a multi-stage reasoning framework for
reasoning about the consistency of the produced annotation. In this approach, fuzzy
ontological reasoning is used in order to achieve a semantically relevant decision on
the belonging of a given image to the set of concepts from the annotation vocabulary.
An empirical evaluation of our approach on Pascal VOC’2009 and Pascal VOC’2010
datasets has shown a significant improvement on the average precision results.

Keywords Image annotation ·Multimedia ontology ·Ontology building ·
Ontological reasoning ·Fuzzy DL ·Spatial information ·Contextual information

1 Introduction

Automatic image annotation is a challenging problem dealing with the textual
description of images. This process usually consists in the building of a computational

H. Bannour (�) · C. Hudelot
MAS Laboratory, Ecole Centrale Paris, 92 295 Chatenay-Malabry, France
e-mail: hichem.bannour@ecp.fr

C. Hudelot
e-mail: celine.hudelot@ecp.fr



2108 Multimed Tools Appl (2014) 72:2107–2141

model that enables to associate a text description (often reduced to a set of semantic
keywords) to digital images. A wide number of approaches have been proposed to
address this concern and to narrow the well-known semantic gap problem [35]. Most
approaches rely on machine learning techniques to provide a mapping function that
allows classifying images in semantic classes using their visual features [5, 9, 27].
However, these approaches face the scalability problem when dealing with broad
content image databases [30], i.e. their performances decrease significantly when
the concept number is high and depend on the targeted datasets as well [21]. This
variability may be explained by the huge intra-concept variability and the wide
inter-concept similarities on their visual properties that often lead to conflicted and
incoherent annotations. Yet, more and more concept classes are introduced for anno-
tating multimedia content in order to enrich the description of images and to satisfy
user expectations in an image retrieval system. Consequently, current techniques are
struggling to scale up, and the only use of machine learning seems to be insufficient
to solve the image annotation problem. Firstly, because of the lack of a reliable
computational model that allows to model the correlation between the low-level
features of images and the semantic concepts. Secondly, because it seems that there is
a lack of coincidence between the high-level concepts and the low-level features, and
that image semantics is not always correlated with the visual appearance. Therefore
other alternatives need to be explored in order to improve existing approaches. In
particular, some recent work proposed to use explicit semantic structures, such as
semantic hierarchies and ontologies, to improve the image annotation [2, 12, 17, 43].

Indeed, ontologies defined as a formal, explicit specification of a shared concep-
tualization [19] have shown to be very useful to narrow the semantic gap. They allow
identifying, in a formal way, the dependency relationships between the different
concepts and therefore provide a valuable information source for many problems.
Moreover, ontological reasoning can also be used to formulate image annotation
and interpretation tasks. For instance, in [12] the authors proposed a framework
for the extraction of enhanced image descriptions based on an initial set of graded
annotations generated through generic image analysis techniques. Explicit semantics,
represented by ontologies, have also been intensely used in the field of image
and video indexing and retrieval [2, 26]. In most of these approaches, only the
descriptive part of ontologies is used as a common multi-level language to describe
image content [34], or more recently as semantic concept networks to refine image
annotation [17, 43], or to perform image classification [3, 32].

In this paper, we propose to go deeper in the use of ontologies for image
annotation. Our objective is twofold. We first propose an approach to automatically
build a fuzzy multimedia ontology dedicated to image annotation. Indeed, given
a training database consisting of pairs of image/textual annotation, our approach
allows to automatically build an ontology representative of the image semantics
by mining these images and their annotations. Thereafter, we propose a generic
approach for image annotation combining both machine learning techniques such
as hierarchical classification and fuzzy ontology reasoning. The rest of this paper is
structured as follows. In Section 2, we review some related work. Section 3 presents
an overview of the proposed approach for multimedia ontologies building. Section 4
introduces the proposed formalism for our multimedia ontology and the set of
axioms and inferences rules allowing to perform the reasoning tasks. In Section 5,
we introduce the proposed method for building multimedia ontologies suitable
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for reasoning about image annotation and interpretation. Section 6 introduces the
proposed multi-stage reasoning framework for image annotation. Section 7 reports
the experimental results obtained on the Pascal VOC dataset. A discussion about the
proposed approach and the usefulness of our ontology for computer vision tasks is
presented in Section 8. The paper is concluded in Section 9.

2 Related work

Despite significant progress shown by statistical approaches for images annotation,
the semantic gap problem is still an open issue for image annotation. In this
context, several recent approaches have proposed to improve this task by the use
of explicit knowledge models. A first category of approaches have proposed to use
semantic hierarchies for image annotation and classification [3, 17, 32, 42]. Bannour
et al. [3] have identified three types of hierarchies used for image annotation:
(1) language-based hierarchies: based on textual information (ex. tags, surrounding
context, WordNet, Wikipedia, etc.) [14, 32], (2) visual hierarchies: based on low-
level image features [6, 18, 46], and (3) semantic hierarchies: based on both textual
and visual features [3, 17, 29]. However, most of these approaches use semantic
hierarchies to reduce the complexity of the classification problem or as a framework
for hierarchical image classification and they do not use the semantic structure of
these hierarchies (i.e. the inherent semantic relationships of concepts within these
hierarchies). Consequently, only a limited improvement in the classification results
was shown by these approaches.

Other approaches proposed to use multimedia ontologies in order to define a
standard for the description of low-level multimedia content [13, 33], or to use it
as a semantic repository for storing knowledge about image domain [34], or to allow
semantic interpretation and reasoning over the extracted descriptions [12, 22, 24].
Indeed, ontologies allow to model many important semantic relations between
concepts which are missing in the semantic hierarchy models, as for instance the
contextual and the spatial relationships. These relations have been proved to be
of prime importance for image annotation [22, 24, 25, 40]. The reasoning power
of ontological models has also been used for semantic image interpretation. In
[12, 24, 25], formal models of domain application knowledge are used through fuzzy
description logics to help and to guide the semantic image analysis.

However, much remains to be done in order to achieve more expressive ontologies
of images semantics. Firstly, almost all existing approaches for building multimedia
ontologies start from an existing specification of a domain (defined by an expert or
inferred from a generic commonsense ontology). These specifications are not always
relevant for modeling image semantics and are often incomplete, subjective and
subject to many inconsistencies. Indeed, many assumptions about the concepts, their
properties and relationships must be done in order to achieve a given specification,
which finally do not hold in the real world. Secondly, most recent approaches for
building multimedia ontologies are based either on a conceptual specification, or a vi-
sual one. Consequently, these approaches do not accurately model images semantics.
Furthermore, many of these approaches are limited to provide a formalism allowing
to use ontologies as a repository for storing knowledge about multimedia content.
However, since these approaches have not addressed the problem of reasoning about
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this knowledge, the effectiveness of stored knowledge has to be proved. Finally,
ontology modeling in description logics is not an intuitive task. The representation
of each single real world object is split into many axioms about concepts and roles,
leading to an overall design that is very difficult to apprehend [36]. This makes the
design of a well-defined ontology by humans a big challenge, with no guarantee of
success (scalability problem of ontology building).

Our approach goes further than the aforementioned ones and allows answering
many of the previously stated limitations. Specifically, we propose in this paper
a methodology for building multimedia ontologies as knowledge bases that con-
tain explicit and structured knowledge about image context. To ensure that the
structure of our ontology is representative of the image semantics, we propose to
use a semantico-visual specification (which incorporates the visual and conceptual
semantics of image concepts) for designing our ontology. In addition, we propose
to build our multimedia ontology in an automatic manner and based on mining
image databases to gather valuable information about image context. Thereby, we
reduce the scalability problem of ontology building and we ensure that the depicted
knowledge is faithful to image semantics. Finally, the proposed ontology is built using
a highly expressive formalism (Fuzzy OWL2-DL), which allows a good interaction
with it, i.e. a good querying and reasoning capabilities. Our belief is that such formal
ontology will allow performing reasoning tasks in order to achieve an effective
decision-making to provide a semantically consistent image annotation.

3 Overview of our approach for building multimedia ontologies dedicated
to image annotation

This paper proposes an approach for building a fuzzy multimedia ontology dedicated
to image annotation. As illustrated in Fig. 1, our ontology incorporates several types
of knowledge about image context in order to achieve a relevant representation
of image semantics. Moreover, this knowledge is automatically extracted from a
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Fig. 1 From image data to structured knowledge models: architecture of our approach for building
multimedia ontologies dedicated to image annotation
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training image database using data mining techniques. Therefore, assuming that the
considered training dataset is enough representative of current image databases, our
approach allows for building multimedia ontologies faithful to the image semantics.

Figure 1 depicts the workflow of our approach. As shown in this figure, the
knowledge discovery process is performed through the following steps:

1. Processing the set of images in the training dataset to discover useful knowledge
about the image domain (i.e. perceptual semantics), such as the visual similarity
between concepts.

2. Mining the image annotations (provided in the metadata) to gather useful
information about images context, namely contextual and spatial knowledge
about image concepts.

3. Query a commonsense knowledge base to gather precise information about the
semantics of image concepts, and in order to link the initial concepts to their
hypernyms using the method proposed in [3].

Thereafter, the building of our multimedia ontology is fully automatically per-
formed, i.e. without any human intervention. This is achieved by converting the
previously extracted information about image context into explicit knowledge using
the formalism described in Section 4.

Problem formalization
Given:

– DB, a training image database consisting of a set of pairs 〈image/textual annota-
tion〉, i.e. DB = {[i1,A1], [i2,A2], · · · , [iL,AL]}, where:

– I = 〈i1, i2, · · · , iL〉 is the set of all images in DB,
– L is the number of images in the database.
– C = 〈c1, c2, · · · , cN 〉 is the annotation vocabulary used for annotating images

in I,
– N is the size of the annotation vocabulary.
– Ai is a textual annotation consisting of:

• the set of concepts {c j ∈ C, j = 1..nii} associated with a given image ii ∈
DB,

• the spatial location of each concept c j in the image ii given by its
minimum bounding box defined as (c jxmin , c jymin , c jxmax , c jymax), where c jxmin

and c jymin are the coordinates of the low left corner of the bounding box
(and respectively c jxmax and c jymax are the coordinates of the upper right
corner of the bounding box).

– CO, a generic commonsense ontology containing N ′ concepts (C ), such that C ⊆
C . In this paper, we used WordNet as a commonsense ontology.

Our objective is to build a multimedia ontology, consisting of a set of |C| + |C ′|
concepts (s.t. C ∪ C ′ ⊆ C , and C ′ could be probably the empty set), dedicated to
this specific annotation problem, i.e. dependent on the initial annotation vocabulary
but which could be extended at any time later. This ontology should not only
incorporate the subsumption relationships between the different concepts, but also
richer semantic relations, such as contextual and spatial relationships. The overall
goal is to extend the use of this ontology to previously unseen images (i.e. ∀ ix /∈ DB)
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in order to reason on the consistency of their annotations and to provide them a
relevant textual description.

The design of our multimedia ontology as a well defined formal knowledge base
is achieved through the following main steps, which are detailed in the remaining of
this paper:

� Definition of the DL formalism of the proposed ontology, i.e. the expressiveness
of the ontology.

� Definition of the set of axioms and inferences rules allowing to perform the
reasoning tasks on the proposed ontology.

� Definition of the main concepts of the ontology.
� Definition of the RBox, i.e. definition of the key roles (relationships between

concepts) and their properties.
� Definition of the TBox, i.e. definition of the subsumption hierarchy, and conse-

quently the subsumption relationships between the ontology concepts.
� Definition of the ABox, i.e. the instances of concepts and the relations between

them with respect to the roles defined in the RBox.

4 Formalism of our multimedia ontology

4.1 Preliminaries

The Web Ontology Language (OWL) is the current standard language for represent-
ing ontologies. It allows describing a domain in terms of: concepts (or classes), roles
(or properties), individuals and axioms. Concepts (C) are a set of objects, individuals
(I) are instances of concepts in C, roles are binary relationships between individuals
in I, whereas axioms describe how these concepts, individuals, roles, etc. should
be interpreted. Three sublanguages of OWL can be used: OWL-Full which is the
most expressive language but reasoning within it is undecidable, OWL-Lite which
has the lowest complexity but fewer constructs, and OWL-DL which has a good
balance/trade-off between expressiveness and reasoning complexity [8].

In our approach, in order to ensure a high expressiveness with a decidable
reasoning for our ontology, we used OWL 2 DL as a language for designing our
ontology. Indeed, OWL 2 DL is more expressive than OWL-DL, i.e. includes more
axioms. Concretely, we have implemented a framework using the OWL API1 [23],
which supports OWL 2 since it last version. The reasoning tasks about concepts,
roles and individuals are also performed using our framework, which is based on
the FaCT++ reasoner and extending it with the axioms illustrated in Table 1 to
support the Fuzzy Description Logics (Fuzzy DL). Initially, FaCT++ supports the
SROIQ(D) logic (i.e. the DL for OWL2 ontology). However, our framework
supports the fuzzy logic f -SROIQ(D) thanks to the extension we have made.

Description Logics (DLs) are a family of logics for representing structured
knowledge. Fuzzy DLs extend classical DLs by allowing to deal with fuzzy/imprecise
concepts [38]. Indeed, in fuzzy logics a statement is no longer true or false, but is
changed in a fuzzy statement signifying that it has a degree of truth α ∈ [0, 1].

1http://owlapi.sourceforge.net/index.html

http://owlapi.sourceforge.net/index.html
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Fuzzy set preliminaries In a formal way, let X be a set of elements. A fuzzy set
A over a countable crisp set X is characterized by a membership function μA :
X → [0, 1] (or A(x) ∈ [0, 1]), assigning a membership degree A(x) to each element
x in X. A(x) gives an estimation of the belonging of x to A. In fuzzy logics, the
membership degree A(x) is regarded as the degree of truth of the statement “x is
A”. Accordingly, a concept C is interpreted in fuzzy DL as a fuzzy set, and thus
concepts become imprecise. For instance, the statement a : C (a is an instance of
concept C) will have a truth-value in [0,1] given by its membership degree denoted
CI(a). A fuzzy relation R over two countable crisp sets X and Y is a function
R : X × Y → [0, 1]. R is ref lexive iff for all x ∈ X, R(x, x) = 1 holds, while R is
symmetric iff for all x, y ∈ X, R(x, y) = R(y, x) holds. R is said functional iff R is a
partial function R : X × Y → {0, 1} such that for each x ∈ X there is a unique y ∈ X
where R(x, y) is defined.

4.2 Expressiveness of our ontology

As aforementioned, for the sake of providing a highly expressive multimedia ontol-
ogy with a decidable reasoning, we used the fuzzy DL f -SROIQ(D) for designing
our ontology. Based on the work of [37, 39], we introduce in the following the specific
formalism (constructors and axioms) used for defining our multimedia ontology.

The f -SROIQ(D) is a fuzzy extension of the SROIQ(D) DL, which provide
both a set of constructors allowing the construction of new concepts and roles. The
f -SROIQ(D) includes ALC standard constructors (i.e. negation ¬, conjunction

, disjunction �, full existential quantification ∃, and value restriction ∀) extended
with transitive roles (S), complex role axioms (R), nominals (O), inverse roles (I),
and qualified number restrictions (Q). (D) indicates support for (fuzzy) concrete
domains, i.e. datatype properties, data values or data types.

Fuzzy concrete domain A fuzzy concrete domain is a pair 〈�D,�D〉, where �D

is an interpretation domain and �D is the set of fuzzy domain predicates d with a
predefined arity n and an interpretation dD : �n

D → [0, 1] [41].
In f -SROIQ(D), concepts (denoted C or D) and roles (R) can be built induc-

tively from atomic concepts (A), atomic roles (RA), top concept , bottom concept
⊥, named individuals (oi), simple roles S, and universal role U . Simple roles S are
inductively defined: (i) RA is simple if it does not occur on the right side of a Role
Inclusion Axioms (RIA), (ii) R− is simple if R is, (iii) if R occurs on the right side of
a RIA, R is simple if, for each 〈w � R � α〉, w = S for a simple role S.

Fuzzy concepts Under f -SROIQ(D), a fuzzy concept is defined by the following
assertions:2

C →  | ⊥ | A | C1 
 C2 | C1 � C2 | ¬C | ∃R.C | ∃T.d | ∀R.C | ∀T.d |
(≥ m S.C) | (≥ m T.d) | (≤ n S.C) | (≤ n T.d) | {o1, . . . , on}

D → d | ¬d

2n, m are natural numbers, such that n ≥ 0, m > 0. d is an unary fuzzy domain predicate.
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Table 1 Syntax and semantics of the Fuzzy Description Logic f -SROIQ(D) used for designing our
multimedia ontology

Syntax Semantics

C Constructor
1 Atomic concept A AI (a) ∈ [0, 1]
2 Top  I (a) = 1
3 Bottom ⊥ ⊥I (a) = 0
4 Conjunction C 
 D (C 
 D)I (a) = CI (a) ⊗ DI (a)

5 Disjunction C � D C � DI (a) = CI (a) ⊕ DI (a)

6 Negation ¬C (¬C)I (a) = �CI (a)

7 Existential restriction ∃R.C (∃R.C)I (a) = supb∈�
I {RI (a, b) ⊗ CI (b)}

8 ∃T.d (∃T.d)I (a) = supv∈�D {TI (a, v) ⊗ dD(v)}
9 Universal restriction ∀R.C (∀R.C)I (a) = infb∈�

I {RI (a, b) → CI (b)}
10 ∀T.d (∀T.d)I (a) = infv∈�D {TI (a, v) → dD(v)}
11 At-least restriction ≥ m S.C (≥ m S.C)I (a) = supb1,...bm∈�

I ((⊗m
i=1{SI (a, bi)

⊗CI (bi)}) ⊗ (⊗ j<k{b j �= bk}))
12 ≥ m T.d (≥ m T.d)I (a) = supv1,...vm∈�D ((⊗m

i=1{TI (a, vi)

⊗dD(vi)}) ⊗ (⊗ j<k{v j �= vk}))
13 At-most restriction ≤ n S.C (≤ n S.C)I (a) = infb1,...bn+1∈�

I ((⊗n+1
i=1 {SI (a, bi)

⊗C
I
(bi)} → (⊕ j<k{b j = bk}))

14 ≤ n T.d (≤ n T.d)I (a) = infv1,...vn+1∈�D ((⊗n+1
i=1 {TI (a, vi)

⊗dD(vi)} → (⊕ j<k{v j = vk}))
15 Local reflexivity ∃S.Sel f (∃S.Sel f )I (a) = SI (a, a)

16 Fuzzy nominals
⋃m

i=i{(oi, αi)} {(o1, α1), . . . , (om, αm)}I (a) = sup
i|a∈{oI

i }αi

17 Atomic role RA RI
A(a, b) ∈ [0, 1]

18 Universal role U UI (a, b) = 1
19 Inverse role R− ∀a, b ∈ �I , (R−)I (a, b) = RI (b , a)

20 Concrete role T TI (a, v) ∈ [0, 1]
A Axiom

1 Concept assertion 〈a : C �� α〉 CI (aI ) �� α

2 Role assertion 〈(a : b) : R �� α〉 RI (aI , bI ) �� α

3 Concrete role assertion 〈(a : b) : T �� α〉 TI (aI , vD) �� α

4 Equality assertion 〈a = b〉 aI = bI

5 Inequality assertion 〈a �= b〉 aI �= bI

6 Subsumption 〈C � D � α〉 infa∈�I {CI (a) → DI (a)} � α

7 Concept definition 〈C ≡ D〉 ∀a ∈ �I , CI (a) = DI (a)

8 Role inclusion axioms 〈R1 R2 · · · Rn supb1...bn+1∈�I ⊗ [RI
1 (b1, b 2), . . . ,

� R � α〉 RI
n(bn, b n+1)] → RI (b1, b n+1) � α

9 Disjoint role dis(S1, S2) ∀a, b ∈ �I , SI
1 (a, b) ⊗ SI

2 (a, b) = 0
10 Symmetric role sym(R) ∀a, b ∈ �I , RI (a, b) = RI (b , a)

11 Reflexive role ref (R) ∀a ∈ �I , RI (a, a) = 1
12 Transitive role trans(R) ∀a, b ∈ �I , RI (a, b) ≥ supc∈�I RI (a, c)

⊗RI (c, b)

13 Irreflexive role irr(S) ∀a ∈ �I , SI (a, a) = 0
14 Asymmetric role asy(S) ∀a, b ∈ �I , if SI (a, b) > 0 then SI (b , a) = 0

a, b ∈ �I are abstract individuals, v ∈ �D is a concrete individual, n, m are natural numbers (n ≥
0, m > 0), α ∈ [0, 1] is the truth degree of a statement, �∈ {>,≥}, ��∈ {>,<,≥,≤}

For more details about the semantics of these assertions cf. Table 1, constructors
C1–C16.
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Fuzzy KB A f -SROIQ(D) knowledge base (denoted KB) is a triple (T ,R,A)
where T is a fuzzy Terminological Box (TBox), R is a regular fuzzy Role Box
(RBox), and A is a fuzzy Assertional Box (ABox) containing statements about
individuals. The TBox and RBox contain general knowledge about the domain
application.

Fuzzy ABox The fuzzy ABox consists of a finite set of fuzzy concept and fuzzy
role assertion axioms. Typically, these assertions include: concept assertion (〈a : C ��
α〉), role assertion (〈(a : b) : R �� α〉), concrete role assertion (〈(a : b) : T �� α〉),
equality assertion (〈a = b〉), and inequality assertion (〈a �= b〉). The semantics of
these assertions is defined in Table 1, axioms A1–A5.

Fuzzy TBox The fuzzy TBox is a finite set of General Concept Inclusions
(GCI) constrained with a truth-value and of the form 〈C � D � α〉 between two
f -SROIQ(D) concepts C and D. Concept equivalence 〈C ≡ D〉 can be captured by
two inclusions C � D and D � C. These assertions and their semantics are defined
in Table 1, axioms A6 and A7.

Fuzzy RBox The fuzzy RBox consists of a finite set of role axioms which are
illustrated in Table 1, axioms A8–A14. These include: role inclusion axioms, disjoint
role, symmetric role, reflexive role, transitive role, irreflexive role, and asymmetric
role.

Owing to the specific motivations discussed in Section 4.3, we have defined the
fuzzy operators used in Table 1 as follows:

1. product t-norm: a ⊗ b = a ∗ b .
2. product t-conorm: a ⊕ b = a + b − a ∗ b .
3. Łukasiewicz negation: �α = 1 − α.
4. Gödel implication (for GCIs and RIAs): α → β = 1 if α ≤ β, β otherwise.
5. KD implication (for other constructors): α → β = max(1 − α, β).

Fuzzy interpretation The Semantics of the f -SROIQ(D) DL is defined in terms of
fuzzy interpretations [38]. A fuzzy interpretation is a pair I = (�I, ·I) where �I is a
non-empty set of objects (called the domain) and ·I is a fuzzy interpretation function,
which maps:

– a concept name C onto a function CI : �I → [0, 1],
– a role name R onto a function RI : �I × �I → [0, 1],
– an individual name a onto an element aI ∈ �I ,
– a concrete individual v onto an element vD ∈ �D,
– a concrete role T onto a function TI : �I × �D → [0, 1],
– a concrete feature t onto a partial function tI : �I × �D → {0, 1}

Satisf iability Finally, a fuzzy interpretation I satisfies an f -SROIQ(D) knowl-
edge base KB = (T ,R,A) if it satisfies all axioms of T , R and A. I is then called
a model of KB, written: I |= KB.
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4.3 Ontology-based reasoning

General automatic reasoning tasks on ontologies include concept consistency, con-
cept subsumption to build inferred concepts taxonomy, instance classification and
retrieval, parent and children concept determination, and answering queries over
ontology classes and instances [1]. These reasoning tasks are induced by inferring
logical consequences from a set of asserted facts or axioms.

Logical consequence A fuzzy axiom τ is a logical consequence of a knowledge base
KB, denoted KB |= τ i f f every witnessed model of KB satisfies τ .

Given a KB and an axiom τ of the form 〈C � D〉, 〈a : C〉 or 〈(a, b) : R〉, it is
possible to compute the best explanation of a given statement (probably, about an
image) as the τ ’s best entailment degree (bed). The bed problem can be solved by
determining the greatest lower bound (glb) [38].

Greatest lower bound The greatest lower bound of τ with respect to a fuzzy KB is:

glb(KB, τ ) = sup{n | KB |= 〈τ ≥ n〉}, where sup ∅ = 0 (1)

Example 1 (Greatest lower bound) For instance, given KB = {〈(a, b) : R, 0.5〉, 〈b :
C, 0.9〉}, the greatest lower bound that a is an instance of a concept which is in relation
R with concept C is:

glb(KB, a : ∃R.C) = 0.45

Best satisf iability degree The best satisf iability degree (bsd) of a concept C with
respect to a fuzzy KB is defined as:

bsd(KB, C) = supI|=KB supx∈�I
{
CI(x)

}
(2)

The best satisf iability degree consists in determining the maximal degree of truth
that the concept C may have over all individuals x ∈ �I , among all models I of
the KB.

According to our specific context, and in order to achieve an efficient reasoning
(and subsequently an accurate decision) on the best explanation of a given image, it
is important to compute a membership degree for this explanation which reflects the
likelihood of conjunction of all independent events composing it. The product logic
makes possible to dispose of this desirable property for the t-norm. This assumption
has motivated our choice for the product t-norm and the product t-conorm as fuzzy
operators of our ontology—cf. Section 4.2. For instance, let us consider the following
example where we want to compute the membership of an image i to the class
BeachImage:

Example 2 (Product semantics and Zadeh semantics)

KB = {〈i : Image, 1〉, 〈i : ∃depicts.Sea, α1〉, 〈i : ∃depicts.Sand, α2〉,
〈i : ∃depicts.Sky, α3〉}

BeachImage ≡ Image 
 ∃depicts.Sea 
 ∃depicts.Sand 
 ∃depicts.Sky



Multimed Tools Appl (2014) 72:2107–2141 2117

glb(KB, i : BeachImage) = α1 ⊗ α2 ⊗ α3

=
{

min{α1, α2, α3} under Zadeh semantics

α1 ∗ α2 ∗ α3 under Product semantics

Both explanations and membership degrees are meaningful with respect to a given
application. However, according to our target application, the product semantics
allows to dispose of a more significant membership value than the one produced
by Zadeh semantics. For example, let us suppose that α1, α2, and α3 are produced
as a result of an image classification process, or an object detection one. Therefore,
it would be more accurate to compute the membership degree of the image i to the
class BeachImage as the product of the confidence values of these classifiers than
as the minimum score of these classifiers. This property is reachable by the use of
product semantics.

5 Building of our multimedia ontology

5.1 Main concepts of our ontology

Proposed concepts The proposed multimedia ontology relies mainly on the four
following concepts, which can recursively involve similar concepts (Fig. 2a):

– “Thing” represents the top concept () of the ontology,
– “Concept” is the generic concept in our ontology to represent a concept from the

annotation vocabulary, i.e. any concept c j ∈ C ∪ C ′ used to describe the content
of an image.

– “Image” is the generic concept to represent an image, i.e. each image ii of
the database will be considered as an instance of the concept “Image” with a
satisfiability degree of 1 (〈ii : Image, 1〉).

– “Annotation” is a generic concept introduced to represent a given annotation,
i.e. a set of concepts as a whole. We will come back on this notion later.

(a) (b)

Fig. 2 Illustration of the used roles for defining concept relationships in our ontology. Figure a
illustrates the main concepts of our ontology and the used fuzzy roles (in dashed arrows) for defining
the relationships between concepts. Figure b illustrates the roles names
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5.2 Definition of the RBox

As stated previously, our intent is to design an ontology of spatial and contextual
information dedicated to reasoning about the consistency of image annotation.
According to this aim, we define in Table 2 the proposed roles and their proper-
ties, which constitute the RBox of our multimedia ontology. These roles can be
categorized as contextual relationships and spatial relationships, and are detailed
respectively in Section 5.4.1 and in Section 5.4.2. The choice of these specific roles is
motivated by the reasoning scenarios designed to improve the image annotation task.
However, these roles can be further enriched depending on referred applications.

5.3 Building the semantic hierarchy and definition of the TBox

The subsumption hierarchy (and respectively the subsumption relationships) is
a fundamental component of ontologies. It acts as a backbone of the produced
ontology, where the subsumption roles allow defining the inheritance of properties
from the parent (subsuming) concepts to the child (subsumed) concepts. Thus, any
statement that is true (with an α degree) for a parent concept is also necessarily
true (with at least an α degree) for all of its subsumed concepts. Furthermore, these
subsumption relationships allow defining the Terminological Box of ontologies.

In our approach, we propose to automatically build a subsumption hierarchy
where leaf nodes are the initial concepts of the considered dataset (c j ∈ C), and mid-
level nodes are the concepts discovered by a variant of the approach proposed in
[3]. Indeed, in order to design a representative ontology of the image semantics,
we propose in this paper to automatically build the semantic hierarchy using a

Table 2 Roles and functional roles used for defining concept relationships in our ontology

Domain Range Symetric Reflexive Functional Inverse

Role name
isAnnotatedBy Image Annotation No No No –
hasAppearedWith Concept Concept Yes Yes No –
hasAppearedAbove Concept Concept No No No hasAppeared-

Below
hasAppearedBelow Concept Concept No No No hasAppeared-

Above
hasAppearedLeftOf Concept Concept No No No hasAppeared-

RightOf
hasAppearedRightOf Concept Concept No No No hasAppeared-

LeftOf
hasAppearedAlignedWith Concept Concept Yes No No –
hasAppearedCloseTo Concept Concept Yes No No –
hasAppearedFarFrom Concept Concept Yes No No –

Functional role name
hasFrequency Concept Float – – Yes –
hasAppearedAlone Concept Float – – Yes –
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Semantico-Visual similarity computed between image concepts. The used Semantico-
Visual similarity incorporates:

(i) a visual similarity which represents the visual distance between concepts, and
(ii) a conceptual similarity which defines a relatedness measure between target

concepts based on their definitions in WordNet.

Afterwards, the building of the subsumption hierarchy is bottom-up, and is based
on a set of heuristic rules in order to link together the concepts that are semantically
most related w.r.t the previously computed similarity. Consequently, the building of
the subsumption hierarchy consists in identifying |C ′| new concepts that link all the
concepts of C in a hierarchical structure that best represents image semantics. For
more information about these (visual and conceptual) similarities and the used rules
for linking concepts together, the reader is suggested to refer to [3].

Subsequent to the building of the semantic hierarchy, the subsumption rela-
tionships between all pairs of concepts (ci, c j ∈ C ∪ C′) are added to our ontology
according to the hierarchy structure. This is achieved automatically using the axiom
A6 illustrated in Table 1.

Figure 3 illustrates the built semantic hierarchy on the Pascal VOC’2010 dataset.
This semantic hierarchy allowed to define the subsumption relationships between
image concepts. We can observe that the produced hierarchy is a N-ary tree like-
structure, where leaf nodes are the concepts in C. Mid-level concepts are automati-
cally recovered from WordNet based on the previously introduced method. We can
also observe that the connected concepts share strong visual and semantic similarity,
which justifies the choice of this method in our approach. We therefore concur with
the assumption that a suitable semantic hierarchy for representing image semantics
should incorporate visual and conceptual (semantic) modalities during the building
process [3].

5.4 Definition of the ABox

Following the building of the semantic hierarchy that will be used as the backbone
of our ontology, information about the context of images is added to our ontology
in order to design a more representative knowledge base of image semantics. This
information, mainly consisting of contextual and spatial relationships between image

Fig. 3 The semantic hierarchy built on Pascal VOC’2010 dataset. Double octagon nodes are original
concepts, i.e. concepts of C, and the diamond one is the root of the produced hierarchy
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concepts will forms the ABox of our ontology and will serves for reasoning about
image annotation. Furthermore, our intent is to design a fuzzy multimedia ontology
in order to model the inherent uncertainty of concept relationships, which should
lead to a more efficient decision-making during the image annotation process.
Consequently, we introduce in the following how the confidence degrees of each
of the proposed fuzzy roles (concept relationships) are computed.

5.4.1 Contextual relationships

Contextual information is of great interest to help understanding the image seman-
tics. A simple form of contextual information is the co-occurrence frequency of a
pair of concepts. For example, it is intuitively clear that if two concepts are similar
or related, it is likely that their role in the world will be similar, and thus their
context of occurrence will be equivalent (i.e. they tend to occur in similar contexts,
for some definition of context). For instance, a photo containing “Television” and
“Sofa” depicts usually a “Living-room” scene. Nevertheless, contextual similarity is a
‘corpus-dependent’ measure, i.e. depends on the concepts distribution in the dataset.
It is therefore important to normalize the measures based on contextual information.

In our approach, we define three contextual relationships that we estimated im-
portant for reasoning about image annotation. These are: CON = {“hasFrequency”,
“hasAppearedWith”, “isAnnotatedBy”}. However, nothing prevents the enrichment
of our multimedia ontology with other contextual relationships in order to adapt to
other reasoning scenarios. The proposed relations (∈ CON ) are detailed bellow.

Let us consider an image database DB, where:

– L is the number of images in the database,
– N is the size of the annotation vocabulary,
– ni is the number of images annotated by ci (occurrence frequency of ci), and
– nij the number of images co-annotated by ci et c j.

Our objective is to estimate P(ci) as the probability of occurrence of a given
concept ci (and respectively P(ci, c j) as the joint probability of ci and c j) in DB. These
probabilities can be easily estimated by:

̂P(ci) = ni

L (3)

̂P(ci, c j) = nij

L (4)

Based on these probabilities, we define the concept frequency relationship as the
concrete feature: hasFrequency : �I ∗ �D → {0, 1}, where �I = C and �D = [0, 1]
are the interpretation domains. This concrete feature associates to each concept ci ∈
C a fuzzy degree corresponding to its occurrence frequency in DB:

μhasFrequency(ci) = P(ci) (5)

We also define the contextual relationship ’hasAppearedWith’ as the fuzzy role
hasAppearedWith : �I ∗ �I → [0, 1], where �I = C. The membership degree of
this relationship is computed using the Normalized Pointwise Mutual Information
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(NPMI). To this purpose, the Pointwise Mutual Information ρ(ci, c j) is firstly com-
puted for all pairs of concept ci, c j ∈ C as follows:

ρ(ci, c j) = log
P(ci, c j)

P(ci)P(c j)
= log

L ∗ nij

ni ∗ n j
(6)

ρ(ci, c j) quantifies the amount of information shared between the two concepts ci

and c j. Thus, if ci and c j are independent concepts, then P(ci, c j) = P(ci) · P(c j)
and therefore ρ(ci, c j) = log 1 = 0. ρ(ci, c j) can be negative if ci et c j are negatively
correlated. Otherwise, ρ(ci, c j) is positive and quantifies the degree of dependence
between these two concepts. In this work, we only want to estimate the positive
correlation between each pair of concepts from the annotation vocabulary and
therefore we set the negative values of ρ(ci, c j) to 0. Moreover, in order to normalize
it into [0,1], the membership degree of the fuzzy role ‘hasAppearedWith’ is computed
as follows:

μhasAppearedWith(ci,c j) =
ρ(ci, c j)

− log[max(P(ci), P(c j))] (7)

Finally, we define the fuzzy role ‘isAnnotatedBy’ as a relationship between
instances of concepts “Image” and “Annotation”, i.e. isAnnotatedBy : �I ∗ �I →
[0, 1], where �I = {Image, Annotation}. This relationship is intended to repre-
sent the probability of finding an image in DB annotated by a set of concepts
(Annotation j = 〈c1, c2, · · · , c	〉), or inversely, the likelihood that a given annotation
’Annotation j’ is associated with an image ii ∈ I. To this end, all the possible annota-
tions in DB are extracted and are added to our ontology as subconcepts of concept
“Annotation”. The confidence value of this relationship is computed as follows:

μisAnnotatedBy(Image1,Annotation j) =
nAnnotation j

L (8)

where Annotation j = 〈c1, c2, · · · , c	〉 is a textual annotation used for annotating a
set of images in DB, nAnnotation j is the number of images annotated by Annotation j,
and L = |I| is the total number of images in DB.

For instance, Example 3 illustrates some inputs of the added assertions to our
ABox.

Example 3 (Contextual relationship: ‘isAnnotatedBy’)

〈Annotation1 ≡ Aeroplane 
 Car 
 Person〉
〈Annotation1 � Annotation ≥ 1〉〉
〈Annotation2 ≡ Dining_Table 
 Chair 
 Bottle 
 Dog〉
〈Annotation2 � Annotation ≥ 1〉

〈a : Image ≥ 1〉
〈b : Annotation1 ≥ 1〉

〈(a : b) : isAnnotatedBy ≥ 0.023064〉
· · ·



2122 Multimed Tools Appl (2014) 72:2107–2141

5.4.2 Spatial relationships

Spatial information is a valuable source for the understanding of image semantics.
The spatial arrangement of objects provides an important information for the
recognition and interpretation tasks, and allows to solve the ambiguity between
objects having a similar appearance [7]. For instance, using object detectors if one
have detected in an image that “Sky” has appeared bellow “Sea”, it is easy to fix this
prediction using spatial information because any well defined knowledge base (KB)
would allow to detect and correct this inconsistency.

In our approach, eight spatial relationships are used in order to define the
directional positions and distances between image concepts. The directional relation-
ships are defined as follows: DIR = {“hasAppearedAbove”, “hasAppearedBelow”,
‘hasAppearedLeftOf”, “hasAppearedRightOf”, “hasAppearedAlignedWith”}, such
as ∀X ∈ DIR,X : �I ∗ �I → [0, 1], with �I = C.

The relationships in DIR are derived from the following primitives: ’left’, ‘right’,
‘above’, ‘below’ and ‘aligned’, which are computed according to the angle between
the segment joining two points ’a’ and ’b ’ (where ‘a’ and ‘b ’ are the centroids of two
given objects in a given image) and the x-axis of the image—cf. Fig. 4. This angle,
denoted θ(a, b), takes values in [−π, π ] which constitutes the domain of definition
of these primitives. They are then computed using cos2θ and sin2θ , and are functions
from [−π, π ] into {0, 1}. Thus, any of the previous primitives can be computed by an
angle α with the x-axis as illustrated in Fig. 5.

Regarding the primitive ‘aligned’, it takes 1 when θ ∈ [−π/6, π/6] ∪ [5π/6,
−5π/6] and 0 otherwise. A comprehensive survey about spatial relationships for
image processing can be found in [7].

The confidence value of a given directional relationship is finally computed as
follows:

μX (ci,c j) =
� of instances where X (ci, c j)

nij
(9)

where ci, c j ∈ C, and X is a directional relationship, i.e. X ∈ DIR.
In addition, we define in our approach the distance relationships as DIS = {“has-

AppearedCloseTo”, “hasAppearedFarFrom”}, such as ∀χ ∈ DIS, χ : �I ∗ �I →
[0, 1], with �I = C. These distance relationships are computed according to the
Euclidean distance on the considered objects. To this purpose, let us consider in a
given image two objects O and P defined by their centroids (x1, y1) and (x2, y2), and

Fig. 4 Spatial primitives are
computed according to the
angle between the segment
joining two points ‘a’ and ‘b ’
and the x-axis of the image. ‘a’
and ‘b ’ are the centroids of
two given objects (here “Cow”
and “Person”) in a given image
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Fig. 5 Directional relationships are computed according to an angle α with the x-axis

their bounding box (Oxmin, Oxmax, Oymin, Oymax) and (Pxmin, Pxmax, Pymin, Pymax).
We define then the following primitives:

distance(O, P) = √
(x1 − x2)2 + (y1 − y2)2 (10)

size(O) =
√

(Oxmax − Oxmin)2 + (Oymax − Oymin)2 (11)

close(O, P) =
{

1 if distance(O, P) < 2(size(O) + size(P))
0 otherwise

(12)

f ar from(O, P) =
{

1 if distance(O, P) ≥ 2(size(O) + size(P))
0 otherwise

(13)

Using the previous primitives, distance relationships can easily be computed by
the following equation:

μχ(ci,c j) =
� of instances where χ(ci, c j)

nij
(14)

where ci, c j ∈ C, and χ is a distance relationship, i.e. χ ∈ DIS .

Example 4 (Spatial relationships)

〈a : Bottle ≥ 1〉
〈b : Dining_Table ≥ 1〉

〈(a : b) : hasAppearedAbove ≥ 0.76〉
〈(a : b) : hasAppearedBelow ≥ 0.02〉
〈(a : b) : hasAppearedAlignedWith ≥ 0.62〉
〈(a : b) : hasAppearedCloseTo ≥ 0.97〉

· · ·

In order to illustrate our approach for building multimedia ontologies, we show in
Fig. 6 an extract of the built ontology on Pascal VOC dataset. This figure depicts
the main concepts of the built ontology and the used roles for defining concepts



2124 Multimed Tools Appl (2014) 72:2107–2141

(a)

(b)

Fig. 6 An extract of the built multimedia ontology on Pascal VOC dataset is illustrated in figure a.
Dashed arrows represent the fuzzy roles used for defining the contextual and spatial relationships
between concepts. Figure b illustrates the roles names

relationships. Full arrows represent the subsumption relationships between the
ontology concepts. Dashed arrows represent the fuzzy roles used for defining the
contextual and spatial relationships between concepts. For the clarity of the illustra-
tion we restricted the Annotation j concept number to 4 and we did not displayed the
instances (individuals).

6 Proposed method for image annotation: Multi-stage reasoning
framework for image annotation

Automatic image annotation is still a challenging problem despite more than a
decade of research. Indeed, current approaches are struggling to scale up because
of the lack of a computational model allowing to model such a complex system, the
uncertainty introduced by the statistical learning algorithms, the dependency on the
accuracy of the ground truth of the training dataset and the well-known semantic
gap problem. Given a training dataset, automatic image annotation often consists in
building a computational model that enables to predict a set of concepts from the
annotation vocabulary to previously unseen images.

Image classification is a widely used technique for image annotation. It consists
in performing several binary SVM classifiers on an input image to find to which
classes it belongs to. The annotation of an image depends therefore on the classifier
outputs, i.e. an image is annotated by a concept ci ∈ C if the output of the classifier
associated to ci is positive. Usually, such a process involves considerable uncertainty
because of the errors introduced by the machine learning algorithms. However, this
uncertainty can be reduced using reasoning over the produced image annotation. For
instance, it is most often easy to compute a confidence score (membership value) for
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the classification of an image to a given class. Such information is valuable and can be
of great importance to improve image classification accuracy. For instance, one can
improve image annotation in a post-classification process based on these confidence
scores and an explicit knowledge source, such as an ontology which models images
context. In that way, this uncertainty is used itself as a knowledge source in order
to achieve a better decision-making on the image annotation. Furthermore, the
use of an explicit knowledge model can help model, reduce, or even remove this
uncertainty by supplying a formal framework to reason about the consistency of
extracted information from images.

Our approach is motivated by the above assumption. Indeed, we propose in the
following a multi-stage reasoning framework for image annotation based on the
earlier built multimedia ontology. The proposed framework allows reasoning on
the provided annotations by the image classification algorithm in order to achieve a
semantically relevant image annotation. A global overview of the proposed approach
is illustrated in Fig. 7.

Specifically, we consider the following problem. Given a formal multimedia
ontology designed as a fuzzy knowledge base KB = 〈T ,R,A〉, where T is a fuzzy
Terminological Box (TBox), R is a regular fuzzy Role Box (RBox), and A is a
fuzzy Assertional Box (ABox). This fuzzy knowledge base is assumed to contain the
following explicit knowledge about ontology concepts: i) subsumption relationships,
ii) contextual relationships, and iii) spatial relationships. This multimedia ontology
is then used within our framework for annotating previously unseen images. As
illustrated in Fig. 7, this is achieved by the following steps:

– A hierarchical classification is performed on the input image, and the confidence
score for each concept c j ∈ C ∪ C ′ is recovered.

– These concepts and their confidence scores are thereafter transformed into
fuzzy description logics assertions, and their consistency is checked using the

Fig. 7 Proposed method: a
knowledge-based multi-stage
reasoning framework for
image annotation Hierarchical Image 

Classification

Reasoning on the annotation 
using the subsumption 

relationships

Reasoning on the annotation 
using contextual information

Input Image

Multimedia Ontology

Fuzzy DLReasoner 

Detected concepts and their 
confidence scores

A set of concepts 

Reasoning on the annotation 
using spatial information

Relevant Image Annotation

A set of concepts 
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subsumption relationships and our fuzzy DL reasoner. Inconsistent concepts are
removed from the candidate annotation3 of the input image.

– Thereafter, the consistency of the set of concepts from the candidate annotation
is checked with respect to the contextual relationships and our fuzzy DL rea-
soner. Inconsistent concepts are again removed from the candidate annotation
of the input image.

– Finally, the consistency of the candidate annotation is checked with respect to
the spatial information, and the final (candidate) annotation is associated with
the input image. This final annotation is supposed to be semantically consistent.

6.1 Hierarchical image classification

Based on the subsumption hierarchy, we propose in the following to train several
classifiers that represent the same concept at different levels of abstraction. These
classifiers are consistent with each other since they are linked by the subsumption
relationship, and then represent the same information with different levels of details.
Therefore, it is possible to reason on the outputs of these classifiers in order to
achieve a relevant decision on the belonging of an image to a given class.

Concretely, given a semantic (subsumption) hierarchy, a classifier for each con-
cept node of the hierarchy is trained by performing a One-Versus-All (OVA)
Support Vector Machines [11]. Specifically, for training the classifier of a target
concept node we took as positive samples all images associated with its children leaf
nodes. Negative samples are all the other images of the training database. Therefore,
the semantic hierarchy is only used to recover the set of positive and negative sample
images for training the classifiers of each concept node at the different layers of the
hierarchy. Consequently, the decision function of each classifier is independent from
its subsumed (child) and subsuming (parent) concept nodes.

Let xv
i be any visual representation of an image ii ∈ I (a visual feature vector), we

train for each concept class (c j ∈ C ∪ C ′) in the hierarchy a classifier that can associate
c j with its visual features. This is achieved by the use of |C| + |C ′| binary SVM OVA,
with a decision function:

G(xv
i ) =

∑

k

αk ykK(xv
k, xv

i ) + b (15)

where K(xv
k, xv

i ) is the value of a kernel function for the training sample xv
k and the

test sample xv
i , yk ∈ {1,−1} is the class label of xv

k, αk is the learned weight of the
training sample xv

k, and b is a learned threshold parameter.
Radial Basis Function (RBF) kernel is used for the training of our SVM:

K
(
xv

k, xv
i

) = exp
(‖xv

k − xv
i ‖2

σ 2

)

(16)

3A candidate annotation P consists of a set of candidate concepts {c j ∈ C ∪ C′, j = 1..nii } and their
confidence values {α j, j = 1..nii }, predicted as describing the image content.
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6.2 Reasoning on image annotation using the subsumption hierarchy

Based on the classifiers outputs and the subsumption relationships, we propose in the
following to check the consistency of candidate concepts. So, let us consider a previ-
ously unseen image i′i ∈ I′. Performing a hierarchical image classification on i′i pro-
duces an outputP which consists of a set of candidate concepts {c j ∈ C ∪ C ′, j = 1..ni′i }
and their confidence values {α j, j = 1..ni′i }, i.e. P = 〈(c0, α0), (c1, α1), · · · (cm, αm)〉 as
illustrated in Fig. 8. Subsequently, these concepts and their confidence scores are
transformed into fuzzy description logics assertions. In order to do so, we first
normalize into [0, 1] the outputs {α j, j = 1..ni′i } of the SVM classifiers by assigning
zero to negative values and performing min-max normalization on the positive
values. Thereafter, the consistency of each concept c j ∈ C is checked using the
subsumption relationships and our fuzzy DL reasoner. Inconsistent concepts are
removed from the candidate annotation.

Specifically, our objective is to check the consistency of a candidate concept
c j ∈ C to a given image i′i using the subsumption relationships, and thus the set of

Fig. 8 Illustrative examples of the proposed method for annotating images
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its hypernyms {ck ∈ C ′ | c j : C > 0, ck : D > 0, C � D > 0}. Therefore, the reasoning
process can be formulated using conjunctive queries as follows:

valid(c j) ← P(c j) > 0 ∧ c j : C > 0 ∧ ck : D > 0 ∧ C � D > 0 ∧ valid(ck)

valid() = 1

where  is the root of the ontology, and P(c j) represents the confidence score of the
concept c j given by α j.

In DL, given an abstract individual ‘a’ (an instance of a given candidate concept),
the consistency checking of concept inclusions is performed as follows. For C � D,
we compute the greatest lower bound glb(KB, C � D) using Axiom A6 in Table 1,
i.e. as the minimal value of x such that KB = 〈T ,R,A ∪ {〈a : C, α1〉} ∪ {〈a : D, α2〉}〉
is satisfiable under the constraints expressing that α1 → α2 ≤ x, with α1 and α2 ∈
[0, 1]. This process is then iterated until the root of the ontology is reached. Thus, we
come up with the following hierarchy: C1 � C2 ≥ x1, C2 � C3 ≥ x2, · · · , Cn �  ≥ 1.
Thereafter, a confidence score for the considered candidate concept is computed as
follows:

bed(KB, a : ValidCC) = x1 ⊗ x2 ⊗ · · · ⊗ 1 = x1 ∗ x2 ∗ · · · ∗ 1 (17)

where ValidCC stands for a Valid Candidate Concept, which is a concept defined to
regroup all the consistent candidate concepts.

Finally, all candidate concepts with a confidence score equal to zero are removed
from the annotation of the image i′i.

In order to illustrate our approach, let us consider the first example in Fig. 8 where
evaluations were performed on Pascal VOC’2010 dataset. The image classification
algorithm has detected “Motorbike” as a candidate concept (among others) for the
considered image. However, according to the subsumption hierarchy (cf. Fig. 3)
a “Motorbike” � “Wheeled_vehicle” � “Conveyance”, etc., and therefore the
classifiers should also have detected these concepts to stay coherent. The consistency
checking of the concept “Motorbike” is performed according to the previously
described procedure [–cf. Example 5], and thus this concept is removed from the
list of candidates since bed(KB, Motorbike : ValidCC) = 0.

Example 5 (Consistency checking of concept “Motorbike”)

KB = 〈T ,R,A ∪ {〈a : Motorbike ≥ 0.262〉}
∪ {〈a : Weeled_vehicule ≥ 0〉}
∪ {〈a : Conveyance ≥ 0〉}
∪ {〈a : Abstraction ≥ 0.109〉}
∪ {〈a : Concept ≥ 1〉}〉

bed(KB, Motorbike : ValidCC) = 0.262 ⊗ 0 ⊗ 0 ⊗ 0.109 ⊗ 1 = 0

6.3 Reasoning on image annotation using image context

As aforementioned, contextual information can provide valuable information for
the understanding of image context or to reason about the consistency of image
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annotation. For instance, it is evident that an image which contains the set of
concepts {“Aeroplane”, “Person”, “Car”} represents a scene of an airport tarmac,
and not the one of a flying plane. And conversely, it is obvious that an image that
contains “Dining_table” and “Sofa” should not contain “Boat” or “Bus”. Thus,
contextual information, if processed, can be helpful to check the consistency of image
annotations.

Using our multimedia ontology, it is easy to recover contextual information about
images. Consequently, we propose in the following to use this information to recover
from our ontology all consistent annotations with respect to contextual information,
and to compute the best explanation of a considered image. Specifically, the fuzzy
role “isAnnotatedBy” allows predicting a confidence score (based on contextual
information) for a given set of candidate concepts. Given a Candidate Annotation
CA j = 〈c1, c2, · · · , cm〉 and a target image i′i ∈ I′, a confidence score is computed
to estimate the correlation likelihood between CA j and i′i. This confidence score
increases according to the likeliness of the candidate annotation CA j, or it is equal
to 0 when the annotation is not valid.

Concretely, given an image i′i and P ′ : 〈(c0, α0), (c1, α1), · · · (cm, αm)〉, m = |P ′|, a
set of valid candidate concepts with respect to the subsumption relationships, we
build first the set of candidate annotation (CA j, j ∈ 1..|combinaisons|) by taking all
the possible combination of the concepts in P ′. A confidence score for each valid
candidate annotation (ValidCA) is then computed. For instance, let us assume that
we dispose of one candidate annotation consisting of 3 concepts. Its confidence score
is computed as follows:

Example 6 (Reasoning using image context)

P ′ : 〈(c1, α1), (c2, α2), (c3, α3)〉, (classifier outputs)
〈c1 : C1 ≥ α1〉, 〈c2 : C2 ≥ α2〉, 〈c3 : C3 ≥ α3〉
〈CA ≡ C1 
 C2 
 C3〉
〈b : CA ≥ αb 〉, s.t. αb = α1 ⊗ α2 ⊗ α3

KB = 〈T ,R,A ∪ {〈a : Image ≥ αa〉} ∪ {〈b : CA ≥ αb 〉}〉
〈(a, b) : isAnnotatedBy ≥ αr〉, is already stored in the KB during the ontology
building process, where αr = μisAnnotatedBy(a,b) (cf. (8)).

Therefore, according to (1), the correlation likelihood between a candidate annota-
tion CA and a given image i′i can be computed as follows:

glb(KB, a : ∃ isAnnotatedBy.CA) = αb ⊗ αr = (α1 ⊗ α2 ⊗ α3) ⊗ μisAnnotatedBy(a,b)

(18)
then,

ValidCA ≡ ∃ isAnnotatedBy.CA (19)

Finally, the best explanation (bex) of i′i is retrieved as the ValidCA having the
maximum correlation likelihood among all the others. This explanation is computed
as follows:

bex(KB, ValidCA) = {〈a, r〉|r = bed(KB, a : ValidCA)} (20)
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For instance, let us consider the first example in Fig. 8. We show below some cases
of DL reasoning using the contextual information:

Example 7 (DL Reasoning using image context)

P ′ : 〈(c1 : Horse, 0.391), (c2 : Person, 0.805), (c3 : Sheep, 0.519), (c4 : Cow, 0.310)〉
〈CA0 ≡ Horse 
 Person 
 Sheep〉
〈CA1 ≡ Person 
 Sheep〉
〈CA2 ≡ Cow 
 Person〉
〈b 0 : CA0 ≥ 0.163〉
〈b 1 : CA1 ≥ 0.417〉
〈b 2 : CA2 ≥ 0.249〉
KB = 〈T ,R,A ∪ {〈a : Image ≥ 1〉} ∪ {〈b 0 : CA0 ≥ 0.163〉} ∪ {〈b 1 : CA1 ≥ 0.417〉}

∪ {〈b 2 : CA2 ≥ 0.249〉}〉
glb(KB, a : ∃ isAnnotatedBy.CA0) = (0.391 ⊗ 0.805 ⊗ 0.519) ⊗ 0.003548 = 0.00057

glb(KB, a : ∃ isAnnotatedBy.CA1) = (0.805 ⊗ 0.519) ⊗ 0.027413 = 0.01145

glb(KB, a : ∃ isAnnotatedBy.CA2) = (0.391 ⊗ 0.805) ⊗ 0.025455 = 0.00635

bex(KB, ValidCA) = 0.01145

Consequently, with respect to the contextual information, the best explanation for
the left image in Fig. 8 is: CA1 ≡ Person 
 Sheep.

Please note that, since most images of the Pascal VOC dataset contain only one or
two concepts [10], and thus the distribution of multi-labeled images is not uniform,
we computed (8) for this dataset as:

μisAnnotatedBy(Photo,Annotationi) =
nAnnotationi

L ∗ exp(	) (21)

where 	 = |Annotationi|.

6.4 Reasoning using spatial information

Contextual knowledge can help the recognition of objects within a scene by providing
predictions about objects that are most likely to appear in a specific setting, i.e.
topological information, along with the locations that are most likely to contain
objects in the scene, i.e. spatial information. Specifically, the spatial arrangement
of objects provides important information for the recognition and interpretation
tasks, and allows to solve ambiguity between objects having a similar appearance.
As part of this work, we have proposed an approach based on image classification
for annotating images. Consequently, we do not dispose of the spatial position of
detected concepts, and therefore the reasoning capabilities using spatial information
are limited in the current approach. However, we propose in the following a simple
but effective usage scenario that relies on the spatial arrangement of the currently
detected concepts in order to provide a semantically consistent image annotation. In
Section 8, we propose some usage scenarios that illustrate the usefulness of spatial



Multimed Tools Appl (2014) 72:2107–2141 2131

information and the reasoning over this kind of knowledge in order to improve image
annotation.

Given an image i′i ∈ I′ and P ′′ : 〈(c0, α0), (c1, α1), · · · (cm, αm)〉, m = |P ′′|, a set
of a valid candidate concepts with respect to the subsumption relationships and
contextual information. We propose first to query the ontology in order to retrieve
all possible spatial arrangement of all pairs of concepts (c j, ck) ∈ P ′′, and to recover
the confidence score of each of these spatial arrangements. A score can then be
computed as the maximum likelihood of all spatial arrangements of these concepts to
find the best explanation of i′i. Algorithm 1 details the different steps of this method.

Reasoning on spatial information should also allow to provide a good image
interpretation. For instance, computing the maximum spatial arrangement likelihood
allows to retrieve the likeliness of spatial arrangement of each detected concept in a
given image. This will allow for example, to provide a textual description of a given
image in the following way:

Figure 8, first example: “This picture depicts a person standing on the left of a
sheep. They are close to each other.”

Figure 8, second example: “This picture depicts a cat sitting on a table in a living
room. There is a table, a sofa and a television in the living
room.”

It is easy to implement such a system for image interpretation once we dispose of
information about detected concepts and their spatial location [20]. We will address
the implementation of such a system in our future work.

7 Experiments

In this paper, evaluations are performed on Pascal VOC’2009 dataset [15] and Pascal
VOC’2010 dataset [16]. These datasets contain about 11,000 images and 20 concepts.
Each image is annotated with one or more concepts from the annotation vocabulary.
In the following, we introduce the used method for visual representation of images,
then we present the obtained results on the used datasets and we compare our
proposal to recent work.
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7.1 Visual representation of images

The Bag-of-Features (BoF) representation, also known as Bag-of-Visual-Word
(BoVW), is used in this paper to describe image features. The BoF model has
shown excellent performances and became one of the most widely used model for
image classification and object recognition [28]. In our approach, image features are
described as follows: Lowe’s DoG Detector [31] is used for detecting a set of salient
image regions. A signature of these regions is then computed using SIFT descriptor
[31]. Afterwards, given the collection of detected region from the training set of all
categories, we generate a codebook of size K = 1,000 by performing the k-means
algorithm. Thus, each detected region in an image is mapped to the most similar
visual word in the codebook through a KD-Tree. Each image is then represented by
a histogram of K visual words, where each bin in the histogram corresponds to the
occurrence number of a visual word in that image.

7.2 Evaluation of image annotation

As aforementioned, experiments are performed on Pascal VOC’2009 and VOC’2010
datasets. Since we do not dispose of the test set used in these challenges, we used
50 % of the image dataset for training the classifiers and the other images are used
for evaluating our approach.

In order to emphasize the importance of hierarchical image classification and
ontological reasoning using the subsumption relationships, we illustrate in Fig. 9 the
obtained average precision and Precision/Recall (PR) curves for all the concepts of
each level of the hierarchy. As depicted in this figure, the concepts in the higher
levels of the hierarchy have strong average precision, and we can also observe that
the classifier accuracy decreases as we go deeper in the hierarchy. These results can
be explained as follows. Firstly, the classes in the higher levels of the hierarchy are
widely different in their visual appearance, i.e. it is easy to find a boundary that
separates these classes. They are also more balanced, i.e. these classes dispose of
more positive samples for training their classifiers than the ones in lower levels of
the hierarchy. We can therefore conclude that the subsumption relationships should
allow improving the image annotation results as they provide a formal framework
for reasoning about concepts consistency. Moreover, as the classification accuracy
increases as we move to the upper levels of the hierarchy, the overall classification
accuracy should increase also.

In Fig. 10, we compare our framework for image annotation to the following
methods: a flat classification method, a hierarchical classification one and a baseline
method. The baseline method is built by taking the average submission results to
Pascal VOC’2010 challenge. The flat classification is performed by using |C| SVM
One-Versus-All (OVA), where the inputs are the BoF representation of images and
the outputs are the desired SVM responses for each image (1 or −1). We used cross-
validation to overcome the unbalanced data problem, taking at each fold as many
positive as negative images. Hierarchical classification is performed by training a
set of (|C| + |C′|) hierarchical classifiers (OVA) consistent with the structure of the
hierarchy illustrated in Fig. 3—for more details about hierarchical classification see
Section 6.1. Results are evaluated in terms of Average Precision (AP) scores.
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(a) PR curves for the 2nd layer concepts. (b) PR curves for the 3rd layer concepts.

(c) PR curves for the fourth layer concepts.

Fig. 9 Hierarchical classification: Precision/Recall (PR) curves for the concepts of each level of the
hierarchy

As illustrated in Fig. 10, our method for image annotation performs better results
than the other ones on Pascal VOC’2010 dataset, with an average precision of
66.49 % and a gain of +8.6 % comparing to the baseline method, a gain of +14.8 %
comparing to the hierarchical classification method and a gain of +32.6 % comparing
to the flat classification method. These results confirm the effectiveness of the
proposed approach, and the importance of contextual and spatial information for
improving image annotation. These improvements could be further significant when
using a dataset containing more multi-labeled images. Indeed, in Pascal VOC dataset
the proportion of images labeled with more than two concepts is small compared with
the total number of images [10].

In Fig. 11, we compare our framework for image annotation to the following meth-
ods: Bottom-Up Score Fusion (BUSF) [4], Top-Down Classifiers Voting (TDCV) [4]
and Hierarchy of SVM (H-SVM) [32]. As it can be seen in this figure, our multi-stage
reasoning framework for image annotation outperforms on all classes comparing
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Fig. 10 Comparison of our method for image annotation with: a flat classification method, a
hierarchical classification one, and the baseline method. Comparison is performed on VOC’2010
dataset

to the other ones. Please note that this comparison was performed using the same
experimental setup, i.e. the same training/validation sets from the VOC’2010 dataset
and the same visual representation of images. Therefore, it is clear that the proposed
multimedia ontology and the proposed framework for reasoning about the consis-
tency of image annotation allow achieving a significant improvement in the image
annotation accuracy. These results also put into evidence the effectiveness of using
explicit knowledge models, such as ontologies, for achieving semantically relevant
image annotation.

In Table 3, we compare our multi-stage reasoning framework for image anno-
tation to the methods of [47] and [45] on Pascal VOC’2009 dataset. In [47], the
authors proposed a method for image classification using local visual descriptors

Fig. 11 Comparison of our framework for image annotation to previous work on Pascal VOC’2010
dataset. Our approach outperforms on all classes comparing to the other ones



Multimed Tools Appl (2014) 72:2107–2141 2135

Table 3 Comparison of our
method for image annotation
with the ones of [47] and [45]
on Pascal VOC’2009 dataset

Proposed [47] [45]
method (AP) (AP) (AP)

Aeroplane 82.2 87.1 87.7
Bicycle 74.1 67.4 67.8
Bird 69.2 65.8 68.1
Boat 64.5 72.3 71.1
Bottle 52.1 40.9 39.1
Bus 80.4 78.3 78.5
Car 70.1 69.7 70.6
Cat 61.7 69.7 70.7
Chair 63.8 58.5 57.4
Cow 62.7 50.1 51.7
Dining_table 68.9 55.1 53.3
Dog 63.2 56.3 59.2
Horse 62.7 71.8 71.6
Motorbike 76.1 70.8 70.6
Person 83.2 84.1 84.0
Potted_plant 57.1 31.4 30.9
Sheep 64.4 51.5 51.7
Sofa 58.1 55.1 55.9
Train 72.8 84.7 85.9
Tv_monitor 66.7 65.2 66.7

AP on all concepts 67.7 64.29 64.6

and their spatial coordinates. Their method consists in performing first a nonlinear
feature transformation on local appearance descriptor, termed as super-vector, which
exploits the residual vector information obtained from the vector quantization (VQ).
These descriptors are then aggregated to form image-level feature vector. The image-
level feature vector is finally fed into a classifier to perform image classification. In
[45], an efficient sparse coding algorithm with a mixture model is proposed and which
is assumed to work with much larger dictionaries that often offer higher classification
performances. The mixture model softly partitions the descriptor space into local
sub-manifolds, where sparse coding with a much smaller dictionary can fast fit the
data. As illustrated in Table 3, our approach performs better than the other ones
and achieves a gain of 3.41 % compared to the method of [47] and a gain of 3.1 %
compared to the method of [45]. This result is promising especially because we did
use only the half of the training set for training our classifiers and the other images for
evaluating our approach, since we did not dispose of the testing set. We also wish to
recall that we have included in our evaluation the images and the concepts marked as
difficult, which are ignored in the challenge because they are considered as difficult
to recognize. For instance, in the third example of Fig. 8, we can easily observe
a “Dining_table” in the illustrated image. However, “Dining_table” is marked as
difficult in the ground-truth of this image in the VOC’2009 challenge, and thus it will
not count for computing the average precision of this concept. In our evaluation,
we included these concepts, i.e. if they are not detected they will count as false
negative. Furthermore, the scope of our paper was to study the potential of adding
contextual and spatial information into the image annotation process through the
use of ontology and ontological reasoning. Thus, we have focused our contribution
on these points and we did not seek to implement a very efficient image descriptor
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since this is not the aim of our paper. Accordingly, the obtained results can be further
improved as for example by incorporating other image features.

Finally, we want to highlight that some images in the VOC dataset are badly
annotated. For instance, in the third example of Fig. 8 we can distinguish a bottle
partially hidden by a vase and a potted flower in the background of the image.
However, these concepts (i.e. “Bottle” and “Potted_plant”) are missing in the
ground-truth of this image. Thus, despite that our method succeeded to recognize
these concepts, they counted as false positive detections in the evaluation of our
method since they are missing in the ground-truth. For the second example of
Fig. 8, our method has detected the concept “Dining_table” which is absent from the
ground-truth. However, the image depicts indeed a “coffee table” and therefore our
prediction is semantically relevant, especially since the annotation vocabulary does
not provide concepts such as “Table” or “Coffee_Table”. In Fig. 12, we illustrate
another image which is badly annotated in the dataset. Indeed, the ground-truth
of this image contains only the concept “Person”. However, the image depicts
much more concepts: a bottle, chairs, tables, and screens. Our method has detected

Fig. 12 An example of a badly
annotated image in the
VOC’2010 dataset.
Ground-truth: Person.
Annotation provided by our
method: Bottle: 0.982, Chair:
0.281, Dining_table: 0.493,
Person: 1.00, Tv_monitor:
0.333
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these concepts, but according to the ground-truth these detections counted as false
positives.

8 Discussion

The proposed methodology for building multimedia ontologies is original, and is
useful for the modeling and the understanding of image semantics, i.e. identify and
formalize the semantic relationships between image concepts. Indeed, the represen-
tation of our concepts and their semantic relationships are automatically extracted
from image datasets, which provides an efficient modeling of image semantics and
allows for extending our ontology at any time by mining new image datasets. Efficient
modeling of image semantics means here: less sensitive to the subjectivity of human
perception and less sensitive to the semantic gap.

Regarding the usefulness of our multimedia ontology for computer vision tasks,
we propose in the following some usage scenarios. Let us consider an expressive
amount of multimedia content, it is possible to extend our approach in order to model
(or to learn), in a simple way, complex concepts by the mining of this multimedia
content. For instance, let us suppose that we dispose of a well annotated image
database and which is representative of the scenes from real life. It is obvious that
when we find a ‘Computer monitor’ in a given image, it is very likely to find a ‘Mouse’
and a ‘Keyboard’, and thus, these concepts will share a high co-occurrence confidence
score. One can therefore use our proposed approach to define complex concepts,
which are not previously included in the annotation vocabulary, based on the fuzzy
role ‘hasAppearedWith’ and the co-occurrence confidence score. Specifically, if the
context of appearance of a set of concepts is sufficiently high (greater than a
predefined threshold), therefore using their definition in WordNet we can find the
common concept that connects them, and consequently define automatically this
(complex) concept. To illustrate this proposal, here are some examples of defined
concepts by the above described method:

Example 8 (Scenario 1: Defining complex concepts)

〈Sitting_room ≡ Sof a 
 Table 
 Television〉
〈Beach ≡ Sea 
 Sand 
 Sky 
 ∃hasAppearedAbove(Sea, Sand)


∃hasAppearedBellow(Sea, Sky)〉
〈Computer ≡ Screen 
 Keyboard 
 Mouse 
 ∃hasAppearedAbove(Screen,

Keyboard) 
 ∃hasAppearedRightOf (Mouse, Keyboard)〉

Another usage scenario consists in a knowledge-driven approach for image an-
notation using object detection. Indeed, one popular technique for identifying and
localizing objects in an image is by the use of sliding-window object detection. It
consists in defining a fixed-size rectangular window and applying a classifier to the
sub-image defined by the window. The classifier extracts image features from within
the window and returns the probability that the window bounds a particular object.
The process is repeated on successively scaled copies of the image so that objects can
be detected at any size.

So, let us suppose that one dispose of a multimedia database annotated with an
average of 3,000 concepts, as for instance the SUN database [44]. Thus, we will
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dispose of 3,000 object detectors that will be performed on all images of the database
and at different scales, which is computationally very expensive. The complexity of
this task can be decreased significantly by the use of our multimedia ontology and
the scenario defined in the following.

Example 9 (Scenario 2: A knowledge-driven approach for object detection.) Given
a previously unseen image:

1. Apply progressively the detectors of the most frequent concepts (w.r.t ’hasFre-
quency’ concrete feature) in KB, until a first concept ci ∈ C is detected.

2. Query the ontology (KB) for the most likely concept (c j ∈ C) to appear with ci

and its spatial location.
3. Apply the detector for c j by delimiting the retrieving space according to the

predicted spatial location. If it fails go to 2, else go to 4.
4. Query the ontology for candidate textual annotations with respect to the already

detected concepts and their locations.
5. According to the decreasing confidence scores of these annotations, apply the

detectors for the concepts of the selected annotation. If all concepts of the
considered annotation are detected go to 6, else go to 4 (to select another
annotation consistent w.r.t the already detected concepts).

6. Stop the processing and return the object detection result (i.e., the set of detected
concepts and their spatial location) for the input image.

This usage scenario allows reducing significantly the complexity of the object
detection process. In order to perform object detection, it requires performing much
less detectors than the classical approach and targeting the detection zone according
to the already detected concepts. Thus, it is clear that the proposed ontology is
useful to effectively manage image processing tasks, and to efficiently perform image
annotation. These usage scenarios will be addressed in our future work.

9 Conclusion

In this paper, we proposed a new approach to automatically build a fuzzy multimedia
ontology dedicated to image annotation and interpretation. In our approach, visual
and conceptual information are used to build a semantic hierarchy faithful to image
semantics, and which will serves as a backbone of our ontology. The ontology
is thereafter enriched with contextual and spatial information. Fuzzy description
logics are used as a formalism to represent our ontology and to deal with the
uncertainty and the imprecision of concept relationships. Some usage scenarios are
then proposed to show the usefulness of the proposed ontology.

We subsequently proposed a new method for image annotation based on hier-
archical image classification and a multi-stage reasoning framework for reasoning
about the consistency of the produced annotation. An empirical evaluation of our
approach on Pascal VOC’2009 and Pascal VOC’2010 datasets has shown a significant
improvement on the average precision results.
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