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Abstract A novel content-based motion descriptor is proposed. Firstly, the multi-view
image information is captured to represent motion, and then the Switching Kalman Filters
Model (S-KFM), which is a kind of the Dynamic Bayesian Network (DBN), is built based
on the images fusion and the optical stream technology. Secondly, through the S-KFM
inferring and sequence signal coding, a graph-based motion descriptor can be obtained.
Lastly, motion matching results based on the graph model descriptor show our method is
effective.
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1 Introduction

In recent years, computer animation has become very popular due to the increasing importance
of it in many applications [20, 24, 25]. In computer animation, we are particularly interested in
human motion. There are many methods developed to produce the human motion data. Awell-
known method is called the motion capture (MoCap). With the motion capture devices
becoming more widely available, large motion databases start to appear [5–7, 15, 18].
However, as the number of motions grows, it becomes difficult to select an appropriate motion
that satisfies certain requirements. Hence, motion retrieval has become one of the major
research focuses in motion capture animation in recent years.

Motion retrieval research is still relatively new compared to retrieval research of other
multimedia data. There are only a few motion retrieval methods in the literature. Many motion
retrieval systems use the Dynamic Time Warping (DTW) as the similarity measure [9].
However, the DTW usually has low efficiency due to motion capture data consists of many
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parameters and attributes. For increasing the DTW-based retrieval efficiency, dimension reduc-
tion methods are often employed [2]. In order for the DTW to support indexing and further
increasing retrieval efficiency, [8] proposes an algorithmwhich is based on the Uniform Scaling
to match the query. However, in order to handle the motions that contain both local and global
differences, the computational cost of system is increased significantly when the DTWand the
Uniform Scaling should be applied separately.

Besides the DTW-based methods, other works concern finding logically similar motions.
For example, in [11], templates are created to describe motion, retrieval is based on the template
matching. In [10], geometric features are used to build indexing tree automatically based on
segmentation and clustering, and motion matching is based on peak points. In [14], a motion
index tree is constructed based on a hierarchical motion description. The motion index tree
serves as a classifier to determine the sub-library that contains the promising similar motions to
the query sample. The Nearest Neighbor rule-based dynamic clustering algorithm is adopted to
partition the library and construct the motion index tree. The similarity between the sample and
the motion in the sub-library is calculated through elastic match.

Some works related to motion sequence analysis and estimation are also done in recently
years [1, 4, 19, 22, 23], which are basis for finding more effective motion retrieval approaches.
For example, in [4], a motion-compensated deinterlacing scheme based on hierarchical motion
analysis is presented. For motion estimation, a Gaussian noise model for choosing the best
motion vector for each block is introduced. In [23], a general framework to unsupervisedly
discover video shot categories is studied. A new feature is proposed to capture local information
in videos. In [1], a motion trajectory-based compact indexing and efficient retrieval mechanism
for video sequences is proposed. This approach solves the problem of trajectory representation
when only partial trajectory information is available due to occlusion. It is achieved by a
hypothesis testing-basedmethod applied to curvature data computed from trajectories. In [19], a
robust logical relevance metric based on the relative distances among the joints is discussed.
The [22] studies an adaptive tracking algorithm by learning hybrid object templates online in
video. The templates consist of multiple types of features, each of which describes one specific
appearance structure, such as flatness, texture or edge/corner.

In this paper, we are interested in finding motions that are entirely similar to a given
query. Based on multi-view information and image fusion technology, we convert motion
matching into a transportation problem to handle rotating, local scaling or global scaling.
Based on graph model inference and sequence information coding, we can compute distance
between two motions. We compare mainly with the DTW and the Uniform Scaling method.
Though we have not implemented any indexing scheme, extending our method to support
indexing can be easily achieved because our distance function is a metric. Our experimental
results show that the proposed method is promising.

The rest of this paper is organized as follows. Overview of our method is presented in
Section 2. Section 3 describes our method in detail. Section 4 evaluates the performance of
our method through experiments. Section 5 briefly concludes this paper.

2 Overview of our method

Our method can be briefly described in Fig. 1. Motion retrieval frame can be separated two
parts entirely: motion descriptor building and motion retrieval.

In stage of motion descriptor building, firstly, motion database would be constructed, in
this paper, the CMU motion database [5] is used and some character motions, which can be
discriminated each other, are selected out to building the motion database. Secondly, each
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motion feature is extracted, the steps including (as shown in Fig. 1): (1) Processing of multi-
view motion information. Each animation is put into the lightfield [21] to get multi-view
images, and the PCA-based image fusion algorithm is used to get the fusion image sequence.
(2) Building motion graph model. For each frame of motion, the multi-view information can
be fused into fusion-images, optical stream signals [12] is computed based on difference
between the adjacent fusion-images, and graph model is constructed based on the optical
stream signals to represent the motion. (3) Inference and coding. Based on obtained graph
model, the DBN inference algorithm [13, 16] is used to get hidden variable sequence
information, and all variables in graph model can be coded [3] as the motion descriptor.

In stage of retrieval, the query motion is extracted feature according to above, and then
χ2-test is used to compute distances between query and motions in database, the retrieval
results are sorted and outputted.

3 Graph-based motion descriptor

3.1 Motion descriptor building

(a) Processing of multi-view motion information. In order to decrease affection of rotating
and scaling and represent motion fully, the multi-view images are utilized to describe
animation [21]. Firstly, the animation is put into lightfield, as shown in Fig. 2, the m
cameras are set on vertexes of polyhedron around the object. In i-th frame of the
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motion, the images of different viewpoints are acquired around the object (denoted as:
Ii
1-view, Ii

2-view,…, Ii
m-view). In order to decrease size of motion descriptor and retain

useful information, image fusion algorithm based on the Principle Component Analysis
(PCA) [17] is used to transform the m images into a fusion image Ii. The multi-view
information is got from 1st frame to T-th frame, and fusion-image sequence is obtained:
I1, I2,…, IT.

The multi-view images can be fused through the pixel-based and the PCA-based
method. We can further discuss the fusion method as follow.

(1) Let image Ii-view be an N × N matrix: Ii-view = [ fij]N×N, where the fij is the
gray value of each pixel. The matrix Ii-view (1≤ i≤n) can also be denoted as a
vector: Ii-view = [ f11, f12, …, fNN]

T = [ f1, f1, …, fQ]
T (Q = N2), then the means

and var of Ii-view are: μf = E[ f], Kf = E[( f - μf)( f - μf)
T].

(2) A matrix X can also be constructed based on the multi-view images
(denoted as I1-view,…, Im-view), suppose there are m images and size of
each image is n = N × N, we have:

X ¼

x11 � � � x1j � � � x1n
..
. ..

. ..
. ..

. ..
.

xi1 � � � xij � � � xjn
..
. ..

. ..
. ..

. ..
.

xm1 � � � xmj � � � xmn

0
BBBBBB@

1
CCCCCCA

ð1Þ

Where xij is gray value in j-th pixel of i-th image (Ii-view). The var
matrix of X can be calculated as:

C ¼

σ11 � � � σ1j � � � σ1n

..

. ..
. ..

. ..
. ..

.

σi1 � � � σij � � � σjn

..

. ..
. ..

. ..
. ..

.

σm1 � � � σmj � � � σmn

0
BBBBBB@

1
CCCCCCA

ð2Þ

Where σ2
i; j ¼ 1

n

Pn�1

i¼0
xi;l � xi
� �

xj;l � xi
� �

, xi is the average gray value of

i-th image.
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(3) Let |lΨ-C| = 0 (Ψ is unit matrix), and feature vector l1, l2,…, lm are obtained. We
can get fusion coefficients: wi ¼ 1i=

Pm
i¼1 1i . Next, feature matrix A is calculated:

Λ ¼
l1

. .
.

lm

0
B@

1
CA

KfΛ ¼ AΛ

9>>>=
>>>;

) A ¼
a1
a2
..
.

am

0
BBB@

1
CCCA ð3Þ

(4) Lately, the fusion image is got: I ¼ Pm
i¼1 wiai

We can give an example to further explain the fusion processing. As shown in
Fig. 3. Firstly, before fusion computation, all the multi-views images should be
normalized. The steps can be described as: based on center of motion object, we
can find a rectangle (a × b) to just enclose the motion object, and the enclosed pixels
can be scale to 100×100 image, as shown in Fig. 3. Secondly, based prior knowledge,
we know that images with different viewpoints have different efficiency for discrim-
inating motions, then for different viewpoint images, we set different weights during
the fusion processing. For example, as shown in Fig. 3, first according to experience,
viewpoint images are selected and sorted according to discrimination efficiency,
and the weight of first image is set to 1.0, the weight of secondly image can be
set to 0.8, and so on. Lastly, according to the pixel-based image fusion and the
PCA theory, all the multi-view images are composed together by Eqs. (1)–(3),
as shown in Fig. 3.

(b) Building motion graph model. As we known, sequence data can be expressed by the
Dynamic Bayesian Network (DBN) [16]. In this paper, we select the Switching
Kalman Filters Model (S-KFM) [16], which is a kind of the DBN, to represent motion.

As shown in Fig. 4, we use the DBN to build motion description, firstly, let optical
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stream signals be the observation signals of the DBN, the reason can be written as: in
video tracking, the optical stream signals is often be used to detect moving object, the
moving trend can be also described by difference between adjacent images. Based on
the idea, we take the optical stream sequence of fusion-images (I1, I2,…, IT.) as
observation values of the S-KFM. The optical stream sequence L1,…,L5 can be
computed according to [12], we can describe in detail as follow.

Firstly, based on [12], the motion trend can be detected based on the optimal shifting
vectors of corresponding points between the adjacent images. In the i-th frame image,
let shifting value in point (x, y) be:

ex;y ¼
X

x0;y02W I t þ 1ð Þx0þdx;y0þdy � IðtÞx0;y0
� �2

ð4Þ

where the (x’,y’) is any pixel point in given windowW, and I(t+1)x’+δx, y’+δy is the pixel of
(x’+δx, y’+δy) at t+1 in fusion-image, the (δx, δy) is the shifting vector of point (x, y), the
I(t)x’,y’ is the pixel of (x’, y’) at t in fusion-image, a optimal solution (δx,δy)* can be found
to make the ex,y minimize:

dx; dyð Þ* ¼ argmin
dx;dyð Þ

X
x0;y02W I t þ 1ð Þx0þdx;y0þdy � IðtÞx0;y0

� �2
ð5Þ

All optimal shifting vectors between adjacent fusion-images (Ii and Ii+1) are combined
together to express motion trend, that is denoted as optical stream Li. We can let the Li be
input signal of the S-KFM, which is also observation signal ei in the DBN, then
observation sequence is written as: E = {e1,e2,…,eT}.

Secondly, given input signal E, similar as noised signal processing, we can
use the S-KFM to estimate hidden sequence and state switching signals (denoted
as X = {x1,x2,…,xT}, S = {s1,s2,…, sT}). Based on above analysis, the graph
model of motion is constructed in Fig. 4.

(c) Inference and coding. The DBN Inference is to estimate the posterior probability of
hidden states in system. Given observation sequence E (or called evidence sequence),
hidden sequence X and switching sequence S can be obtained by using inference
algorithm. The inference can be described as follow.

We suppose that all continuous variables or conditional probability density func-
tions in the DBN are Gaussian distribution, let:

P x0ð Þ ¼ 1ffiffiffiffiffi
2p

p
σ0

e
� x�μ0ð Þ2

σ20 ¼ N μ0;σ
2
0

� � ð6Þ
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and let P(s0) = N(μs0, σ
2
s0), let state transition probability P(xt+1|xt) = N(μx1, σ

2
x1) and

P(st+1|st) = N(μs1, σ
2
s1), condition transition probability P(xt+1|xt, st) = N(μxs, σ

2
xs), let

observation probability P(et | xt) = N(μe1, σ
2
e1).

In general, the DBN learning can be formulated as the ML learning problem.
In this paper, initial system parameters are set according to prior knowledge, and
the parameters can also be adjusted according to user’s satisfaction for motion
retrieval results. When retrieval system runs for a period of time, the large
number of retrieved data can be obtained, the EM algorithm [16] is used to find
optimal values of the DBN parameters {μx0, σ

2
x0, μs0, σ

2
s0, μx1, σ

2
x1, μs1, σ

2
s1,

μxs, σ
2
xs, μe1, σ

2
e1}.

As shown in Fig. 4, we can calculate P(x1) based on the x0 and the s0
according to Bayesian rule:

P x1ð Þ ¼ RR
x0;s0

P x1 x0; s0jð ÞP x0; s0ð Þdx0ds0

¼ Pk
s0¼1

P s0ð Þ Rx0 P x0ð ÞP x1 x0; s0jð Þdx0
ð7Þ

Based on Eq. (7), because the P(x0,s0) = P(x0)P(s0) (variable conditional
independence) and the s is the discrete signal. The next, predicted data can be
updated by computing the P(x1, s1|e1). According to the Bayesian rule and the
DBN filtering equation [16], the predicted data can be updated:

P X1þt e1:1þtjð Þ ¼ aP e1þt X1þtjð ÞP X1þt e1:tjð Þ
¼ aP e1þt X1þtjð ÞPXt

P X1þt Xtjð ÞP Xt e1:tjð Þ ð8Þ

Where α is a parameter, which ensures computed results to be normalized
[16]. In above equation, if to replace the Xt with (xt, st), then we have:

P xtþ1; stþ1 e1:tþ1jð Þ ¼ aP etþ1 xtþ1; stþ1jð Þ
Xk
st¼1

Z
xt

P xt; st e1:tjð ÞP x1þt; s1þt xt; stjð Þ

¼ aP etþ1 xtþ1jð Þ
Xk
st¼1

P xt e1:tjð ÞP st e1:tjð Þ
Z
xt

P x1þt xt; stjð ÞP s1þt xt; stjð Þ

¼ aP etþ1 xtþ1jð Þ
Xk
st¼1

P st e1:tjð ÞP s1þt stjð Þ
Z
xt

P xt e1:tjð ÞP x1þt xt; stjð Þ

ð9Þ

According to the above formula, the xt and st can be updated based on
observation data et. The next, due to:

P xtþ1 e1:tþ1jð Þ ¼ aP etþ1 xtþ1jð Þ
Z
xt

P xtþ1 xtjð ÞP xt e1:tjð Þ ð10Þ
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And because: P xtþ1;stþ1 e1:tþ1j� � ¼ P xtþ1 e1:tþ1jð ÞP stþ1 e1:tþ1jð Þ , so we have:

P stþ1 e1:tþ1jð Þ ¼ P xtþ1;stþ1 e1:tþ1jð Þ
P xtþ1 e1:tþ1jð Þ

¼ P xtþ1;stþ1 e1:tþ1jð Þ
aP etþ1 xtþ1jð Þ

R
xt
P xtþ1 xtjð ÞP xt e1:tjð Þ

¼
P etþ1 xtþ1jð Þ

Pk
st¼1

P st e1:tjð ÞP s1þt stjð Þ
R
xt
P xt e1:tjð ÞP x1þt xt ;stjð Þ

P etþ1 xtþ1jð Þ
R
xt
P xtþ1 xtjð ÞP xt e1:tjð Þ

ð11Þ

Now, based on observation E = {e1,e2,…,eT}, we can estimate the hidden
sequence X = {x1,x2,…,xT} and the state switching signals S = {s1,s2,…, sT}
according to recurrence formula: from Eqs. (7) to (11). Lastly, all sequence
signals would be transformed into the quantized and normalized signals (denoted
as Enorm, Xnorm, Snorm), as shown in Fig. 5. We can use the matrix G to describe
the motion:

G ¼ g i; jð Þ½ �3�T ¼ Emorm;Xnorm; Snorm½ � ¼
e1; e2 � � � ; eT
x1; x2 � � � ; xT
s1; s2 � � � ; sT

2
4

3
5 ð12Þ

and ei ¼ ei=
PT

i¼1 ei; xi ¼ xi=
PT

i¼1 xi; si ¼ si=
PT

i¼1 si
Where ei; xi; si are the quantized and normalized values of ei, xi and si,

respectively, and the T in Eq. (12) denotes length of motion.
We can further explain the DBN inference through a toy. For easy calculation

and expression, we use discrete data instead of continuous data. As shown in
Fig. 6, the DBN parameters are: P(s0) = P(x0) = [0.5 0.5], and P(st+1|st) = [0.3
0.7; 0.7 0.3], condition transition probability P(xt+1|xt, st) = [0.1 0.2 0.3 0.4; 0.9
0.8 0.7 0.6], P(xt+1|xt) = [0.2 0.8; 0.8 0.2], let observation probability P(et | xt) =
[0.4 0.6; 0.6 0.4].

Now, if suppose all nodes have 2 states (denoted as Ture = 1, False = 2), let
inputted signals e1=1, we can calculate P(s1=1|e1=1) and P(x1=1|e1=1).

Firstly, based on Eq. (9), we have:

P xtþ1; stþ1 e1:tþ1jð Þ ¼ aP etþ1 xtþ1jð Þ Pk
st¼1

P st e1:tjð ÞP s1þt stjð Þ Rxt P xt e1:tjð ÞP x1þt xt; stjð Þ

� aP etþ1 xtþ1jð Þ Pk
st¼1

P st e1:tjð ÞP s1þt stjð Þ Pk
xt¼1

P xt e1:tjð ÞP x1þt xt; stjð Þ

ð13Þ
When t=0, we have:

P x1 ¼ 1; s1 ¼ 1 e1 ¼ 1jð Þ
¼ P e1 ¼ 1 x1 ¼ 1jð Þ P s0 ¼ 1ð Þ � P s1 ¼ 1 s0 ¼ 1jð Þ þ P s0 ¼ 2ð Þ � P s1 ¼ 1 s0 ¼ 2jð Þð Þ
�P x1 ¼ 1 e1 ¼ 1jð Þ P x1 ¼ 1 x0 ¼ 1; s0 ¼ 1jð Þ þ P x1 ¼ 1 x0 ¼ 1; s0 ¼ 2jð Þ½ �

þ P x1 ¼ 1 x0 ¼ 2; s0 ¼ 1jð Þ þ P x1 ¼ 1 x0 ¼ 2; s0 ¼ 2jð Þ½ �
� �

¼ 0:4� 0:5� 0:3þ 0:5� 0:7ð Þ � P x1 ¼ 1 e1 ¼ 1jð Þ 0:1þ 0:2½ � þ 0:3þ 0:4½ �ð Þ
¼ 0:4� 0:5� P x1 ¼ 1 e1 ¼ 1jð Þ

ð14ÞSimilar, we have P x1 ¼ 1; s1 ¼ 2 e1 ¼ 1jð Þ ¼ 0:2� P x1 ¼ 1 e1 ¼ 1jð Þ .
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Then we can get P(x1=1|e1=1) according to Eq. (10):

P xtþ1 e1:tþ1jð Þ ¼ aP etþ1 xtþ1jð Þ Rxt P xtþ1 xtjð ÞP xt e1:tjð Þ
) P x1 ¼ 1 e1 ¼ 1jð Þ � P e1 ¼ 1 x1 ¼ 1jð ÞPx0

P x1 x0jð ÞP x0ð Þ
¼ P e1 ¼ 1 x1 ¼ 1jð Þ P x1 ¼ 1 x0 ¼ 1jð ÞP x0 ¼ 1ð Þ þ P x1 ¼ 1 x0 ¼ 2jð ÞP x0 ¼ 2ð Þð Þ
¼ 0:4� 0:2� 0:5þ 0:8� 0:5ð Þ ¼ 0:2

ð15Þ
Similar, we have:

P x1 ¼ 2je1 ¼ 1ð Þ
� P e1 ¼ 1jx1 ¼ 2ð Þ P x1 ¼ 2jx0 ¼ 1ð ÞP x0 ¼ 1ð Þ þ P x1 ¼ 2jx0 ¼ 2ð ÞP x0 ¼ 2ð Þð Þ
¼ 0:6� 0:8� 0:5þ 0:2� 0:5ð Þ ¼ 0:3

ð16Þ
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Then, we get: P x1 e1 ¼ 1jð Þ ¼ a 0:2 0:3½ � ¼ 0:4 0:6½ � , we put Eq. (16) into
Eq. (14), have:

P x1 ¼ 1; s1 ¼ 1 e1 ¼ 1jð Þ ¼ 0:4� 0:5� 0:4 ¼ 0:08 ð17Þ
Then we get:

P s1 ¼ 1 e1 ¼ 1jð Þ ¼ P x1 ¼ 1; s1 ¼ 1 e1 ¼ 1jð Þ
P x1 ¼ 1 e1 ¼ 1jð Þ ¼ 0:08

0:4
¼ 0:2 ð18Þ

P s1 ¼ 2 e1 ¼ 1jð Þ ¼ P x1 ¼ 1; s1 ¼ 2 e1 ¼ 1jð Þ
P x1 ¼ 1 e1 ¼ 1jð Þ ¼ 0:08

0:4
¼ 0:2 ð19Þ

In the end, we get calculation results: P s1 e1 ¼ 1jð Þ ¼ a 0:2 0:2½ � ¼ 0:5 0:5½ � .

3.2 Motion retrieval

In stage of matching or retrieval, the query motion is extracted feature according to above,
and then χ2-test is used to compute distances between query and motions, as shown in
Fig. 5, the retrieval results can be sorted and outputted. Assume there are two motions
(denoted as G1 and G2), we have:

d motion1;motion2ð Þ
¼ d G1;G2ð Þ ¼ P3

i¼1

PT
j¼1

g1 i; jð Þ�g2 i; jð Þj j2
g1 i; jð Þþg2 i; jð Þ

¼ PT
j¼1

g1 1; jð Þ�g2 1; jð Þj j2
g1 1; jð Þþg2 1; jð Þ þPT

j¼1

g1 2; jð Þ�g2 2; jð Þj j2
g1 2; jð Þþg2 2; jð Þ þPT

j¼1

g1 3; jð Þ�g2 3; jð Þj j2
g1 3; jð Þþg2 3; jð Þ

¼ PT
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Where g1(i, j) and g2(i, j) are elements of G1 and G2, respectively. The eð1Þj ; sð1Þj ; xð1Þj

denote the j-th column elements in G1, the eð2Þj ; sð2Þj ; xð2Þj denote the j-th column elements in

G2. The parameters T in Eq. (20) denotes length of motion.
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At last, the matching results are sorted according to distances between the query motion
and motions in database, the top-p (p is feedback number of retrieval, the p is usually set to
20) motions can be feedback to user.

4 Experiments

To evaluate performance of the proposed motion descriptor on different motion clips, we
discuss some of the experiments that we have conducted. We have constructed a motion
database from 1000 different motion clips. For easy to test effective of motion matching and
retrieval, we cut all motions into uniform length. We categorize the 1000 motions into 20
motion groups, normal speed walking, fast walking, slow walking, leg-wild walking,
jumping, and so on. All the experiments presented here are performed on a PC with a
Pentium 5 GHz CPU and 1 GB RAM. The motion files are downloaded from CMU [5].

The motion clips typically contain more than one action within each clip. To obtain more
accurate performance results, we manually break each of the clips down into basic motion clips
with a single action.We use the basic motion clips as input and we take the first 50 frames of the
basicmotion clips as the query for scale computation. Our objective in the experiments is to find
the most similar motion clips within the motion database. For comparison, we have
implemented Dynamic Time Warping [8] and the Uniform Scaling method [10].
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Fig. 7 Similarity score between every motion pair

Multimed Tools Appl (2014) 72:951–966 961



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

recall

pr
ec

is
io

n

Our method

DTW

Uniform Scaling

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

recall

pr
ec

is
io

n

Our method

DTW

Uniform Scaling

walk           run

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

recall

pr
ec

is
io

n

Our method

DTW

Uniform Scaling

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

recall

pr
ec

is
io

n

Our method

DTW

Uniform Scaling

 jump climb

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

recall

pr
ec

is
io

n

Our method

DTW

Uniform Scaling

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

recall

pr
ec

is
io

n

Our method

DTW

Uniform Scaling

throw catch

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

recall

pr
ec

is
io

n

Our method

DTW

Uniform Scaling

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

recall

pr
ec

is
io

n

Our method

DTW

Uniform Scaling

lambada whirl

a b

c d

e f

g h

Fig. 8 Some precision-recall curves for motion retrieval in database
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4.1 Performance on motion discrimination

In the first experiment, we compare retrieval performance of the three methods, Uniform
Scaling, DTW, and our method, using the similarity matrix. To generate matrix, we first
compute similarity score between every motion pair in our database. We then normalize the
results with the maximum and minimum of the corresponding matrices to show the contrasts.
The darker the color, the more similar the two motions are. Figure 7 shows the similarity
matrices of the three methods. From the similarity matrices, we have the following observa-
tions: on the one hand, the diagonal lines of the matrices give the darkest color. This means our
method performs well in identifying the same motion. This means that proposed method is able
to give high similarity scores for similar motions. On the other hand, our method also gives a
larger similarity contrast when comparing twomotions from different groups. This may suggest
that our method can distinguish different motion groups relatively easier.

4.2 Performance on motion retrieval

In the second experiment, we calculate average precision and recall value (as shown in Fig. 8).
Those diagrams are generated by taking each of the motions in the database as query, searching
similar motions from the same database and averaging all the precision and recall values.

The Fig. 8 shows part of our precision and recall results. From the diagram, our method
performs well. This finding confirms our similarity analysis that our method can distinguish
dissimilar motions. The Fig. 8 plots the precision and recall curves for 8 motions in our
database, from retrieval results, we observe that: for simple motions, such as run, walk, and
so on, the compared 3 methods all have the best performance. On the other hand, for some
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Fig. 9 Comparison precision-recall curves of three methods. The k is feedback number of query results

Table 1 Running time comparison (per query)

Measurement approach Class of motion

Fast walk Slow walk Jump-kick

Uniform scaling 250 s 230 s 110 s

DTW 220 s 370 s 135 s

Our method 9.72 s 28.3 s 12.8 s
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motions with up or down direction, such as jump, climb and so on, the compared 3 methods
have better performance, our method still has better performance than other approaches. The
proposed retrieval algorithm always have low effective to motion with up to down direction, the
main reason is that there is lesser discrimination for up and downmovement based on proposed
view-based motion coding method. It is just the weakness of this proposed algorithm, we will
improve that in future works. However, for complex motions, such as dance, throw, and so on,
our method has very good performance than other methods, that means, our retrieval frame is
not only suited for simple motion retrieval, but also suited for complex motion discrimination.

In Fig. 9, we compare the 3 methods (our method, DTW and US) based on proposed
retrieval frame and averaging precision and recall value, we can see that all three methods
perform very well, whilst our method performs better.

4.3 Speed comparison

In the third experiment, we would like to compare the performance of the 3 methods according
to retrieval speed. The parts of experimental results are shown in Table. 1, which reveal that our
method actually performs better than DTW and Uniform Scaling. This is because DTW or
Uniform Scaling computes all the motion frames, but our method, by applying the graph model
and coding algorithm, involves only a matrix. This explains why the computation time
consumed by our method is far less than other methods.

Based on the computational complexity, we can also explain why our method outper-
forms existed methods. In Uniform Scaling, we try to find the best scaled match between the
query and the candidate. So, the time complexity is O(p × (m-n)), where p, m and n represent
the lengths of a scaled time series, the candidate and the query, respectively. The time
complexity of DTW is roughly O(m × n). The time complexity of our method is harder to
analyze because it is based on the simplex algorithm. However, if the algorithm is modeled
as a matrix matching problem, the complexity is O(n).

5 Conclusion

We have introduced a novel and efficient method for retrieving human motion data. Unlike
other approaches, our method applies the graph model to describe motion, through inferring
and coding, a small size and robust motion descriptor can be obtained. Our experiments
show encouraging results.
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