
Multimed Tools Appl (2014) 72:1653–1679
DOI 10.1007/s11042-013-1482-0

TuBeck: a novel peer-to-peer streaming system
with Loopback-MDC for scalable H.264/AVC videos

Chow-Sing Lin ·Rong-Hua Chang · Jhe-Wei Lin

Published online: 27 April 2013
© Springer Science+Business Media New York 2013

Abstract With the rapidly development of broadband networks, more and more
users nowadays tend to acquire their desired videos from media-on-demand servers.
How to efficiently provide multimedia contents for a large number of heterogeneous
users on the Internet has become a noticeable issue. In our previous work, we
proposed the Loopback-MDC scheme on CDN-P2P network to address such a
scalability issue. In this paper, we present the design and implementation of a novel
peer-to-peer streaming system with the Loopback-MDC on actual networks, named
TuBeck. The TuBeck consists of preprocessor, server, peer, and player modules with
the support of network infrastructure library. In TuBeck, multimedia sources are
preprocessed to multiple descriptions. Each description is divided as a sequence of
H.264/AVC chunks by modified JM encoder for real-time streaming. The network
infrastructure library provides the nodes (server and peers) with the fundamental
functionalities of network connections and communications. Message exchange and
streaming control among nodes follow the pre-defined LM protocol. The server,
peer, and player modules are functionally multithreaded in order to enhance the
system performance. The experimental results show that the Loopback-MDC is
practical for realizing a P2P streaming system in terms of the server loading,
CPU/Memory usage, and efficiency of failure recovery with respect to various arrival
rates, failure rates, and viewing qualities.

Keywords Streaming ·Peer-to-peer ·Multiple description coding ·
Loopback-MDC ·H.264

C.-S. Lin (�) · R.-H. Chang · J.-W. Lin
Department of Computer Science and Information Engineering,
National University of Tainan, 33, Sec. 2, Shu-Lin St.,
Tainan 700, Taiwan, Republic of China
e-mail: mikelin@mail.nutn.edu.tw

1654 Multimed Tools Appl (2014) 72:1653–1679

1 Introduction

The main concern of a media server is to maintain high scalability so that when a
great number of requests suddenly arrive at a media server, known as the flash-
crowd effect, the system can still serve each request within a reasonable delay
without breakdown. It challenges the network bandwidth in a media system to
accommodate such bursty requests. To effectively address this issue, multicast
techniques, such as batching [23] and patching [12], have been theoretically con-
sidered as effective approaches to scale well with the increase of the number of
clients. However, due to lack of the widespread use of the multicast on current
IP networks, such schemes are difficult to implement to accommodate large-scale
operations.

To practically address the issue of the scalability of media streaming, peer-to-peer
(P2P) streaming systems which implements network multicast at application layer
have been proposed [5, 11, 22, 24]. In a P2P system peers (clients) collaborate with
each other for stream relay in order to reduce server loading, in which a peer not
only acts as a client to receive video chunks (blocks) but also as a server to forward
received video chunks to other peers. As more and more peers join the network,
the aggregate peer resources raise the capacity of a P2P system for servicing more
latecomers. In this way the flash crowd problem is effectively addressed. Because
in a P2P streaming system peers are free to come and go, the reliability of service
provision has become a major issue to be addressed. An alternative to solve the
flash crowd problem is the Content Distribution Network (CDN), which is based on
placing a number of proxy servers at the edges of the Internet to reduce the access
load of the media server. Video contents are first distributed to proxy servers and
then delivered to clients in their neighborhoods. It is suggested that the deployment
and maintenance of a CDN proxy server [15, 26] is quite expensive. Since a proxy
server often has limited resources and may be unable to cache an entire video, a
prefix of a video is usually cached [15, 19, 20]. With only caching the partial video in
the proxy server, it is crucial to effectively utilize buffer space of clients watching the
same vide to help caching the rest of video segments for circulating the entire video
stream in order to reduce the server interventions.

Many initiatives have demonstrated the feasibility of combining the CDN and P2P
approaches to gain the scalability advantage of P2P as well as the reliability and
manageability advantages of CDNs [6, 8, 13, 26]. Such a hybrid CDN-P2P scheme
is a cost-effective approach to provide large scale media streaming on the Internet.
The Loopback proposed in [15] is a hybrid CDN-P2P streaming system which not
only aggregates the network bandwidth of peers to reduce the network consumption
of a proxy but also effectively utilizes precious buffer space in a proxy by shifting
video caching to collaborative peers. In Loopback, clients arriving closely form a
forwarding loop, like chaining [12], with the first client receiving video chunks from
a proxy and the last client returning chunks to the proxy. A video stream is forwarded
from one peer to the next within a loop in the order of their arrival. Even if resources
contributed by clients are limited, the Loopback scheme has shown the significant
reduction in the storage space and bandwidth requirements of a proxy and the loads
of central server. Despite its superiority, in the Loopback providing only a single
version, non-scalable stream is assumed. As a result, it would fail to handle the
heterogeneity of peers where peers have various downloading capability and require
different viewing qualities.

Multimed Tools Appl (2014) 72:1653–1679 1655

Recent studies have shown that the multiple description coding (MDC) tech-
nique [1–4, 10] can be adopted to solve the issues of Asymmetric Access Link,
Heterogeneity, Dynamics, and Resource Utilization in P2P systems defined in [18].
MDC is a scalable coding technique and encodes a video into several streams, call
descriptions. A client can watch a certain quality of a video even though only a
subset of descriptions are received. The more descriptions a peer receives, the higher
quality it perceives. Different from Layered Encoding technique [7, 25], there is no
decoding dependency among descriptions. Descriptions can be arbitrarily composed
and decoded. From a client’s perspective, MDC provides more flexibility in the
selection of parent peers and fault tolerance [16]. P2P streaming systems such as
CoopNet [22], SplitStream [5], and Resilient P2P Streaming [21] have successfully
demonstrated the advantages of MDC.

In our previous work, we applied theMDC technique to the Loopback to solve the
issues described above, called Loopback-MDC [17]. In Loopback-MDCwe discussed
the policies of selecting descriptions to watch for new clients, and proposed theOpen-
Loop-First (OLF) approach to optimize the availability and robustness of a sharing
loop for newly arrived peers. In addition to the intra-description (intra-d) recovery
implied in the Loopback, we also discussed the feasibility of inter-description (inter-d)
recovery for recovering missing video chunks from the departure of peers. The
proposed sewing recovery approach for inter-d recovery is to move video chunks of
other descriptions to “sew” the disrupt caused by the departure of peers. Simulation
results show that the proposed loopback-MDC approach can significantly reduce the
amount of uploading bandwidth of a proxy on CDN-P2P video-on-demand systems,
and the inter-d recovery, sewing, can further effectively recover missing video chunks
and restore the continuity of a breaking sharing loop among peers.

In this paper, we present the design and implementation of a novel peer-to-
peer streaming system with the Loopback-MDC for H.264/AVC videos on actual
networks, named TuBeck. To our best knowledge, we believe that this paper is
the first one thoroughly presenting the design and implementation of a P2P system
for streaming MDC videos in H.264 format. The TuBeck consists of preprocessor,
server, peer, and player modules with the support of network infrastructure library.
In the TuBeck, multimedia sources are preprocessed to multiple descriptions. Each
description is divided as a sequence of H.264/AVC chunks by modified JM encoder
[14] for real-time streaming. We also developed the network infrastructure library to
provide the nodes (server and peers) with the fundamental functionalities of network
connections and communications. Message exchange and streaming control among
nodes follow the pre-defined LM protocol. The server, peer, and player modules
are functionally multithreaded in order to enhance the system performance. The
experimental results show that the Loopback-MDC is practical for realizing a P2P
streaming system in terms of the server loading, CPU/Memory usage, and efficiency
of failure recovery with respect to various arrival rates, failure rates, and viewing
qualities. It is worth mentioning that we used the encoder and decoder modules
in JM reference software written in C++, which are packaged as a dynamic link
library (DDL), to transcode video sources between YUV and H.264 formats, and
the TuBeck was developed in C#.net. In conclusion, the contribution of this paper
can be summarized as follows:

1. the design of system architecture of a P2P streaming system with the Loopback-
MDC for H.264 videos, named TuBeck,

1656 Multimed Tools Appl (2014) 72:1653–1679

2. the way to preprocess a video into MDC descriptions in H.264 format by the
tools of JM reference software,

3. the design and implementation of server module, peer module, and player
module,

4. the design of communication protocol for the TuBeck, and
5. the performance study of the TuBeck on real network environment.

The remainder of this paper is organized as follows. In Section 2.2 we summarize
the related works of the Loopback-MDC. In Section 3 we describe the overview of
system architecture of the TuBeck. The preprocess of multimedia sources, server
module, and peer module are introduced in Sections 4, 5, and 6, respectively. In
addition, we also present the design of a MDC player for the TuBeck in Section 7.
In Section 8, we introduce the LM protocol for communications in the TuBeck. In
Section 9, we present the performance study of the TuBeck on emulated network
environment. Finally, we conclude this paper in Section 10.

2 Related works

2.1 Loopback

The Loopback [15] scheme is a local client cooperation approach for streaming
videos on a hybrid CDN-P2P network. Each client has limited buffer space to cache
data received from a proxy server for playback. The forwarding bandwidth of a client
used for delivering cached video blocks to another client or loopbacking to the proxy
server is assumed to be the playback rate. Clients requesting the same video are
organized into a collaborative network by their proxy server. Since the proxy storage
space is limited, only the prefix of a video is cached in the proxy server.

Figure 1 shows the illustration of the Loopback scheme, and each square box
represents a client and indicates its buffer size. The f irst client requesting a video
receives the video prefix from the designated proxy server and the remaining portion
of a video from the central server. The received video chunks are played and cached
in sequence in the client’s buffer. If the next client requesting the same video arrives
before its buffer is filled up, i.e., the initial chunk is still kept in the buffer, the video

close loop a

From
server

Proxy
buffer

close loop b open loop c

New client
join

Prefix length
Video length

Fig. 1 Illustration of the Loopback scheme

Multimed Tools Appl (2014) 72:1653–1679 1657

chunks will be delivered to the newcomer. By this cache-and-relay approach, clients
requesting the same video can form a loop to share video chunks. As long as the last
client of the loop still keeps the initial chunk of the video in the buffer, a new client
requesting the same video can still join the loop. This kind of loop is called, open
loop, as the open loop c illustrated in Fig. 1. On the contrary, if the next request for
the video does not arrive in time and the buffer of the last client in the loop becomes
full, the chunks of the last client are passed back to the proxy server in order. Since
the initial chunk of the video is no longer available in the loop, no more new clients
can join and the loop is closed. This kind of loop is called close loop, as close loops a
and b illustrated in Fig. 1. In general, the bandwidth consumption of a proxy server
for streaming a video to clients is proportional to the number of loops, instead of the
number of clients. The duration of an open-loop depends on the buffer length and
the arrival rate of peers.

2.2 Loopback-MDC

In Loopback-MDC a video is further encoded into n descriptions by the MDC
technique. The buffer space allocated to a video in the proxy server is equally divided
into n sub-buffers. Each sub-buffer is used to cache a description. The loopback
scheme is applied on each sub-buffer for sharing description chunks among peers.
When a new peer joins, it first decides to receive which descriptions and then
searches for an existing open loop to join for each requesting description. If there
is none for the requested description, then it opens a new loop for receiving. It is
noted that a peer can serve exactly one peer for each requested description in the
loopback-MDC scheme. When a new peer joins an open loop, it starts to receive
the initial and subsequent chunks from the last peer in the loop and resets the
expiration time of the open loop based on its buffer capacity. It now becomes the
last peer of the loop. Before its buffer space is filled up, the loop is still open and
can serve other new peers. If there are no new peers joining in, this open loop will
be eventually closed and cannot serve other new peers. Figure 2 shows the loopback-
MDC scheme. In this example, the video is encoded into three descriptions, d1, d2

and d3. Peer P1 requests the view quality of two descriptions and receives d1 and
d2 descriptions from the proxy server. Two open loops are generated, one for d1

and the other for d2. Next, peer P2 requests the viewing quality of two descriptions
and receives d1 from P1 and d3 from the proxy server, creating another new open
loop for d3. Then, peer P3 arrives and joins the three open loops for receiving
the descriptions d1 and d3 from P2 and the description d2 from P1. Later, peer P4

arrives and there are no open loops available. P4 then receives d1 and d3 descriptions
from the proxy server, forming two new open loops. Lastly, peer P5 requesting
the viewing quality of one description arrives and selects the open loop of d1

to join.
Since the consumption of the proxy bandwidth is proportional to the number of

loops, it is crucial to extend the availability of open loops as long as possible to reduce
the probability of opening new loops when a peer joins. For extending the availability
of open loops, The Open-Loop-First (OLF) policy for description selection was
proposed in Loopback-MDC. With the OLF the selection of descriptions for a new
peer is based on the existence of open loops. If there are multiple open loops to be
selected, the one with the shortest expiration time is selected first. Note that the

1658 Multimed Tools Appl (2014) 72:1653–1679

Fig. 2 Illustration of the
Loopback-MDC scheme

expiration time of an open loop can be determined by the time that the buffer
space of last peer in the open loop is filled up. Figure 3 shows an example of
the OLF for description selection with a video encoded as 4 descriptions and each
peer equipped with the buffer of 3 time units. The first peer A arrives at time 1
and requests two descriptions. Descriptions d1 and d2 are allocated to peer A to
receive, and each creates a new open loop. In the figure X − n represents the n-th
description selection of peer X . For example, A− 1 and A− 2 denote the first and
the second description selection of peer A. Peer B arrives at time 2 and requests
three descriptions. Since there are only two open loops, peer B joins d1 and d2 open
loops, and randomly selects another description from d3 and d4, say d3, and then
creates a new open loop of d3 for receiving. Peer C arrives at time 3 and requests
4 descriptions of full viewing quality. Similarly, three open-loop descriptions d1, d2,
d3 are first selected, and a new open loop is created for receiving description d4.
Peer D arrives at time 4 and only requests two descriptions. Since the expiration
times of the four open loops are the same, two of the four open-loop descriptions
are randomly selected, say d1 and d2. Next, peer E arrives at time 5 and requests
three descriptions which can be selected from the four open-loop descriptions.
Descriptions {d3,d4} with the same shortest expiration time are selected first. The

Fig. 3 An example of the
OLF for description selection
with a video encoded as
4 descriptions and each peer
equipped with the buffer of
3 time units

Time
Des. 1 2 3 4

A-1 B-1

5

C-1 D-1 E-3

A-2 B-2 C-2 D-2

B-3 C-3 E-1

C-4 E-2

1d

2d

3d

4d

Multimed Tools Appl (2014) 72:1653–1679 1659

Fig. 4 Two scenarios of local
repairs in Loopback 3 2 1

3 24

6 5 4
Client 1

Client 3

Client 2

(a) Complete local repair

3 2 1

4 35

7 6 5
Client 1

Client 2

Client 3

Missing gap

(b) Partial localr epair

remaining one is randomly selected from the d1 and d2 open-loop descriptions,
say d1.

2.3 Peer recovery process

In P2P network peers are free to come and go.When a collaborative client fails, other
clients in the loop may experience service disruption and the server has to transmit
extra data to recover such failures. In Loopback, such a failure can be completely or
partially repaired by using caching duplication. Figure 4 shows the two scenarios of
local repairs. In Fig. 4a peer 1 can still smoothly relay video blocks to peer 2 without
missing any blocks when peer 2 leaves. The failure of peer 2 can be completely locally
repaired. On the other hand, in Fig. 4b there is a missing gap of block 4 between peer
1 and peer 3, and the continuity is broken. In this case, the failure of peer 2 is only
partially local repaired. As a result, the server needs to consume one extra streaming
bandwidth to serve peer 3.

In Loopback-MDC scheme, since a video stream is encoded into multiple de-
scriptions, missing blocks of the broken loop may be repaired by intra-d or inter-d
recovery. When a peer fails, the absent blocks may be completely locally repaired by
intra-d recovery as the loopback scheme does. It is noted that the intra-d recovery
is similar to failure recovery of P2P streaming found in previous studies, such as
[9, 15, 23]. With the Loopback-MDC scheme, missing description blocks happening
in the case of partial local repair may be repaired by blocks from other descriptions,
which are called inter-d recovery. When a peer fails, first we apply intra-d recovery
to repair missing blocks locally, and then apply inter-d recovery if necessary. Finally,
the server is responsible for repairing any remaining missing blocks. The key concept

Time
Des. 1 2 3 4

... B-1

5

D-1

... C-1 D-2

B-2 C-2 E-1

E-2B-3 D-3

6

F-1

F-3

F-4

F-2

1d

2d

3d

4d

(a)

Time
Des. 1 2 3 4

... B-1

5

C-2

... C-1

B-2 E-1

E-2B-3

6

F-1

F-3

F-4

F-2

1d

2d

3d

4d

(b)

Fig. 5 An example of inter-d recovery (sewing) with a video encoded as 4 descriptions and each peer
equipped with the buffer of 3 time units

1660 Multimed Tools Appl (2014) 72:1653–1679

of inter-d recovery for a broken loop is to move a nearby peer of the failed peer to
join the broken loop and “sew” up the gap. This approach is also called sewing in the
Loopback-MDC scheme. Figure 5 shows an example of sewing with a video encoded
as 4 descriptions and each peer equipped with the buffer of 3 time units. When peer
D fails shown in Fig. 5a, there are three broken loops of d1, d2, and d4. Loops of d2

and d4 are repaired by intra-d recovery. Since peer B and peer F are three blocks
apart, the gap in loop d1 cannot be locally repaired. By applying the inter-d recovery,
as shown in Fig. 5b, peer C now starts to receive description d1 instead of d3 and
joins the loop of d1 to narrow the gap. After the repairing, in loop d1 there is no
gap between peer B and peer C and the gap between peer C an peer F is two blocks
apart without causing loop broken. Note that in this case peer C still receives two
descriptions without degrading viewing quality.

3 System architecture of TuBeck

Based on the data dependency, the system architecture of TuBeck, showed in Fig. 6,
is functionally divided into modules which are Preprocessor, Server, Peer, Player,
and Network Infrastructure Library. The Preprocessor module is responsible for
acquiring video in YUV format, disassembling multiple descriptions, and encoding
descriptions as H.264 chunks by JM [14]. In this paper video sources are acquired in
YUV format and they are disassembled into multiple descriptions by Sub-sampling
Multiple Description Coding (SMDC) [4]. These descriptions are then converted
into serial video chunks in H.264 format for efficient network delivery by JM H.264
encoder. Finally. the descriptions in H.264 are stored in disk arrays for vide access.
The server module consists of four components, stream transmitter, stream control
management, P2P topology, and resource management.The stream transmitter is
responsible for establishing socket connection between the server and a peer and
delivering required video chunks to a peer under a specified rate control through
networks. The stream control management is responsible for managing control
messages of session initiations and interactions between a server/peer and a peer.
The peers’ status and the network structure of P2P topology are maintained in P2P
topology. The resource management is responsible for providing access functionality
for retrieving and storing video chunks of a specific video resided in disk arrays

Fig. 6 System architecture of TuBeck

Multimed Tools Appl (2014) 72:1653–1679 1661

of a server. The peer module includes four components. In addition to stream
control management and resource management whose functionalities are similar
to corresponding components in server module, the stream receiver sequentially
receives video chunks from server/peer and then pass them to the resource manage-
ment for video caching. The stream relay is responsible for relaying cached video
chunks to subsequent peers based on the instructions sent by the stream control
management. Note that the communication between the stream control management
in server module and peer module is based on our pre-defined LM protocol. The
JM H.264 decoder in the player module regularly fetches the buffered video chunks
and decodes them into various descriptions in YUV format. These descriptions are
combined in themerger as one YUVvideo stream, and finally it is sent to the renderer
for display. Lastly, the Network Infrastructure Library is responsible for providing
the server and peer modules with common functions including data management,
network connection, and other utilities.

4 Preprocess of multimedia sources

Figure 7 shows the data flow of preprocessing video sources. In TuBeck, the video
sources were acquired in planar YUV format with chroma subsampling 4:2:2. Video
sources were pre-processed into four multiple descriptions by SMDC and each was
then sent to a separate H.264/AVC encoder to output compressed H.264 videos for
efficient video repository and network delivery. We used the JM encoder module,
lencod.exe, developed by Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T
VCEG [14]. Because the restriction of JM encoding process, the width and the
height of a video must be a multiple of 16 and therefore we only adopted CIF
(352 × 288) and QCIF (176 × 144) resolution videos. In TuBeck, each description
was partitioned as a series of chunks which contains 10 frames, one group of pictures

Fig. 7 Data flow of preprocessing video sources

1662 Multimed Tools Appl (2014) 72:1653–1679

Fig. 8 An example of coding a
4 × 4 luma samples into 4
descriptions by SMDC

(GOP). The frame rate is set to be 30 fps. These important factors were fed into the
JM encoder along with the default coding parameters to transcode a description in
YUV format into a series of video chunks in H.264 format.

In the SMDC, each input frame is sampled along its rows and columns with a
sampling factor of 2. Let x(i, j) be the luminance sample of the current frame at
position (i, j), then the four sub-sequences as descriptions are formed with pixels
x(2i, 2 j), x(2i+ 1, 2 j), x(2i, 2 j+ 1), and x(2i+ 1, 2 j+ 1), respectively. In this way,
four sub-sequences with halved resolution on both spatial directions, and a quarter
of the original size, correspond to each input sequence [4]. Figure 8 shows an
example of example of coding a 4 × 4 luma samples into four 2 × 2 descriptions by
SMDC. Since the video source was acquired in planar YUV format of with chroma
subsampling 4:2:2, eachU andV component whose amount is only half of the amount
of Y component needed to be evenly distributed to descriptions by SMDC as well.
Figure 9 shows an example of SMDC for evenly coding a 4 × 4 frame in YUV
format with 4:2:2 chroma subsampling into 4 descriptions. As shown in the figure,
each description is encoded into 2 × 2 frame with luminance samples of four Y,
chrominance samples of two U and two V.

Fig. 9 An example of SMDC
for coding a 4 × 4 frame in
YUV format with 4:2:2 chroma
subsampling into 4
descriptions

Multimed Tools Appl (2014) 72:1653–1679 1663

5 Server module

In TuBeck, the server module provides functionalities of stream management,
network delivery, P2P topology, and resource management. Figure 10 shows the
function blocks of the server module which are Stream Control Management (SCM),
Resource Management, P2P Topology, and Stream Transmitter. In SCM the service
accepter is responsible for accepting a new connection and spawning a peer handler
(PH) to provide consequent services, such as available source peers, based on LM
protocol. Those PHs are managed under the peer handler collection (PHC). In case a
peer is left expectedly or unexpectedly, its corresponding PH is removed from PHC.
The recovery processor is responsible for processing intra-d and inter-d recoveries
with the aid of P2P topology for reconstructing peer connectivity. In P2P topology,
loops in the system are managed as a loop list by the loop provider. Each loop is
represented as an allotment list managed by allotment provider. An allotment is
the abstract entity of a peer which contains the information of peer id, requested
description id and video id, and the first and the last received chunk ids in buffer.

In resource management video files are managed and indexed hierarchically. As
mentioned above, a video is divided into multiple descriptions, and each description
is then further divided into a series of chunks. Available videos, descriptions, and
chunks in the system are indexed in video table, description table, and chunk table,
respectively. The resource I/O accessor is responsible for retrieving physical chunks
from video repository. The stream transmitter is responsible for accepting streaming
requests from peers. Once accepted, each requested description would be handled by
a stream handler (SH) which is responsible for retrieving chunks from the resource
management and then streaming to the requested peer. In addition to managing

Fig. 10 The function blocks of server module

1664 Multimed Tools Appl (2014) 72:1653–1679

Fig. 11 The hierarchy of video
indexing in TuBeck

SHs, like PHC, the stream handler collection (SHC) is responsible for dealing with
expected and unexpected broken streams as well. Figure 11 shows the hierarchy of
video indexing in TuBeck.

6 Peer module

The peer module consists of four function blocks which are Stream Control Manage-
ment (SCM), Resource Management, Stream Receiver, and Stream Relay. Figure 12
shows the function blocks of peer module. The stream control management is
responsible for delivering stream control messages and processing failure recovery.
Control messages based on LM protocol such as peer register, video request, and
intra/inter-d recovery are issued by the service connector in SCM. Once the source
peer or the child peer of a peer is failed, the intra-d or inter-d recovery process in
recovery requester is activated to fix the broken stream. The received descriptions
and their chunks are managed by description provider and chunk provider in
resource management. In TuBeck, the video index is kept in a peer for the purpose
of the initial video selections. A complete video description can be acquired through
service connector in SCM by issuing a query to the server. Once the source peer of

Fig. 12 The function blocks of peer module

Multimed Tools Appl (2014) 72:1653–1679 1665

a desired description is determined, the service connector in SCM spawns a request
handler thread managed by request handler collection in stream receiver to start
receiving video chunks. Received chunks are then stored in peer’s buffer and their
related information is recorded in the chunk table. The stream relay is responsible
for relaying buffer chunks to other peers based on requests. When a relay service for
a description is granted in the stream request accepter, a stream handler thread is
spawned to handle the later streaming service. These stream handlers are managed
by the stream handler collection.

7 Player module

When received chunks are stored in a peer’s buffer, they can be sent to the
player module for rendering. The player module provides functionalities of chunk
decoding, merging, rendering, and merging control. Figure 13 shows the function
blocks of the player module which are JM H.264 Decoder, SMDC Merger, Render,
and Merging Controller. In addition, there are two buffer spaces which are Merged
Chunks Buf fer for network transmission buffering and Decoded Chunks Buf fer for
playback buffering. The merged chunks buffer is implemented as a circular queue to
efficiently utilize memory to store merged chunks. The decoded chunks buffer is a
hash table to provide fast access of merging chunks. The JMH.264 decoder, modified
from the reference code of JM 18.0 [14], is responsible for decoding the incoming
undecoded chunks from H.264 format to YUV format. Those decoded chunks are

Fig. 13 The function blocks of player module

1666 Multimed Tools Appl (2014) 72:1653–1679

then saved into the decoded chunks buffer. The SMDC merger is responsible for
periodically merging chunks of the same description id and put them into the merged
chunks buffer waiting for being retrieved by the render for playback. The render is
responsible for regularly getting chunks from the merged chunks buffer to display
based on the playback rate. It is obvious that how often the SMDC merger is
executed to merge chunks of the same description id depends on the speed of
rendering, which may cause the overflow and underflow of the merged chunks buffer
if the merging is triggered too fast and too slow. With the rendered chunk id from
the renderer and the merged chunk id from the merged chunks buffer, the merging
controller can precisely issue the command of merging with a specific chunk id to
the SMDC merger to prevent the overflow and underflow of the merged chunks
buffer.

8 LM protocol

Figure 14 shows the workflow of streaming service for the TuBeck. When a peer
enters the system, it first registers itself to the server with the information of commu-
nication ports, available downloading and forwarding bandwidth, and etc. The server
then sends an unique peer id and the information of available video sequences back
to the peer. A peer selects a desired video and viewing quality in terms of the number
of descriptions to watch from the list and sends the video request to the server. The
server then decides which descriptions the peer is going to receive based on the OLF
description selection policy and sends these description ids back to the peer. Next,
the peer sends a request to the server for joining the service loops of these receiving
descriptions. After granted, the peer starts the provider identification process. First
it asks the server to provide the source peers of the receiving descriptions. The peer
then connects to those source peers to start the streaming of requested descriptions.
While streaming these descriptions, failure caused by expected or unexpected peer
leave would result in breaking service loops. In those cases, we first apply intra-d
recovery and then inter-d recovery if necessary to ensure seamless streaming services.
It is no doubt that the communication protocol of those operations needs to be
clearly pre-defined in order to provide seamless streaming services. The proposed
LM protocol is served for this purpose. In addition, we define the general packet

Fig. 14 The workflow of
streaming service for TuBeck

Multimed Tools Appl (2014) 72:1653–1679 1667

Fig. 15 The general packet format of commands used in LM protocol

format of commands used in LM protocol shown in Fig. 15. These command packets
are transmitted in TCP protocol.

8.1 Video request

The purpose of video request as the command “VIDEO” issued by a peer is to get the
detailed information of a desired video, such as the segmentation method of MDC,
the number of coded descriptions, the number of frames per chunk, the number of
chunks for each description, the number of frames in the last chunk, the number
of frames per second, display size, and YUV format (4:2:2), shown in Fig. 16. These
video information is used to initialize the video player. Next, a peer issues the desired
quality of the video in terms of the number of description to the server. Once the
server receives the request, it issues the free buffer space update to the last peers of
the open loops of the desired video to estimate the expiration times of the open loops.
Description selection is based on the OLF policy. The ids of selected descriptions are
then sent back to the peer. Figure 17 shows the communication protocol of video
request.

8.2 Provider identification

When a peer requests streaming service for a specific description, e.g., peer join or
failure recovery, a provider identification as the command “PROVIDER” issued to
the server to request the information of source peers, such as IP address and com-
munication ports. Figure 18 shows the payload format of PROVIDER command. If
no such a source peer exists, the server or the proxy is returned as the provider.
The requesting peer then sends out a message to the source peer to confirm its
service availability, such as the available forwarding bandwidth and the existence of
requested description. If the provision of the requested is confirmed, the requesting

Fig. 16 The payload format of VIDEO command

1668 Multimed Tools Appl (2014) 72:1653–1679

Fig. 17 The communication
protocol of video request

peer next sends a streaming start message along with a chunk range [s, e]. The s
denotes the starting chunk index of streaming, especially the s = 0 representing
streaming from the beginning of the video. The e denotes the last chunk index of
streaming and the e = −1 represents streaming to the end of the video. Such a
message of chunk range is necessary to cope with all cases of streaming services,
such as new peer join (e.g., [0,−1]), intra-d recovery (e.g., [134,−1]), and inter-d
recovery (e.g., [146, 150]). Finally, a commencing message is sent to the requesting
peer to notify the start of streaming. Each chunk is transmitted as the command
“CHUNK” with the payload format shown in Fig. 19. Note that such a streaming for
a specific chunk range may fail if there are no such chunks available. In this case, a
streaming failed message would send back to the requesting peer. Figure 20 shows
the communication protocol of provider identification.

8.3 Failure recovery

When a peer failed, the server and its child peer would immediately sense its absence
by picking up offline signals. The server removes the allotment of the failed peer
in the service loop and re-organizes the P2P topology by replacing the parent peer
of recovering peer with the parent peer of failed peer. Meanwhile, the recovering
peer would issue the provider identification to the server for acquiring a new source
peer by intra-d recovery. If failed, the recovering peer then issues inter-d recovery
as the command “INTER-RECOVERY” to the server. The payload format of this
command is shown in Fig. 21. Next, the server needs to update the buffer range
of peers involved in the recovering process by the command “BUFFER-RANGE”
whose payload format is shown in Fig. 22, in order to correctly select the new
provider (rescue peer) for sewing recovery. Such peers can be classified into three

Fig. 18 The payload format of PROVIDER command

Multimed Tools Appl (2014) 72:1653–1679 1669

Fig. 19 The payload format of
CHUNK command

Fig. 20 The communication
protocol of provider
identification

Fig. 21 The payload format of INTER-RECOVERY command

Fig. 22 The payload format of BUFFER-RANGE command

Fig. 23 The payload format of
CHANGE command

1670 Multimed Tools Appl (2014) 72:1653–1679

Fig. 24 The communication
protocol of failure recovery

types, 1) the parent peer and recovering peer in the recovering descriptions; 2) the
grandparent peer, parent peer, and recovering peer in other allocated descriptions;
3) all peers in unallocated descriptions. To minimize the impact on the robustness of
the loop of the rescue peer, the head peer or the tail peer of a loop is preferentially
selected as a rescue peer. Once the rescue peer is determined, the server notifies
the recovering peer of the successful recovery and the rescue peer of changing
description as the command “CHANGE” whose payload format is shown in Fig. 23.
Next, the recovering peer and the rescue peer both issue the provider identification
to the server for stream connection. Note that the child peer of the rescue peer
simply executes the intra-d recovery to remedy the broken loop due to the leaving
of the rescue peer. Finally, if inter-d recovery again fails, the recovering peer
issues the provider identification to the server for the server recovery. Figure 24
shows the communication protocol of failure recovery.

9 Performance study

We deployed experiments to measure the performance of the TuBeck in terms of
CPU/memory usage, extensibility of open loops, server/proxy loading, and efficiency
of failure recovery on actual network environment. Those emulated experiments
would help us to discover the feasibility of the design and implementation of
the Loopback-MDC on P2P streaming networks. The 2000-frame video sequence,

Multimed Tools Appl (2014) 72:1653–1679 1671

Highway (352 × 288) with 30 fps, was encoded as four descriptions by SMDC
and then duplicated into 16 dummy descriptions. Each run last 10 min with loop-
playing the video sequence. The arrival rate is 8 peers/min in average with poisson
distribution. The number of requested descriptions for a peer is normally distributed
with 8 descriptions in average. The failure rate is equal to the number of failed
peers divided by the number of total peers. During the experiments, failed peers
were equally distributed into the 10-min run. Twenty one computers are used to
emulate the experiment, one for the server and twenty for hosting peers. These
computers are interconnected in a local-area network by 100BaseT Ethernet switch,
and each equips with Intel Core 2 Duo E7500@ 2.93Ghz with 2 GBRAM. Emulated
peers are distributed into these twenty computers in a round-robin fashion. These
peers resided in the same computer form a group. Each peer has 30-second buffer
space in order to increase the possibility of forming open loops at low arrival rate,
such as 2 peers/min. Since decoding video chunks would consume a great amount
of CPU power which might affect the experimental results, in our experiments
received chunks are buffered without actually rendering on screen. The default
arrival rate, failure rate, and viewing quality is 8, 0.5, and 8, respectively.Note that the
experimental results were obtained by the data collected and averaged from running
the 10-min emulation ten times. Figure 25 shows the emulation environment for the
performance study of the TuBeck.

Figure 26 shows the CPU/Memory usage of the experiments for the TuBeck. The
CPU usage on the server is increased along with the increase of the arrival rates
shown in Fig. 26a. Even at the arrival rate of 14 peers/min, the CPU usage is only
about 20 %. In Figure 26b, the CPU usage is increased from 7.8 % to 13.6 % along
with the increase of failure rate from 0.1 to 0.4. When the failure rate increases, the
chance of peers in the system failing to recover lost descriptions and then asking
the server to process the missing chunks also increases. It is interesting to see that
the CPU usage is decreased beyond the failure rate of 0.4. Since the total number of
active peers in the system is relatively lesser when the failure rate is 0.5 and beyond,
the CPU usage for system processing in the server starts to decease accordingly.
When the average viewing quality increases, the CPU usage for data processing
described in Section 5 server module also increases, as shown in Fig. 26c. In our
experiments, since the received chunks are buffered without actually rendering on
screen, the CPU usages of a peer shown in Fig. 26a, b, and c are all less than 1 %.
Figure 26d, e, and f show the memory usage of the server and a peer with respect to
various arrival rates, failure rates, and viewing qualities. In general, the server and a

Fig. 25 The emulation
environment for the
performance study of TuBeck

1672 Multimed Tools Appl (2014) 72:1653–1679

 0

 5

 10

 15

 20

 25

 2 4 6 8 10 12 14

C
PU

 u
sa

ge
 (

%
)

Arrival rate (peers/minute)

Peer
Server

(a)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

C
PU

 u
sa

ge
 (

%
)

Failure rate (failure peers/arrival peer)

Peer
Server

(b)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 2 4 6 8 10 12 14

C
PU

 u
sa

ge
 (

%
)

Quality (descriptions/peer)

Peer
Server

(c)

 0

 10

 20

 30

 40

 50

 60

 2 4 6 8 10 12 14

M
em

or
y

us
ag

e
(M

B
)

Arrival rate (peers/minute)

Peer
Server

(d)

 0

 10

 20

 30

 40

 50

 60

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

M
em

or
y

us
ag

e
(M

B
)

Failure rate (failure peers/arrival peer)

Peer
Server

(e)

 0

 10

 20

 30

 40

 50

 60

 2 4 6 8 10 12 14

M
em

or
y

us
ag

e
(M

B
)

Quality (descriptions/peer)

Peer
Server

(f)

Fig. 26 The CPU/Memory usage of the experiments for TuBeck

peer consumes about 50MB and 20MB memory space in our experiments, which are
only 2.5 % and 1 % of 2GB onboard memory.

Figure 27 shows the accumulated duration of open loops with respect to various
arrival rates, failure rates, and viewing qualities. As shown in Fig. 27a, the accumu-
lated duration of open loops increases as the arrival rate increases. As expected, the
more peers joins the system, the longer an open loop lasts. As shown in Fig. 27b,
the accumulated duration of open loops is not decreased significantly along with the
increase of failure rate. It is 117 min at 0.1 failure rate and is gradually reduced to
80 min at 0.9 failure rate. As we know that the optimal accumulated duration of
open loops in a 10-min run is 16(descriptions)× 10(min) = 160 min, the TuBeck still

Multimed Tools Appl (2014) 72:1653–1679 1673

 0

 20

 40

 60

 80

 100

 120

 140

 2 4 6 8 10 12 14

D
ur

at
io

n
(m

in
ut

e)

Arrival rate (peers/minute)
(a)

 0

 20

 40

 60

 80

 100

 120

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

D
ur

at
io

n
(m

in
ut

e)

Failure rate (failure peers/arrival peer)
(b)

 0

 20

 40

 60

 80

 100

 120

 140

 2 4 6 8 10 12 14

D
ur

at
io

n
(m

in
ut

e)

Quality (descriptions/peer)
(c)

Fig. 27 The accumulated duration of open loops with respect to arrival rate, failure rate, and viewing
quality

possesses the average accumulated duration of open loops for 101.8 min, which is
63.6 % of the optimum. In other words, in average an open loop of a description
would last for 6.36 min in a 10-min run under various failure rates. This result
shows the superior failure recovery of the Loopback-MDC. Figure 27c shows the
increase of the accumulated duration of open loops along with the increase of the
viewing quality. As more descriptions are cached among peers, more buffer space is
contributed to the system to prolong the availability of an open loop.

To observe the efficiency of failure recovery in the Loopback-MDC, we counted
how many descriptions recovered by the intra-d/inter-d recovery and by the server
at various arrival rates, failure rates, and viewing qualities. Figure 28a shows that
both the numbers of descriptions recovered by peers and the server increase along
with the increase of arrival rate. The number of descriptions recovered by peers is
larger than that recovered by the server. The difference between these two numbers
is getting larger as the arrival rate increases, and at arrival rate equal to 14 peers/min
the number of descriptions recovered by peers is 177% more than that recovered by
the server. In this case, most broken descriptions in recovering peers were repaired
by collaborated peers without much intervention of the server. Therefore, the large
number of peers in the system favors the efficiency of failure recovery. Similarly,
a higher requested viewing quality results in more descriptions buffered in the
system, which also favors the efficiency of failure recovery, as shown in Fig. 28c.
With the average 14-description viewing quality per peer, the number of descriptions

1674 Multimed Tools Appl (2014) 72:1653–1679

 0

 50

 100

 150

 200

 250

 300

 350

 400

 2 4 6 8 10 12 14

Fa
ilu

re
 r

ec
ov

er
y

co
un

t (
de

sc
ri

pt
io

ns
)

Arrival rate (peers/minute)

Peer recovery
Server recovery

(a)

 0

 25

 50

 75

 100

 125

 150

 175

 200

 225

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Fa
ilu

re
 r

ec
ov

er
y

co
un

t (
de

sc
ri

pt
io

ns
)

Failure rate (failure peers/arrival peer)

Peer recovery
Server recovery

(b)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 2 4 6 8 10 12 14

Fa
ilu

re
 r

ec
ov

er
y

co
un

t (
de

sc
ri

pt
io

ns
)

Quality (descriptions/peer)

Peer recovery
Server recovery

(c)

Fig. 28 The accumulated number of recovered descriptions with respect to arrival rate, failure rate,
and viewing quality

recovered by peers is 180 % more than that recovered by the server. Figure 28b
shows the numbers of descriptions recovered by peers and the server with respect to
failure rate. As respected, peers recovered more lost descriptions than the server at
most arrival rates. It is noted that the number of descriptions recovered by peers is
87.5 % more than that recovered by the server at failure rate of 0.5, which is the case
of the largest difference. When the failure rate is beyond 0.7, peers and the server
almost equally share the recovery loading since there are fewer peers left for sharing
descriptions.

Figure 29 shows the average durations (delay) of intra-d, inter-d, and server
recovery for recovering one lost description with respect to various failure rates.
Since applying intra-d recovery only involves in asking the server for a new source
peer of the lost description and establishing a new streaming connection, the duration
of recovering one lost descriptio is not varied much along with the increase of
failure rate as shown in Fig. 29a. The delay for recovering one lost descriptions
roughly ranges from 0.23 to 0.27 seconds. Figure 29b shows that the duration of
applying inter-d recovery decreases with the increase of failure rate. As stated
in Section 8.3, once the server receives a request of inter-d recovery, it needs to
update the buffer range of peers involved in the recovering process in order to
correctly select a rescue peer for sewing recovery. The complexity of such a process
is proportional to the number of peers in the system. Therefore the duration of

Multimed Tools Appl (2014) 72:1653–1679 1675

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

D
ur

at
io

n
(s

ec
on

ds
)

Failure rate (failure peers/arrival peer)

Average intra-d recovery duration

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

D
ur

at
io

n
(s

ec
on

ds
)

Failure rate (failure peers/arrival peer)

Average inter-d recovery duration

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

D
ur

at
io

n
(s

ec
on

ds
)

Failure rate (failure peers/arrival peer)

Average server recovery duration

(c)

Fig. 29 Average duration for intra-d, inter-d, and server recovery for one lost description

inter-d recovery is inverse proportional to failure rate, which ranges roughly from
1.6 to 0.6 seconds. Finally, if intra-d and inter-d recovery all fail to recover the lost
description, the server will directly establish a connection with the recovering peer
to provide the missing video chunks. Only a slight computation and communication
overhead involves in executing server recovery. As shown in Figure 29c, the time to
recover a lost description by the server is almost identical to the time spent in inter-d
recovery. Based on our experiment results, the average percentages of recovering
lost descriptions by intra-d, inter-d, and server recoveries are 85.47 %, 0.69 %, and
13.84 %, respectively. With the average buffer amount of 300 frames (=10 seconds)
for a peer, in our experiments the average delay to recover a lost description is
0.38 second. Compared to the length of a peer’s buffer space, this short recovering
dealy is not going to affect the quality of services.

Let s and p denote the number of descriptions served by the server and peers,
then the server loading can be computed by s/(s+ p)× 100 %. Figure 30 shows the
server loading with/without intra/inter-d recovery for the Loopback-MDC. As shown
in Fig. 30a, the server loading decreases along with the increase of the arrival rate for
cases of with and without intra/inter-d recovery. The server loading with intra/inter-d
recovery is always lower than that without intra/inter-d recovery. The difference of
these two server loadings becomes larger when the arrival rate gets higher. At the
arrival rate equal to 14 peers/min, it is interesting to see that the server loading

1676 Multimed Tools Appl (2014) 72:1653–1679

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 2 4 6 8 10 12 14

Se
rv

er
 lo

ad
in

g
(%

)

Arrival rate (peers/minute)

Server loading with intra/inter-d recovery
Server loading without intra/inter-d recovery

(a)

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50
 55

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Se
rv

er
 lo

ad
in

g
(%

)

Failure rate (failure peers/arrival peer)

Server loading with intra/inter-d recovery
Server loading without intra/inter-d recovery

(b)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 2 4 6 8 10 12 14

Se
rv

er
 lo

ad
in

g
(%

)

Quality (descriptions/peer)

Server loading with intra/inter-d recovery
Server loading without intra/inter-d recovery

(c)

Fig. 30 The server loading with/without intra-d and inter-d recovery for the Loopback-MDC

without intra/inter-d recovery is 22 % more than that with intra/inter-d recovery in
which the server loading is as low as 11 %.

As the failure rate increases, the loadings of both schemes increases accordingly
as shown in Fig. 30b. The Loopback-MDC with intra/inter-d recovery would have
lower server loading than that without intra/inter-d recovery at various failure rates.
The largest difference of these two schemes, 18.8 %, happened at failure rate
equal to 0.6 peers/min, getting smaller when failure rate is beyond 0.7 peers/min.
Figure 30c shows the server loading of the Loopback-MDC with intra/inter-d recov-
ery decreases along with the increase of viewing quality. The one without intra/inter-
d recovery appears to consistently react to the increase of viewing quality, where
the server loading is about 35 %. In general, the server loading without intra/inter-d
recovery has average 18.2 % more than that of with the intra/inter-d recovery with
various viewing qualities, and the largest difference of server loadings for these two
schemes reaches 22.3 % at the viewing quality equal to 14 descriptions/peer.

In Figs. 27a, 28a, and 30a we show the duration of open loops, failure recovery
count, and server loading with respect to various arrival rates ranged from 2 to
14 peers/min. The maximum number of peers in our experiments is 140. To enlarge
the population of peers in the experiments during the 10-min run, we can simply
increase the arrival rate. However, when the arrival rate is greater than 12 peers/min,
the duration of open loops shown in Fig. 27a and the server loading shown in
Fig. 30a are not significantly varied. Furthermore, the failure recovery count shown

Multimed Tools Appl (2014) 72:1653–1679 1677

in Fig. 28a possesses the tendency of rapid increase when the arrival rate is greater
than 8 peers/min. Since we can clearly predict the characteristic of the TuBeck based
on those figures, we believe that collecting data with arrival rate greater than 14
peers/min for larger peer population is not necessary in our experiments.

10 Conclusion

In this paper, we introduce the design and implementation of a P2P streaming
systemwith the Loopback-MDC for H.264/AVC videos, namedTuBeck. The system
architecture, preprocess of media sources, server module, peer module, and player
module in details. We also elaborate the LM protocol which is used to facilitate the
message exchange and streaming control among nodes. In addition, we deployed
the experiments to observe the characteristics of the TuBeck on real network
infrastructure. The experimental results show that the Loopback-MDC is practical
for realizing a P2P streaming system in terms of the server loading, CPU/Memory
usage, and efficiency of failure recovery with respect to various arrival rates, failure
rates, and viewing qualities.

Acknowledgement This work was partially supported by National Science Council under contracts
NSC 97-2221-E-024-014-MY3.

References

1. Akyol E, Tekalp A, Civanlar M (2006) Adaptive peer-to-peer video streaming with optimized
flexible multiple description coding, pp 725–728

2. Akyol E, Tekalp AM, Civanlar MR (2007) A flexible multiple description coding framework for
adaptive peer-to-peer video streaming. IEEE J Sel Topics Signal Process 1:231–245

3. Bai HH,Wang AH, Zhao Y, Pan JS, AbrahamA (2011) Distributed multiple description coding:
principles, algorithms and systems. Springer-Verlag New York Inc

4. Campana O, Cattani A, Giusti AD, Milani S, Zandona N, Calvagno G (2006) Multiple descrip-
tion coding schemes for the h.264/avc coder. In: Proceedings of the international conference on
wireless recognizable terminals and protocols, pp 217–221

5. Castro M, Druschel P, Kermarrec AM, Nandi A, Rowstron A, Singh A (2003) Splitstream: high-
bandwidth multicast in cooperative environments. In: Proc. of ACM symposium on operating
system principles, pp 298–313

6. Chen Z, Yin H, Lin C, Liu X, Chen Y (2007) Towards a trustworthy and controllable peer-
server-peer media streaming: an analytical study and an industrial perspective. In: Proc. of global
telecommunications conference (Globecom ’07). IEEE, pp 2086–2090

7. Dai L, Cui Y, Xue Y (2007) Maximizing throughput in layered peer-to-peer streaming. In: IEEE
international conference on communications, 2007 (ICC ’07), pp 1734–1739

8. Dong Y, Kusmierek E, Duan Z, Du D (2004) A hybrid client-assistant streaming architecture:
modeling and analysis. In: Proc. of 8th internet and multimedia systems and spplications (IMSA)

9. Fouliras P, Xanthos S, Tsantalis N, Manitsaris A (2004) Lemp: lightweight efficient multicast
protocol for video on demand. In: SAC ’04: proceedings of the 2004 ACM symposium on applied
computing (2004), pp 1226–1231. doi:10.1145/967900.968150

10. Goyal VK (2001) Multiple description coding: compression meets the network. IEEE Signal
Process Mag 18:74–93

11. Guo Y, Suh K, Kurose J, Towsley D (2003) P2cast: peer-to-peer patching scheme for vod service.
In: Proceedings of the twelfth international world wide web conference

12. Hua KA, Cai Y, Sheu S (1998) Patching: a multicast technique for true video-on-demand ser-
vices. In: Proceedings of the sixth ACM international conference on multimedia, pp 191–200

13. Hunag C, Wang A, Li J, Ross KW (2008) Understanding hybrid cdn-p2p: why limitlight needs
its own red swoosh. In: Proc. of Nossdav’08. ACM, pp 75–80

http://dx.doi.org/10.1145/967900.968150

1678 Multimed Tools Appl (2014) 72:1653–1679

14. Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG. Joint model (jm) - h.264/avc
reference software. http://iphome.hhi.de/suehring/tml/. Ver. 18.0. Accessed 8 June 2012

15. Kusmierek E, Dong Y,DuDHC (2006) Loopback: exploiting collaborative caches for large-scale
streaming. IEEE Trans Multimedia 8(2):233–242

16. Lin CS (2011) Enhancing p2p live streaming performance by balancing description distribution
and available forwarding bandwidth. Int J Commun Syst 24(5):568–585

17. Lin CS, Lee IT (2010) Applying multiple description coding to enhance the streaming scalability
on cdn-p2p network. Int J Commun Syst 23(5):553–568

18. Lin CS, Syu WT, Lee IT (2008) Improving the scalability of p2p streaming based on fine-grained
balancing scheme. In: Proc. of the IEEE 22nd international conference on advanced information
networking and applications (AINA2008), pp 795–802

19. Ma W, Du DHC (2002) Reducing bandwidth requirement for delivering video over wide area
networks with proxy server. IEEE Trans Multimedia 4(4):539–550

20. Ma WH, Du DHC (2004) Design a progressive video caching policy for video proxy servers.
IEEE Trans Multimedia 6(4):599–610

21. Padmanabhan V, Wang H, Chou P (2003) Resilient peer-to-peer streaming. In: Proc. of IEEE
network protocols, pp 16–27

22. Padmanabhan VN, Wang HJ, Chou PA, Sripanidkulchai K (2002) Distributing streaming media
content using cooperative networking. In: Proc. of ACM NOSSDAV, pp 177–186

23. Sheu S, Hua KA, Tavanapong W (1997) Chaining: a generalized batching technique for video-
on-demand. In: Proceedings of IEEE international conference on multimedia computing and
systems ’97, pp 110–117

24. Tran DA, Hua KA, Do T (2003) Zigzag: an efficient peer-to-peer scheme for media streaming.
In: Twenty-second annual joint conference of the IEEE computer and communications

25. Xiao X, Shi Y, Gao Y (2008) On optimal scheduling for layered video streaming in heteroge-
neous peer-to-peer networks. In: MM ’08: proceeding of the 16th ACM international conference
on multimedia. ACM, New York, NY, USA, pp 785–788

26. Xu D, Kulkarni SS, Rosenberg C, Chai HK (2004) A cdn-p2p hybrid architecture for cost-
effective streaming media distribution. Comput Netw 44(3):353–382

Chow-Sing Lin received the Ph.D. degree in Computer Engineering from the University of Central
Florida, Florida, USA, in 2000. He is currently a Professor in the Department of Computer Science
and Information Engineering, National University of Tainan, Taiwan. His research interests include
wired/wirelessmedia delivery, peer-to-peer media streaming, distributedmultimedia systems, mobile
computing, and sensor networks.

http://iphome.hhi.de/suehring/tml/

Multimed Tools Appl (2014) 72:1653–1679 1679

Rong-Hua Chang received his M.S. and B.S.Eng. degree in Computer Science and Information
Engineering from National University of Tainan, Taiwan, in 2012 and 2010. His research interests
include peer-to-peer media streaming systems, multiple description coding techniques, and mobile
computing.

Jhe-Wei Lin received his B.S.Eng. degree in Computer Science and Information Engineering from
National University of Tainan, Taiwan in 2011. He is currently a M.S student in the department
of Computer Science and Information Engineering at National University of Tainan, Taiwan. His
research focuses on bitTorrent with real-time video service, peer-to-peer media streaming, and
multiple description coding on P2P networks.

	TuBeck: a novel peer-to-peer streaming system with Loopback-MDC for scalable H.264/AVC videos
	Abstract
	Introduction
	Related works
	Loopback
	Loopback-MDC
	Peer recovery process

	System architecture of TuBeck
	Preprocess of multimedia sources
	Server module
	Peer module
	Player module
	LM protocol
	Video request
	Provider identification
	Failure recovery

	Performance study
	Conclusion
	References

