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Abstract Kernel sparse representation-based classifier (KSRC) has been proposed,
which has good representation and classification performance on face image data.
The performance of KSRC on face image data is partly dependent on the random
projection matrix when using the random projection method and the kernel Gram
matrix. This paper develops the kernel sparse representation-based classifier ensem-
ble (KSRCE), which does not require to consider the effect of random projection
and kernel Gram matrix on KSRC. Actually, the random projection matrix and the
kernel Gram matrix could be used for designing the diversity schemes for KSRCE.
In the combination stage, we can combine the labels or the reconstruction errors of
a test sample. Experimental results on three face data sets show that KSRCE is very
promising.

Keywords Sparse representation-based classifier · Kernel method ·
Ensemble learning

1 Introduction

At present, face recognition is an active research area in pattern recognition and
machine learning [7, 16]. The face image data is the typical high dimensionality

Supported in part by the National Natural Science Foundation of China under Grant
Nos. 60970067 and 61033013, by the Natural Science Foundation of Jiangsu Province of China
under Grant Nos. BK2011284, BK201222725, by the Natural Science Pre-research Project of
Soochow University under Grant No. SDY2011B09 and by the Qing Lan Project.

L. Zhang (B) · F.-Z. Li
School of Computer Science and Technology, Soochow University, Suzhou,
215006 Jiangsu, China
e-mail: lizhang.ml@gmail.com

W.-D. Zhou
AI Speech Ltd., Suzhou 215123, China

Published online: 19 April 2013

Multimed Tools Appl (2015) 74:123–137



data, and face recognition is the typical small sample size problem. There are many
classes (different persons), and only a few images per person. Usually, we need
to reduce the dimension of face image when performing face recognition tasks.
Recently, sparse representation-based classifier (SRC) is proposed in [18, 19]. Similar
to nearest neighbor (NN) [4] and nearest subspace (NS) [11, 12], SRC is a non-
parameter learning method which does not need a training process and can directly
assign a class label to a test sample. SRC implements sparse representation of data
by using the methods for sparse signal reconstruction in CS (Compressed sensing)
and classifies data in terms of reconstruction errors. Random projection (RP) is a
good choice for reducing dimensionality, since Wright et al. state that “the precise
choice of feature space is no longer critical, even random features contain enough
information to recover the sparse representation and hence correctly classify any
test image” [18]. In RP, the random matrix is regarded as the projection matrix and
is generally generated according to the standard Gaussian distribution. Experimental
results in [18] show SRC outperforms NN and NS. However, SRC can not work well
when data points have the same direction distribution [23].

To Remedy it, Zhang et al. propose kernel sparse representation-based classifier
(KSRC) [23]. KSRC implicitly map the data into a high-dimensional kernel feature
space by using some nonlinear mapping associated with a kernel function. In the
kernel feature space, the dimensionality can be reduced by exploiting kernel-based
dimensionality reduction methods, such as kernel principle component analysis
(KPCA) [17], kernel fisher discriminant analysis (KFDA) [14], and random projec-
tion [23]. Experimental results in both [18] and [23] indicate that random projection
is a nice scheme of dimensionality reduction for face recognition. But random
projection has randomicity when generating the random projection matrix, which
would lead to slightly different classification performance. In addition, the selection
of kernel parameters is also difficult.

Classifier ensemble has been considered as a very efficient technique, which can
lead to good classification performance by combining multiple classifiers. General
speaking, the classification performance of ensemble classifier is better than the
single best classifier, which is supported by experimental results [10, 15, 20]. The
diversity of individual classifiers and the combination rule for the outputs of these
classifiers are two important issues in classifier ensemble. In order to get better
performance, the individual classifiers must be both diverse and accurate. Diversity
can ensure that all the individual classifiers make uncorrelated errors. In addition,
accuracy of individual classifiers is important, since too many poor classifiers can
suppress correct predictions of good classifiers. In order to make individual classifiers
diverse, one common way is to train individual classifiers by using different training
sets, randomly selected [1, 4, 5]. Bagging [1] and Boosting [5] are well known exam-
ples of successful iterative methods for reducing a generalization error. The other
way is to train multiple classifiers by using different feature sets [8]. Furthermore,
combination rules is also an important issue, which is related to how to combine the
outputs of individual classifiers. If labels are available, a simple (majority) voting
(SV) rule can be used [9]. If the continuous outputs like posteriori probabilities
are supplied, an average or some other linear combination rule or some nonlinear
combination rules can be used [6, 9, 20].

This paper deals with the ensemble of KSRCs (KSRCE), which can eliminate
the randomicity of random projection and improve the classification of KSRCs. In
KSRCE, the diversity is guaranteed by generating random projection matrix and/or
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the different kernel or its parameters and/or the random sample of kernel matrix.
In the combination stage, we can combine the labels or the reconstruction errors
of a test sample. Usually, SRC and KSRC are cast into a quadratically constrained
�1 minimization problem. Here, we recast KSRC into a linear programming (LP)
problem, which is more easy to solve than quadratically constrained �1 minimization
problems.

The rest of this paper is organized as follows. In Section 2, we briefly review KSRC
and give the LP problem of KSRC. Section 3 discusses kernel sparse representation-
based classifier ensemble (KSRCE), and describes the diversity and the combination
rules in KSRCE, respectively. KSRCE is compared with KSRC and SRC and SRC
ensemble (SRCE) on the face data in Section 4. Section 5 concludes this paper.

2 Kernel sparse representation-based classifier

This section reviews KSRC and presents an LP for KSRC.

2.1 KSRC

In the following, we simply introduce KSRC [23]. Consider a c-class classification
task. Let the training set be {xi, yi}n

i=1, where xi ∈ X ⊂ R
m, yi ∈ {1, 2, · · · , c}, n is the

total number of training samples, and m is the dimensionality of the input space X .
Given an arbitrary sample x in X , the goal is to assign a label to it.

Let � be the nonlinear mapping function corresponding to a kernel k(·, ·). Usually,
a Mercer kernel k(·, ·) can be expressed as

k
(
x, x′) = �(x)T�(x′) (1)

where T denotes the transpose of a matrix or vector, x and x′ are any two points in
X . To make the training samples separable, we employ � to map the data from the
input space X to a high-dimensional (possibly infinite dimensional) kernel feature
space F . In the finite dimensional case, there have

� : x ∈ X → �(x) = [φ1(x), φ2(x), · · · , φD(x)]T ∈ F (2)

where �(x) ∈ R
D is the image of x in F , D >> m is the dimension of the feature

space F , and φ j(x) ∈ R. The conclusions obtained from the finite dimensional case
can be applied to the case of infinite dimension. Thus, hereafter our discussion only
focus on the finite dimensional case for the convenience of description. The images
of the training samples xi are �(xi), i = 1, · · · , n. In KSRC, we can linearly represent
the image of test sample in terms of the images of all training samples in this kernel
feature space F . Namely,

�(x) =
n∑

i=1

αi�(xi) = �α (3)

where the sample matrix in F can be expressed as

� = [�(x1), �(x2), · · · ,�(xn)] ∈ R
D×n (4)
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α = [α1, α2, · · · , αn]T is the coefficient vector, and αi are the coefficients correspond-
ing to the images �(xi). If the test sample x belongs to the jth class, then the entries
of α are expected to be zero except those associated with this class. Namely,

α = [0, · · · , 0, α j,1, · · · , α j,n j, 0, · · · , 0]T (5)

where n j is the number of samples in the jth class, and n = ∑c
j=1 n j. The coefficient

vector α is expected to be sparse.
In KSRC, the problem of finding the coefficient vector is formulated as a convex

programming problem:

min
α

‖α‖1 (6)

subject to ‖BTk(·, x) − BTKα‖2 ≤ ε

where K = �T� ∈ R
n×n is the kernel Gram matrix which is symmetric and positive

semi-definite, and Kij = k(xi, x j), k(·, x) = [k(x1, x), · · · , k(xn, x)]T = �T�(x), B is a
pseudo-transformation matrix, and ε is a small positive constant, say 10−3. In the case
of random projection, B is a random matrix.

Equation (6) is a quadratically constrained �1 minimization problem. By solving it,
we can get the coefficient vector α. Now we need to classify x in terms of α. Likewise,
we also use the minimum residual between x and its c approximations in the reduced
subspace to determine the label of x. For class j, we define a characteristic function
δ j which can pick up the coefficients corresponding to the j-th class. Namely,

δ j(αi) =
{

αi, i f yi = i
0, otherwise

(7)

By using which, we get only the coefficients of samples belonging to class j and
denote them by a new vector:

δ j = [δ j(α1), δ j(α2), · · · , δ j(αn)]T (8)

Thus, the j-th approximation to the test sample x in the reduced subspace can be
expressed as BTKδj. We get the estimated label ŷ for x by minimizing residual
between the BTk(·, x) and its approximations. Then, we get

ŷ = arg min
j=1,··· ,c

r j(x) = arg min
j=1,··· ,c

‖BTk(·, x) − BTKδ j‖2 (9)

2.2 Linear programming for KSRC

The convex problem (6) can be efficiently solved [3, 18, 19]. In [18], �1 − magic
software package [2] is used to solve the problem. Here, we modify the convex
problem (6) as follows.

min
α

‖α‖1 (10)

subject to BTk(·, x) − BTKα ≤ ε

BTKα − BTk(·, x) ≤ ε

which is a linear programming problem. Typically, solving a linear programming is
more easy than solving quadratically constrained �1 minimization problem.
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3 KSRC ensemble

In this section, we propose the kernel sparse representation-based classifier ensemble
(KSRCE), and discuss the diversity and the combination rules for KSRCE.

Also consider a c-class classification task. Suppose that the training sample set is
{xi, yi}n

i=1, and x is an arbitrary test sample. Assume that there are T kernel sparse
representation-based classifiers (KSRCs). Let rt

j(x) and ŷt denote the reconstruction
error of the jth class and the label obtained by the t-th KSRC for x, respectively.
We try to assign a label to x according to outputs rt

j(x) or ŷt, t = 1, 2, · · · , T of the T
KSRCs. To get good classification performance, we need to design the diversity and
the combination rules for KSRCE, respectively.

3.1 Diversity

Diversity can ensure that all the individual classifiers make uncorrelated errors. If
each classifier makes the identical errors, these errors will propagate to the ensemble
and thereby no improvement can be achieved in combining multiple classifiers.
Thus, it is important to assure the diversity in classifier ensembles. Generally, the
diversity in classifier ensemble is generated by using different individual classifiers,
or different training samples for individual classifiers as mentioned in Section 1.

Here, we only focus on the ensemble of KSRCs and give the schemes of generating
the diversity for KSRCE in the following.

1. Random matrix: Random projection is a very efficient and simple way for dimen-
sionality reduction. In this case, B in (6) and (10) is a random matrix. Different B
would lead to different representation and different classification performance.

2. Random selection of kernel functions and kernel parameters: There are some
common used kernels, such as linear kernel, radial basis function (RBF) kernel
and wavelet kernels [21, 22]. Obviously, different kernel leads to different kernel
Gram matrix K and k(·, x) in (6) and (10), which would result in different
classification performance. Except for the linear kernel, other kernels have their
own parameters. The linear kernel has the form

k
(
x, x′) = xTx′ (11)

and RBF kernels can be expressed as

k
(
x, x′) = exp

(−γ ‖x − x′‖2
2

)
(12)

where γ > 0 is the parameter for RBF kernels. When using the RBF kernel,
we must give the value of γ . Of course, different γ also results in different
classification performance.

3. Random sample of kernel matrix: Each column of the kernel Gram matrix
K consists of all training samples. Thus, K is fixed when setting the kernel
parameters. We can randomly select a part of training samples to construct a new
kernel matrixes K̄ ∈ R

n′×n, where n′ is the number of selected training samples.
We would get different representation and classification results by replacing K
with K̄. In this case, B must be replaced by B̄ ∈ R

n′×n′
. Moreover, B could be a

random matrix or just be an identity matrix.

These three schemes can be used alone or used together.
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3.2 Combination rules

For an individual KSRC, we can obtain the reconstruction errors for a test sample
and assign a label to it according to these errors. In the combination step, we have two
ways to combine the outputs of multiple KSRCs. One way is that we firstly combine
the reconstruction errors in terms of some combination rules and then assign a label
to the test sample. The other way is to use the simple voting (SV) rule when getting
the labels from multiple KSRCs for the test samples. In the following, the two ways
are described.

1. Combining reconstruction errors: Given the T reconstruction errors rt
j, it re-

quires to combine them to obtain a robust estimate of the reconstruction r j for
the j-th class using some rules. In [18], there proposes a rule, called the mean
rule. Namely,

r j = 1

T

T∑

t=1

rt
j (13)

Here, we propose two other rules for combining these reconstruction errors: the
max rule and the min rule. The two combination rules are developed from the
mean rule (13) and to approximate the mean by the maximum and the minimum
of the reconstruction error, respectively. The max rule can be expressed as

r j = max
t=1,...,T

rt
j (14)

and the min rule can be described as

r j = min
t=1,··· ,T

rt
j (15)

From the estimated reconstruction errors r j, we can assign an estimated label ŷ
according to

ŷ = arg min
j=1,··· ,c

r j (16)

2. Combining labels: Given the T estimated labels ŷt, we can use the simple vote
rule to combine them to obtain an estimated label ŷ. Here, the simple vote can
be described as:

ŷ = arg max
j=1,··· ,c

T∑

t=1

θ(ŷt − j) (17)

where θ(ŷt − j) is a function defined by

θ(ŷt − j) =
{

1, if ŷt = j
0, otherwise

(18)
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3.3 Algorithm of KSRCE

The complete procedure of KSRCE is shown in Algorithm 1.

4 Simulation

This section gives numerical experimental results of KSRCE on three face data
sets and compare KSRCE with SRC, SRCE (SRC ensemble) and KSRC. The LP
problem for both KSRC and SRC is solved by exploiting the GLPK software package
[13].

All numerical experiments are performed on the personal computer with a
2.93 GHz Intel(R) Core(T)2 Duo CPU and 2 G bytes of memory. This computer
runs on Windows 7, with Matlab 7.01 and VC++ 6.0 compiler installed.

4.1 Experiments on ORL data set

Firstly, we perform experiments on the ORL face database [16] and take into account
the ensemble size and diversity schemes. The ORL face data set has 10 different
images for each subject and consists of 40 distinct subjects. Figure 1 shows 6 images
of the same subject. All the subjects are in up-right, frontal position (with tolerance
for some side movement). The size of each face image is 112 × 92, and the resulting
standardized input vectors are of dimensionality 10,304. The feature values of all
samples are normalized by 255. Namely, features take values from the interval [0, 1].
The number of images for both training and test is 200.

Experiment on ensemble size Now, we analysis the affection of ensemble size on
the classification performance of KSRCE. The ensemble size is varied from 2 to 10.
Only the random matrix scheme is adopted to generating the diversity for KSRCE
with the linear kernel. The reduced dimensionality range is 10–140 in [23]. Here, we

Fig. 1 Images of a subject
from the ORL database

Multimed Tools Appl (2015) 74:123–137 129



select three typical subspaces from this range, or 20, 60 and 120 when performing the
dimensionality reduction.

Figure 2 shows the classification error on the test set for the three subspaces.
“Ensemble-Vote” means KSRCE using the simple voting rule, “Ensemble-Max”,
“Ensemble-Min” and “Ensemble-Mean” denote KSRCE using the max rule, the
min rule and the mean rule, respectively. “Single-Min” and “Single-Average” denote
that the classifier with the minimal error among and the average error over multiple
KSRCs, respectively.

In Fig. 2a, the classification performance of KSRCE is obviously much better
than the single best KSRC (or “Single-Min”) except for the simple voting rule when
ensembling two KSRCs. In the simple voting rule, the diversity of any two classifiers
only gives confusion. Thus, it could not improve performance by employing the sim-
ple voting rule when combining two classifiers. Figure 2b and c indicate that KSRCE
always outperforms the average performance of multiple individual KSRCs (or
“Single-Average”), and mostly achieves the better performance than the single best
KSRC. Although the effect of ensemble on the classification performance decreases
as the increasing of dimensionality, KSRCE can still improve the classification
performance of KSRC since we always take the average performance of KSRC as
the final result instead of the minimal ones. In addition, the larger the ensemble
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Fig. 2 Classification error vs. ensemble size. a 20 dimensionality, b 60 dimensionality, and c 120
dimensionality

Multimed Tools Appl (2015) 74:123–137130



size is, the better the ensemble performance in the case of low dimensionality. With
the increasing of dimensionality, the ensemble performance is not proportion to the
ensemble size, but dependent on the performance of individual KSRCs.

In summary, the ensemble size is important only in the relative low subspace. In
the following experiments, we take the ensemble size of five as in [18].

Experiment on diversity schemes Here, we compares different diversity schemes for
KSRCE on the ORL face data set. Let he ensemble size be five. We design four
methods for generating the diversity for KSRCE according to the three diversity
schemes given in Section 3.1.

– Random matrix: We randomly generate B five times and get five individual
KSRCs.

– Random sample of kernel matrix: The linear kernel is used. We randomly select
50 % training samples to construct kernel matrix, repeat it five times and get five
individual KSRCs.

– Random matrix+random sample: We integrate the two above methods. In each
KSRC, both different random matrix and different (linear) kernel matrix are
generated.

– Random matrix+random sample+ random kernel selection: In each KSRC,
different random matrix and different kernel matrix and different kernel are
adopted. Here, the linear kernel and the RBF kernel are considered. In [23],
the parameter γ of RBF kernel is set by the median value of 1/(‖xi − x‖2), i =
1, · · · , n, where x is the mean of all training samples. Let γ = ω × 1/(‖xi − x‖2),
where ω is a random number chosen from a uniform distribution on the interval
[1, 3].

Figure 3 gives the classification error on the test set for the four diversity schemes.
The dimensionality of subspace is 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 120, and
140. Figure 3a–d appear similar. The classification performance of six classifiers is
improved with the increasing of the dimensionality. But the improvement is not
evident when the dimensionality of subspace is larger than or equal to 60. In Figs. 3a–
c, we can see that KSRCE with the simple voting rule, the max rule and the mean
rule outperforms both the average and minimal of KSRCs in the case of the lower
dimensionality, say 20. But we can not clearly distinguish the six classifiers in the case
of higher dimensionality, say 120. In Fig. 3d, we can still identify that the ensemble
performance of KSRCs is better than the performance of the single KSRC. In a
nutshell, the diversity scheme, “Random matrix+random sample+random kernel
selection”, is the best choice for KSRCE. In the following, we use this scheme to
generate diversity for KSRCE.

4.2 Experiments on three face data sets

UMIST face database [7] and Extended Yale B database [11] are also considered
here. The original features of each face image is obtained by stacking its columns.

– UMIST: The UMIST face database is a multi-view database which consists of
574 cropped gray-scale images of 20 subjects, each covering a wide range of poses
from profile to frontal views as well as race, gender and appearance. Each image
in the database is resized into 112 × 92. Figure 4a depicts some sample images of
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Fig. 3 Classification error vs. dimensionality. a Random matrix, b random sample of kernel matrix,
c random matrix+random sample, and d random matrix+random sample+random kernel selection

Fig. 4 Face data. a Images of a
subject from the UMIST
database, and b images of a
subject from the Extended
Yale B database
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a typical subset in the UMIST database. The total number of the training samples
is 290, and that of the test samples is 284.

– Extended Yale B: It consists of 2,414 frontal-face images of 38 subjects which
are manually aligned, cropped, and then re-sized to 168 × 192 images [11]. These
images were captured under various laboratory-controlled lighting conditions.
Figure 4b shows some sample images of a typical subset in the Extended Yale B
database. The total number of the training samples could be 1,207, and that of
the test samples is also 1,207. Each sample has 32,256 features.

This section compares KSRCE to SRC, SRCE and KSRC on three face data
sets, including the ORL, the UMIST and the Extended Yale B face data sets. The
dimensionality of subspace in the ORL data set is 10, 20, 30, 40, 50, 60, 70, 80, 90, 100,
120, and 140. For both the UMIST and Extended Yale B data sets, the dimensionality
of subspace is 20, 40, 60, 80, 100, 120, 140, 160, 180 and 200.

In KSRCE and SRCE, the ensemble size is five. From Figs. 2 and 3, we can see
that the mean rule is relative stable. Thus, the mean rule is taken as the combination
rule for SRCE and KSRCE. The diversity scheme for SRCE is the random matrix
one, which is the only one SRCE can use. While for KSRCE, the scheme of random
matrix+random sample+random kernel selection is used, whose setting is the same
as that in Section 4.1. In KSRC, the linear kernel or the RBF kernel is used. We take
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Fig. 5 Classification error vs. dimensionality. a ORL, b UMIST, and c Extended Yale B
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the average classification error on the test set over five SRCs and KSRCs as the final
results of SRC and KSRC, respectively.

Figure 5 shows the classification errors obtained by four methods. Inspection on
Fig. 5a and b indicate that the performance of KSRCE is the best among the four
methods. SRCE is much better than SRC, which further supports that the classifier
ensemble is effective. In addition, KSRC is compared with SRCE. From Fig. 5c, we
can see that KSRCE outperforms SRCE when the dimensionality is larger than or
equal to 40. KSRC is always better than SRC except that the case of d = 20.

Figure 6 gives curves of the CPU running time vs. dimensionality. All curves show
that the CPU running time greatly increases when increasing the dimensionality.
Moreover, ensemble algorithms require more running time compared to single
classifiers. For both ORL and UMIST, the running time of KSCRE is close to that
of SRCE. But, KSRCE is much better than SRCE on the Extended Yale B set. In
fact, the CPU running time depends on the training sample number, the test sample
number, the sample dimensionality and others. On the Extended Yale B set, KSRCE
(or KSRC) runs faster than SRCE (or SRC) because SRCE (or SRC) performs
dimensionality reduction from very high dimensionality (32,256), and KSRCE (or
KSRC) only from 1,207 which is the number of training samples.
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Fig. 6 Classification error vs. dimensionality. a ORL, b UMIST, and c Extended Yale B
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5 Conclusions

In this paper, we develop the kernel sparse representation-based classifier ensemble.
We design the diversity schemes and describe some combination rules for KSRCE.
Generally, SRC and KSRC are cast into a quadratically constrained �1 minimization
problem. We recast KSRC into a linear programming (LP) problem, which is more
easy to solve than quadratically constrained �1 minimization problems. Experimental
results on three face data sets show that KSRCE is mostly much better than SRC,
SRCE and KSRC. In the case of relative low dimensionality, the effect of KSRCE is
very obvious. In addition, the mixture diversity scheme performs well.
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