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Abstract A robust and geometric invariant digital image watermarking scheme based on
robust feature detector and local Zernike transform is proposed in this paper. The robust
feature extraction method is proposed based on the Scale Invariant Feature Transform (SIFT)
algorithm, to extract circular regions/patches for watermarking use. Then a local Zernike
moments-based watermarking scheme is raised, where the watermarked regions/patches can
be obtained directly by inverse Zernike Transform. Each extracted circular patch is
decomposed into a collection of binary patches and Zernike transform is applied to the
appointed binary patches. Magnitudes of the local Zernike moments are calculated and
modified to embed the watermarks. Experimental results show that the proposed
watermarking scheme is very robust against geometric distortion such as rotation, scaling,
cropping, and affine transformation; and common signal processing such as JPEG compres-
sion, median filtering, and low-pass Gaussian filtering.

Keywords Geometric invariant . Feature extraction . SIFT. Local Zernike transform . Inverse
Zernike transform

1 Introduction

Digital multimedia assets, such as images, music, and videos are allowed to be
accessed in digital forms via computer network. As a consequence, the digital
watermarking has emerged as a potentially effective tool for multimedia copyright
protection and authentication. A desired watermarking scheme must be robust against
a variety of possible attacks, which can be classified into common signal processing
and geometric distortions; of which, geometric distortion is more difficult to tackle
since it brings synchronization errors. Representative geometric distortions include
rotation, scaling, cropping, and affine transformations. Quite a number of geometric
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invariant algorithms have been proposed in the past years [37]. The existing
watermarking schemes robust against geometric distortions can be divided into three
categories: to embed the watermark in the geometric invariant domain [17, 21, 39]; to
embed a template along with the watermark [2, 9]; and to embed the watermark based
on feature extraction approaches which recently have been shown to have better
performance in terms of robustness [3, 7, 8, 14, 16, 27, 28, 30, 31, 33, 38].

The category of feature based digital image watermarking schemes is to use the
salient features in the image as reference points for both embedding and extracting a
watermark. Tang and Hang [28] developed a method of combining feature extraction
and image normalization to resist geometric distortions. The feature extraction method
called Mexican Hat Wavelet scale interaction was used. It was stated that the
extracted feature points can survive varieties of attacks and can be used as reference
points for both watermark embedding and extraction. Seo and Yoo [27] used Harris-
Laplace detector to extract feature points and several copies of the watermarks were
embedded in the circular disk centered at the feature points. Zheng et al. [38]
proposed a watermarking scheme based on rotation invariant feature and image
normalization. The Bayesian image segmentation was used to segment the cover
image into several homogeneous regions. The rotation invariant features were
extracted from the segmented areas and were selected as reference points. Although
the scheme was stated to perform well against rotation, scaling, and JPEG compres-
sion, the capacity of the watermarking scheme needs to be improved. Tsai et al. [31]
proposed a novel image watermarking approach, which adopted invariant feature
regions to jointly enhance its robustness and security. The scale-adapted auto-
correlation matrix and the Laplacian-of-Gaussian operation were applied to determine
the feature regions. The evaluation results based on the Stir-Mark benchmark
presented the proposed scheme can tolerate various attacks, including noise-like signal
processing and geometric distortions. Tsai et al. [30] proposed a novel feature region
selection method for robust digital image watermarking. It first performed a simulated
attacking procedure using some predefined attacks to evaluate the robustness of every
candidate feature region; then adopted a track-with-pruning procedure to search a
minimal primary feature set which can resist the most predefined attacks. The
experimental results indicated that the primary feature set can resist all the predefined
attacks and its extension can enhance the robustness against undefined attacks.

Moments and invariant functions of moments have been extensively used for invariant
feature extraction in a wide range of pattern recognition applications [1, 6, 24, 25, 36]. Of
various types of moments, Zernike moments have been shown to be superior to the others in
terms of their insensitivity to image noise, information content, and ability to provide faithful
image representation [29]; which are employed for watermarking in many literatures for its
special invariance properties against distortions. Xin et al. [34] divided the host image into
co-centric rings and modulated a watermark signal into the Zernike moments of each ring.
However, the reconstruction procedures were computationally expensive and there was
severe fidelity loss. Kim and Lee [12] introduced the semi-blind watermarking scheme
based on the invariant image feature vector using Zernike moments. However, a lot of side
information was required to extract the embedded watermark and computationally
expensive.

In order to overcome the major problems of computationally expensive and severe
fidelity loss in the existing approaches, the novel geometric invariant digital image
watermarking scheme based on feature extraction and local Zernike moments is proposed
in this paper. The Scale Invariant Feature Transform (SIFT) can extract feature points robust
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against various attacks, such as rotation, scaling, JPEG compression, and also transforma-
tion; and it has been used for feature points extraction for watermarking use in previous
works [15, 16, 32]. Lee et al. [15] proposed a watermarking method that was robust to
geometric distortions. In order to resist geometric distortions, they used the translation
and scaling invariant SIFT. The watermark was inserted into the circular patches
generated by the SIFT. Rotation invariance was achieved using the translation prop-
erty of the polar-mapped circular patches. Viet et al. [32] developed a robust object-
based watermarking algorithm using the SIFT features in conjunction with a new data
embedding method based on Discrete Cosine Transform (DCT). The message was
embedded in DCT spaces of randomly generated blocks in the selected object region.
To recognize the object region after being distorted, its SIFT features were registered
in advance. Experimental results demonstrated that the proposed algorithm was very
robust to geometrical distortions.

Therefore, this paper proposes a Robust Feature Points Detector (RFPD) based on
SIFT, to extract geometric invariant feature points; and then the circular regions
centering at the extracted feature points are defined as watermark embedding and
extraction regions. Due to the cumulative computational errors of Zernike transform, it
is difficult to reconstruct watermarked image/patch without visible quality degradation
directly using its inverse transform. Considering this problem, we proposed a bit-plane
decomposition based scheme. Each extracted circular patch is decomposed into a
collection of binary images. The Zernike transform is applied to the selected binary
patches, and the magnitudes of the local Zernike moments are modified to embed the
watermarks. The details of the scheme will be addressed in the following sections.
Section 2 describes the SIFT algorithm and the proposed RFPD. Section 3 introduces
the Zernike moments and its invariance properties. Section 4 illustrates the detail
procedure of watermark embedding and section 5 covers the details of watermark
extraction procedure. In section 6, many experimental results are presented to dem-
onstrate the robustness performance of our proposed scheme. And finally the conclu-
sions are drawn in section 7.

2 SIFTand proposed robust feature points detector

The SIFT is an algorithm which transforms an image into a large collection of local
feature vectors. According to Lowe [20], the feature points extracted by SIFT are
invariant to image scaling, rotation and partially invariant to change in illumination
and 3D camera viewpoint. Also they are well localized in both the spatial and
frequency domains, reducing the probability of disruption by occlusion, clutter, or
noise. Consequently, SIFT is one of the best choices for extracting feature points
invariant to geometric distortions. Although the SIFT extracted feature points are said
to be very invariant to various distortions, especially geometric attacks, they are not
suitable for watermarking for two main reasons. The first one is: so many feature
points can be extracted with SIFT that it is difficult to select the suitable ones for
watermarking use; the second one is: when the images go through distortions and
geometric transforms, some of the feature points cannot be located accurately and
some additional feature points may be extracted due to different distortions. Therefore,
the RFPD was proposed by improving SIFT algorithm to produce more robust feature
points for digital image watermarking. Section 2.1 describes the SIFT algorithm and
2.2 illustrate the proposed RFPD.
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2.1 Scale Invariant Feature Transform (SIFT) algorithm

The steps of SIFT algorithm are shown in Fig. 1 and the major stages for generating the SIFT
feature points are as following:

STEP-1 Apply the difference-of-Gaussian (DoG) function to the host image and look for
the maxima or minima to identify locations of the feature with potential interest in
scale space.

For the DoG in STEP-1, Koenderink [13] and Lindeberg [18] showed that the
only possible scale-space kernel is the Gaussian function, under a variety of
reasonable assumptions. Lowe [19] proposed the Gaussian scale model which
use scale-space extreme in the DoG function convolved with the image, to locate
the geometric-transform-invariant feature points.

The scale space of an image is defined as a function, L(x,y,σ), which can be
defined by:

L x; y;σð Þ ¼ G x; y;σð Þ � f x; yð Þ ð1Þ

Where f(x, y) is the input image, * is the convolution operation in x and y, and
G(x,y,σ) is the Gaussian filter, which is defined in Eq. (2).

G x; y;σð Þ ¼ 1

2pσ2
e� x2þy2ð Þ 2σ2= ð2Þ

Scale Space Extrema Detection

Feature Points Localization

Orientation Assignment

Feature Points Descriptor

Fig. 1 SIFT feature points’ generation
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Thus the DoG filtered image can be computed with Eq. (5), from the difference
of two nearby scales separated by a constant multiplicative factor k:

DoG ¼ G x; y; kσð Þ � G x; y;σð Þð Þ � f x; yð Þ ð3Þ

DoG ¼ G x; y; kσð Þ � f x; yð Þ � G x; y;σð Þ � f x; yð Þ ð4Þ

DoG ¼ L x; y; kσð Þ � L x; y;σð Þ ð5Þ

To detect the local maxima and minima of DoG in Eq. (5), each sample point is compared
to its eight neighbors in the current image and the nine neighbors in the scale above and
below. The feature points are selected when they are larger than all of their neighbors or
smaller than all of them.

STEP-2 Select the feature points from the candidates based on measures of their stability
and assign each feature point location with one or more orientations, based on the
local image gradient directions.

In STEP-2, the orientation assignment in [20] is used to make the feature
points rotation invariant. A consistent orientation is assigned to each feature point
based on the local image properties. The gradient magnitude,m(x, y), and orien-
tation, θ(x, y), is computed using Eqs. (6) and (7), respectively.

m x; yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L xþ 1; yð Þ � L x� 1; yð Þð Þ2 þ L x; yþ 1ð Þ � L x; y� 1ð Þð Þ2

q
ð6Þ

θ x; yð Þ ¼ tan�1 ðL x; yþ 1ð Þ � L x; y� 1ð Þð Þ L xþ 1; yð Þ � L x� 1; yð Þð Þ= Þ ð7Þ
STEP-3 Create the feature point descriptor by measuring the gradient magnitude and

orientation at each image sample point in a region around the feature point
location.

After assigning the location, scale, and orientation to the feature points, the
descriptor for the local image region is computed in STEP-3. Figure 2 illustrates
the computation of the feature point descriptor. Firstly, the image gradient mag-
nitudes and orientations are sampled around the feature points’ location, as Fig. 2a
shows. The descriptor is formed from a vector containing the values of all the
orientation histogram entries, corresponding to the lengths of the arrows in
Fig. 2b. Lowe [20] did many experiments to show that the best results were
achieved with a 4×4 array of histograms with eight orientation bins in each.
Therefore, the following experiments use a 4×4×8=128 element feature vector
for each feature points.

2.2 Proposed Robust Feature Points Detector (RFPD) algorithm

In the proposed RFPD, the host images are trained with some common signal
processing and geometric attacks, such as rotation, scaling and JPEG compression;
the SIFT algorithm is applied into the host images and the trained images,
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respectively, to extract the original feature points dataset and the trained feature points
dataset. The feature points matching algorithm is then applied to these two datasets to
extract the matched points as the feature points, according to their robustness. The
robustness is the distance ratio of the nearest neighbor to the second-nearest neighbor
in the SIFT algorithm. Hence, the parameter distance ratio (distRatio) can be adjusted
to generate different number of required feature points for image watermarking. The
final value of the distRatio is obtained through experiments. The detailed algorithm of
RFPD is explained in following and the flow chart is shown in Fig. 3. In our
experiments, the host images are trained in STEP-1 with image rotation with rotation
angle as 45°, image scaling with the scaling factor as 0.5, JPEG compression with the
quality factor as 50, and median filtering with the neighborhood as 4×4. With the
RFPD, given number of feature points can be extracted, in our experiments, N is set
to be 8 and the initial distRatio value is set to be 0.15.

2.3 Robust Feature Point Detector (RFPD) algorithm

Input: Host Image; Minimum Number of Feature Points – N.
Output: N Feature Points with Descriptor Given.

STEP-1 Load the host image and apply some common signal processing and geometric
attacks into the host image to generate the trained image.

STEP-2 Apply the SIFT algorithm to the host image and the trained image, to generate the
original feature points dataset (OFPD) and the trained feature points dataset
(TFPD), respectively.

STEP-3 Find the matching between the OFPD and TFPD, with the distRatio value,
which is obtained through the experimental results, using the feature point
matching.

STEP-4 Count the number of extracted feature points as C, and compare it with the given
N. If C < N, recursively increase distRatio; if C>1.5N, recursively decrease

(a) (b)

Fig. 2 Feature points descriptor (a) computation of the gradient magnitude and orientation at each image
sample point in a region around the feature point location (b) the 4×4 descriptors computed from a 16×16
sample array
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distRatio, then repeat STEP-3 with the updated distRatio value; until C meets the
requirements.

STEP-5 Finally, the robust feature points, with the number meet the requirements, are
extracted with their location and descriptor given.

3 Zernike moments and invariance properties

Zernike moments have been widely used in pattern recognition and image processing, and
they are also powerful feature descriptors that they can be adopted for robust watermarking
[10, 12, 34]. This section describes the Zernike moments and explains why we choose them
as the watermark carrier and how to achieve the RST invariance using them [10–12, 22].
Zernike moments are orthogonal moments and they consist of a set of complex polynomials
that form a complete orthogonal set over the interior of a unit disk. The Zernike moment of
order n with repetition m for a continuous image function f(x, y) that vanishes outside a unit
disk is defined as:

Anm ¼ nþ 1

p

ZZ
x2þy2�1

f x; yð Þ � V*
nm x; yð Þdxdy ð8Þ

Input: Host Image

Trained Image

SIFT

OFPD TFPD

Count Number of Feature Points, C;
If C < N, distRatio ,

If C > 1.5*N, distRatio .

Output: Extracted Feature Points
with Descriptor

Repeat Until
N < C < 1.5*N

Trained with Common Signal
Processing and Geometric

Attacks

Feature Points Matching

Fig. 3 Flow chart of RFPD
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Where n is a nonnegative integer; m is an integer such that n - |m| is nonnegative and
even. The complex-valued function Vnm(x,y) is the polynomial, which forms a complete
orthogonal set over the interior of the unit circle, and it is defined as:

Vnm x; yð Þ ¼ Vnm ρ; θð Þ ¼ Rnm ρð Þ exp jmθð Þ ð9Þ

Where ρ andθ represent polar coordinates over the unit disk. ρ is the length of vector from

origin to (x, y) pixel, ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
; and is the angle between vector ρ and x axis in

counterclockwise direction, θ ¼ tan�1 y
x

� �
. Rnm is the Radial polynomials given by Eq. (10):

Rnm ρð Þ ¼
Xn�jm 2=

s¼0

�1ð Þs n� sð Þ!½ �
s! nþ mj j

2 � s
� �

! n� mj j
2 � s

� �
!
ρn�2s ð10Þ

Note that Rnm ρð Þ ¼ Rn0�m ρð Þ .
For a digital image, the integrals in Eq. (8) are replaced by summations and the Zernike

moments are calculated as Eq. (11). To compute the Zernike moments of a given image, the
center of the image is taken as the origin and pixel coordinates are mapped to the range of
unit circle.

Anm ¼ nþ 1

p

X
x

X
y
f x; yð Þ � V*

nm ρ; θð Þ; x2 þ y2 � 1 ð11Þ

Zernike moments are such powerful feature descriptors that they can be adopted for robust
watermarking. The defined features on the Zernike moments are only rotational invariance
which can be easily constructed in [10]. In order to obtain the scale and translation invariance,
the input image for digital watermarking needs to be translated to its centroid and scaled to a
standard size. Since the Zernike moments’magnitudes are only invariant to rotation; to achieve
scaling and translation invariance, the appointed patch needs to be normalized using regular
moments [10], which means the center of the corresponding patch is taken as the origin and
pixel coordinates are mapped to the range of the unit circle. Then the magnitudes of the Zernike
moments extracted from the scale and translation normalized image are total geometric
invariant for watermark embedding scheme. An image function f(x, y) can be normalized with
respect to scale and translation by transforming it into g(x, y) [5].

g x; yð Þ ¼ f
x

a
þ x;

y

a
þ y

� �
ð12Þ

Where x; yð Þ is the centroid of f(x, y). a ¼
ffiffiffiffiffiffi
b
m00

q
, β is a predetermined value and m00 is its

zero-order moment.
The orthogonality property enables that the individual contribution of each order moment

can be separated out to the reconstruction process. Simple addition of the individual
contributions generates the reconstructed image. Given all the Zernike moments Anm of

f(x, y) up to a given order N, we can reconstruct bf x; yð Þ as Eq. (13):

bf x; yð Þ ¼
XN
n¼0

X
m

AnmVnm ρ; θð Þ ð13Þ

bf x; yð Þ is a discrete original image function whose moments exactly match those of f(x, y)

up to the given order N. When N approaches infinity, bf x; yð Þ will approach f(x, y).
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4 Watermark embedding using Zernike transform

In the proposed watermark embedding scheme, firstly, the proposed RFPD as described in
section 2.2 is applied into the host image to extract the feature points, which can be relocated
during watermark extraction procedure, thus the circular patches centering at the extracted
feature points can be generated for watermark embedding and extraction. The proposed
RFPD is robust against image attacks such as rotation, scaling, affine transformation,
cropping, JPEG compression, median filtering and so on.

Each extracted patch is decomposed into m binary circular patches, respectively,
with the bit-plane based method that separate the m coefficients of the polynomial
into m 1-bit planes, I0, I1, I2,…,Im−1, where the highest order bit plane corresponds to
the most significant bit. Some of the binary patches are appointed for watermark data
bits embedding.

For each appointed patch, the appointed binary circular patch Iapp is translated to its
centroid, and is scaled to a standard size; afterwards, Zernike transform is applied into the
scale and translation normalized binary patch I

0
app to calculate its Zernike moments mZerwith

the given order O. The magnitudes of mZer are proved to be so robust against RST attacks
that they are used as watermark embedder.

The watermark data sequence W of Gaussian distribution can be generated with a
predefined seed. This paper uses spread spectrum communication techniques to embed the
watermark [4], the watermarking formula is defined in Eq. (14).

Y ¼ X þ a �W ð14Þ
Where X denotes the Zernike moments magnitudes calculated from each selected binary

patch Iapp, which is the served binary patch decomposed from each extracted circular patch;
α is the predefined parameter to control the watermark embedding strength, and W presents
the random watermark sequence of Gaussian distribution and it is the same size as X. Y is the
watermarked data. The generated watermark is repeatedly embedded into the Zernike
moments’ magnitudes MZer using watermarking Eq. (14).

After the watermark being embedded, inverse Zernike transform is applied to reconstruct
the corresponding binary patch from the watermarked Zernike moments. Then each
watermarked patches can be obtained by recomposing process with Eq. (15).

I ¼ Im�1 � 2m�1 þ Im�2 � 2m�2 þ . . .þ I1 � 21 þ I0 � 20 ð15Þ

Where Ii denotes the corresponding decomposed bit plane patch.
And finally, we can obtain the watermarked image by replacing the original patches with

the watermarked patches. The flow chart of watermark embedding procedure is shown in
Fig. 4 and the procedure is in following:

4.1 Watermarking embedding algorithm

Input: Host Image; Seed.
Output: Watermarked Image, KEY.

STEP-1 Load the host image and apply the proposed RFPD into it to extract the circular
patches for watermark embedding.

STEP-2 Decompose each extracted patch into m binary circular patches with Bit-Plane
Decomposition method.
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STEP-3 Translate each appointed binary circular patch to its centroid, and scale it to a
standard size; afterwards, apply Zernike transform into them to calculate their
Zernike moments, respectively.

STEP-4 Generate the watermark data sequence W of Gaussian distribution with the given
seed and embed the watermark into the Zernike moments’ magnitudes. The seed
and the descriptor D generated in STEP-1 are encoded as a KEY.

STEP-5 Apply inverse Zernike transform to reconstruct the corresponding binary patches;
and recompose the watermarked binary patch with all the other binary patches to
obtain the corresponding watermarked patch.

STEP-6 Replace each circular patch in the host image with the corresponding watermarked
patch to obtain the watermarked image.

5 Watermark extraction using Zernike transform

For the proposed watermark extraction procedure as shown in Fig. 5, the SIFT
algorithm is applied to the watermarked image to generate a feature points database.
The descriptor D and the seed are decoded from the KEY, and the matching for D is
found from the generated feature points dataset, using feature points matching algo-
rithm, and the matched features can be extracted for watermark extraction. The
descriptor D depends on the host image, different host images correspond to different
descriptors. Besides, the seed for generating watermark sequence is necessary for the
spread-spectrum watermarking method to judge whether the watermark exists or not.
Consequently, although we don’t need the watermarked image for watermark detec-
tion; we need the KEY, from which the descriptor D and the seed can be decoded, for

Fig. 4 Flow chart of watermark embedding procedure
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re-locating the feature points for watermark extraction. Therefore, our proposed
watermarking scheme is semi-blind. With the extracted feature points, the circular
patches Iextr are extracted for watermark extraction. Then each Iextris decomposed into
m binary circular patches, Iextr_0, Iextr_1, Iextr_2,…,Iextr_m−1. The same specified binary
patches as the ones used as watermark embedder during watermark embedding
process are appointed for watermark extraction.

Fig. 5 Flow chart of watermark extraction procedure
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After that, each appointed binary circular patch is translated to its centroid, and is scaled
to a standard size; and Zernike transform is applied into it to calculate its Zernike moments
mZer_extr with the given order O, which is the same value as the one used in watermark
embedding procedure. The same watermark data sequence W as the one used for watermark
embedding is generated with the given seed. For watermark detection, the linear correlation
[38] is used to detect the existence of the watermark in the Zernike moments magnitudes and
it is defined in Eq. (16). The watermark is detected when the result is larger than a predefined
threshold value. The procedure of watermark extraction is as following.

CLinear ¼ 1

S

X
w � y ð16Þ

Where CLinear is the linear correlation, S is size of the Zernike moments magnitudes for
watermark detection, y is the watermarked data, and w is the watermark data sequence
generated by using the same seed used in watermark embedding process.

5.1 Watermark extraction algorithm

Input: Watermarked Image; KEY;
Output: Linear Correlation CLinear.

STEP-1 Load the watermarked image and apply the SIFT algorithm into it to generate the
corresponding feature points database.

STEP-2 Decode the KEY to obtain the descriptor D and the seed; use feature points
matching algorithm to find the match between D and the feature points dataset
generated in STEP-1. The patches centering at the matched feature points are
consequently extracted.

STEP-3 Decompose each extracted patch into series of binary circular patches using the
Bit-Plane Decomposition method.

STEP-4 Translate and scale each appointed binary circular patch and apply Zernike
transform into them to calculate their Zernike moments.

STEP-5 Generate the same watermark data sequence as the one used for watermark
embedding with the seed decoded in STEP-2; and calculate the linear correlation
between the watermark and the calculated Zernike moments magnitudes. The
watermark is detected when the result is larger than a predefined threshold value.

6 Experimental results

Many experiments are implemented to evaluate the proposed watermarking scheme on the
popular test images, which are standard gray images of size 512×512 selected from the
USC-SIPI Image Database. In the following experiments, six representative images: ‘Ba-
boon’, ‘Bridge’, ‘Lena’, ‘Pepper’, ‘Blurry Scene’, and ‘Blurry Jet’ are selected to test the
proposed watermarking scheme; where the ‘Blurry Scene’ and ‘Blurry Jet’ are generated by
filtering the original ‘Scene’ and ‘Jet’ using Gaussian low-pass filterer of size of 3×3, with
the standard deviation as 2. The minimum number of feature points N is set to be eight,
which means, at least eight feature points can be extracted by the proposed RFPD for each
test image. The radius r of the circular patches depend on the size of the test images; by
experimental results, in the following experiments, with the size of the test images as 512×
512, the radius r is set to be 40. Zernike transform with its order O defined as 40 is applied to
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the appointed scale and translation normalized binary patches to calculate their Zernike
moments, respectively. The watermark data sequence is generated randomly under Gaussian
distribution and the watermark embedding strength α is set to be 100. Peal Signal-to-Noise
Ratio (PSNR) is used to evaluate the distortion of the watermarked image; the larger PSNR
value means less distortion. Our proposed scheme has been implemented using Matlab,
which takes around 203.98 s in average to embed and then extract a watermark using a
Windows 7 PC with CPU 2.67 GHz.

In order to select the most appropriate patch for watermarking among the series of bit
planes decomposed from each extracted circular patch, the same watermark data sequence is
embedded into each binary patch respectively, the extraction is tested and the PSNR is
calculated. The experiment results indicate that the first three least significant bit planes are
inadaptable for watermarking for the extraction failed for some test images. Furthermore, the
PSNR becomes lower as the order of the bit plane becomes higher. Consequently, in this
scheme, the fifth bit plane of each extracted circular patch is selected for watermarking, to
ensure both the success of watermark extraction and the imperceptibility of the watermark.

In the proposed scheme, only the extracted regions are modified to embed the watermark.
This can significantly decrease the distortion and have better visibility for the watermarked
image, compared with many other approaches, which usually need to modify the whole
image. Besides, in order to demonstrate our proposed watermarking embedding algorithm
has only little distortion to the image, we also measure the PSNR not only over the entire
image, but also over each watermarked patch. Figure 6 shows the circular patches extracted
from the test images and the corresponding watermarked images; also the PSNRs between
the original images/patches and their watermarked images/patches are given. In Fig. 6,
‘PSNR’ means the PSNR value of the whole corresponding watermarked image; while
‘AVG_PSNR’ means the average PSNR value of the corresponding watermarked patches.
The PSNRs over the entire images are: 39.10, 39.55, 39.96, 38.93, 39.89, and 38.85 dB for
‘Baboon’, ‘Bridge’, ‘Lena’, ‘Pepper’, ‘Blurry Scene’ and ‘Blurry Jet’, respectively. The
AVG_PSNRs over the watermarked patches are: 32.43, 32.78, 32.61, 32.24, 32.45, and
32.55 dB for the six test images, respectively.

Figure 7 shows the extracted patches from the watermarked images under various attacks.
(a1)–(d1) show the original images; Others show the watermarked image attacked by:

(a1) (b1) (c1) (d1)

(a2) (b2) (c2) (d2)

(e1) (f1)

(f2)(e2)

Fig. 6 RFPD extracted features and watermarked images (a1) ‘Baboon’ (a2) watermarked ‘Baboon’, PSNR=
39.10 dB, AVG_PSNR=32.43 dB; (b1) ‘Bridge’ (b2) watermarked ‘Bridge’, PSNR=39.55Db, AVG_PSNR=
32.78 dB; (c1) ‘Lena’ (c2) watermarked ‘Lena’, PSNR=39.96 dB, AVG_PSNR=32.61 dB; (d1) ‘Pepper’
(d2) watermarked ‘Pepper’, PSNR=38.93 dB, AVG_PSNR=32.24 dB; (e1) ‘Blurry Scene’ (e2) watermarked
‘Blurry Scene’, PSNR=39.89 dB, AVG_PSNR=32.45 dB; (f1) ‘Blurry Jet’ (f2) watermarked ‘Blurry Jet’,
PSNR=38.85 dB, AVG_PSNR=32.55 dB
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(a2)–(d2) Rotation and cropping, the rotation angle is 45o, where A/B=7/10, 9/11, 8/9, 7/10
for ‘Baboon’, ‘Bridge’, ‘Lena’, and ‘Pepper’; (a3)–(d3) Affine transformation of vertical
shearing, with the shearing percentage of 20 %, where A/B=7/10, 10/11, 8/9, 10/10 for
‘Baboon’, ‘Bridge’, ‘Lena’, and ‘Pepper’; (a4)–(d4) Affine transformation of horizontal
shearing, with the shearing percentage of 20 %, where A/B=7/10, 9/11, 8/9, 10/10 for
‘Baboon’, ‘Bridge’, ‘Lena’, and ‘Pepper’; (a5)–(d5) Affine transformation, with the shearing
percentage of 10 %, where A/B=7/10, 9/11, 8/9, 10/10 for ‘Baboon’, ‘Bridge’, ‘Lena’, and
‘Pepper’; (a6)–(d6) Scaling, with the scale factor of 0.5, where A/B=8/10, 11/11, 8/9, 10/10
for ‘Baboon’, ‘Bridge’, ‘Lena’, and ‘Pepper’; (a7)–(d7) Median filtering, its neighborhood is
4×4, where A/B=7/10, 11/11, 7/9, 9/10 for ‘Baboon’, ‘Bridge’, ‘Lena’, and ‘Pepper’;
(a8)–(d8) JPEG compression, with the quality factor of 50, where A/B=7/10, 11/11, 7/9,
10/10 for ‘Baboon’, ‘Bridge’, ‘Lena’, and ‘Pepper’. For the A/B, A means the number of
patches successfully detected from attacked watermarked images, and B means the number
of original watermarked patches. In our scheme, as long as one patch correctly extracted, the
watermark extraction will be successful. In Fig. 7, the circular patches highlighted in red are
the ones correctly extracted; from which, it can be easily seen that most of the patches can be
successfully extracted when the watermarked image is distorted by various attacks.

6.1 Watermarking performance under different distortions

The digital image attacks can roughly be classified into two categories: geometric distor-
tions, such as rotation, scaling, cropping, and affine transformation; and common signal
processing, such as JPEG compression, Median filtering, and Gaussian low-pass filtering.
The following experiment results demonstrate these two types of attacks on the test images
‘Pepper’ and ‘Lena’. As well, the mixed attacks are tested.

(c1) (c2) (c3) (c4) (c5) (c6) (c7) (c8)

(d1) (d2) (d3) (d4) (d5) (d6) (d7) (d8)

(a1) (a2) (a3) (a4) (a5) (a6) (a7) (a8)

(b1) (b2) (b3) (b4) (b5) (b6) (b7) (b8)

Fig. 7 Feature extraction by RFPD when under various attacks (a1)–(d1) original ‘Baboon’, ‘Bridge’,
‘Lena’, ‘Pepper’ (a2)–(d2) 45o rotation with cropping (a3)–(d3) 20 % vertical shearing (a4)–(d4) 20 %
horizontal shearing (a5)–(d5) 10 % affine transformation (a6)–(d6) scaling with the scale factor as 0.5
(a7)–(d7) 4×4 median filtering (a8) JPEG compression with the quality factor as 50
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(1) Geometric Distortions: The proposed scheme is tested under various geometric
distortions: image rotation and cropping, with the rotation angle varying from 0o

to 360o with a step of 10o; image scaling with scale factor varying from 0.3 to
3, with a step of 0.1; and affine transformation of vertical and horizontal
shearing with the shearing parameter varying from 2 % to 30 %, with a step
of 2 %. The experimental results are shown in Fig. 8. The vertical axis of each
sub-figure displays the relative values of linear correlations; and the horizontal
axis indicates the rotation angles, scaling factor, and shearing percentage, respec-
tively. Figure 8a demonstrates that the proposed scheme is very rotation invariant
that the watermarked images can be distinguished from the un-watermarked ones
under any rotation angle. Figure 8b, c, and d demonstrate that the watermarked
images can be distinguished from the un-watermarked ones when the scaling
factor exceeds 0.3, or when the shearing percentage is less than 30 %, respec-
tively; which means that the proposed scheme is robust against image scaling
with the scaling factor bigger than or equal to 0.3; against affine transformation
of vertical and horizontal shearing with the shearing percentage up to 30 %.

(2) Common Signal Processing: The proposed scheme is also tested under common
signal processing of JPEG compression, median filtering, and Gaussian low-pass
filtering. The experimental results are shown in Fig. 9. In Fig. 9a, horizontal axis
indicates the quality factor, which indicates the effect of JPEG compression.
With the quality factor varied from 100 to 10 with a step of −10, the results

Fig. 8 Experimental results against geometric attacks (a) rotation with cropping (b) scaling (c) affine
transformation of vertical shearing (d) affine transformation of horizontal shearing
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demonstrate that the watermarked images can be distinguished from the un-
watermarked ones; which mean the proposed scheme is robust against JPEG
compression with a low quality factor of 10. In Fig. 9b, the watermarked images
are filtered in different median filters. The horizontal axis indicates the neigh-
borhood of the median filter. Experimental results show that the proposed
scheme is robust against median filtering with its neighborhood up to 10×10.
In Fig. 9c, a 3×3, 6×6, and 9×9 Gaussian low-pass filter is applied to the
watermarked images, respectively. The standard deviation of the Gaussian low-
pass filter varies from 0.1 to 2, with a step of 0.1; the horizontal axis indicates
the standard deviation of the filter. The results demonstrate that the proposed
scheme works well against Gaussian low-pass filtering with the standard devia-
tion of the filter up to 2.

(3) Mixed Attacks: The proposed scheme is also tested when several watermarked
images are mixed together and then geometrically transformed. In Fig. 10, the
proposed watermark embedding scheme is applied to the test images ‘Lena’ and
‘Pepper’, thus the watermarked ‘Lena’ and ‘Pepper’ and their corresponding
KEY are generated. Then the watermarked ‘Lena’ is scaled and mixed with the
watermarked ‘Pepper’; after that, the mixed ‘Le-pper’ is distorted by the repre-
sentative geometrical attacks such as rotation with cropping and affine transfor-
mation. The proposed watermark extraction scheme is applied to the attacked
mixed ‘Le-pper’; the patches can be extracted for watermarks extraction, for the

Fig. 9 Experimental results against common signal processing (a) JPEG compression (b) median filtering; (c)
Gaussian low-pass filtering
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two mixed images respectively, with the corresponding KEY. In Fig. 10a, the
mixed image is distorted by 30° rotation with cropping, the detection ratio,
which means the successfully detected patches to the total watermarked patches,
is 7/10 for background image ‘Pepper’, and 7/9 for foreground image ‘Lena’. In
Fig. 10b, the mixed image is distorted by affine transformation of 15 %, the
detection ratio is 9/10 for background image ‘Pepper’, and 7/9 for foreground
image ‘Lena’. Therefore, the proposed scheme is very robust against mixed
attacks; on the other hand, this characteristic is beneficial for enlarge the
watermarking capacity.

(4) Bit-Error Rates against Strength of Attacks: Besides the correlation plots, the bit-error
rate plots are also displayed to determine the performance of the system. Figure 11
shows the bit-error rate against strength of various attacks. The same test images:
‘Pepper’ and ‘Lena’, and the four representative attacks: JPEG Compression, rotation,
scaling, and affine transformation, are chosen to display the experimental results; the
blue dash-line indicates bit-error rate of ‘Pepper’ and the red dash-line indicates ‘Lena’.
In Fig. 11, vertical axis indicates the bit-error rate, and horizontal axis indicates
the quality factor, the rotated angles, the scaling factor, and the shearing per-
centage, respectively, for the four sub-figures; from which, we can easily see the

(a)

(b)

Fig. 10 Mixed Attacks Demonstration (a) 30° rotation with cropping, detection ratio=7/10, 7/9 for ‘Pepper’
and ‘Lena’, respectively; (b) 15 % affine transformation, detection ratio=9/10, 7/9 for ‘Pepper’ and ‘Lena’,
respectively
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bit-error rate’s transition against the strength of attacks. For example, in Fig. 11a,
the bit-error rate decreased when the quality factor varied from 10 to 100, which
means the bigger qualify factor, the less effect caused by JPEG compression, the
smaller bit-error rate. In Fig. 11d, the bit-error rate increased when the shearing
percentage varying from 2 % to 30 %, which means the larger shearing per-
centage, the bigger bit-error rate.

6.2 Performance comparison

Stirmark 4.0 [23] is used to evaluate the robustness of the proposed scheme. Tables 1
and 2 present the watermark detection results of the proposed watermarking scheme in
comparison with three representative feature-based schemes proposed by Tang and
Hang [28], Seo and Yoo [26, 27], and Gao et al. [8], under common signal processing
operations and geometric distortions, respectively; using the similar experimental
settings mentioned in [8]. The experimental results of the three existing methods used
for comparison with the proposed scheme in Tables 1 and 2 were obtained from [8]
as well. For values in main table unites, the numerator means the number of patches
where watermarks are successfully detected from attacked images, and the denomina-
tor means the number of original watermarked patches.

With the simulation results, the proposed RFPD and Zernike based scheme is compared
with the existing representative feature-based schemes proposed by Tang and Hang [28] in

Fig. 11 Bit-error rate against strength of various attacks (a) JPEG Compression (b) rotation (c) scaling (d)
affine transformation of shearing
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2003, and Zheng et al. [38] in 2009, under amounts of attacks, including rotation, scaling,
cropping, affine transformation, JPEG Compression, median filtering, and so on. Besides,
the proposed scheme is compared with a geometrically invariant watermarking scheme
which we proposed before [35]; comparing with which, in this paper we propose a totally
new and different feature point detection method called RFPD, which improves the robust-
ness of the extracted feature points over the previous one. Table 3 presents the comparison of
the proposed scheme with the other schemes, revealing it performs well compared with the

Table 1 Watermark detection results under common signal processing

Attacks Baboon Lena Pepper

Ours 2010
[8]

2006
[27]

2003
[28]

Ours 2010
[8]

2006
[27]

2003
[28]

Ours 2010
[8]

2006
[27]

2003
[28]

Median
filter 3×3

9/10 6/15 0/13 2/11 8/9 6/10 2/11 1/8 9/10 17/23 2/13 1/4

Gaussian
filter 3×3

9/10 4/15 1/13 7/11 8/9 5/10 1/11 3/8 9/10 9/23 2/13 1/4

JPEG 90 9/10 8/15 3/13 9/11 8/9 6/10 3/11 6/8 10/10 16/23 4/13 3/4

JPEG 70 8/10 8/15 2/13 8/11 8/9 4/10 3/11 5/8 10/10 14/23 2/13 3/4

JPEG 50 7/10 8/15 0/13 6/11 7/9 6/10 1/11 4/8 10/10 14/23 1/13 2/4

JPEG 30 7/10 8/15 0/13 4/11 7/9 5/10 1/11 2/8 8/10 10/23 1/13 0/4

Median 3×3 +
JPEG 90

9/10 5/15 0/13 1/11 8/9 3/10 2/11 1/8 9/10 16/23 2/13 1/4

Gaussian 3×3 +
JPEG 90

9/10 4/15 1/13 7/11 8/9 4/10 1/11 3/8 9/10 5/23 2/13 1/4

Table 2 Watermark detection results under geometric distortion

Attacks Baboon Lena Pepper

Ours 2010
[8]

2006
[27]

2003
[28]

Ours 2010
[8]

2006
[27]

2003
[28]

Ours 2010
[8]

2006
[27]

2003
[28]

Cropping (10 % off) 8/10 6/15 1/13 1/11 8/9 5/ 10 4/11 2/8 9/10 6/23 1/13 2/4

Scaling (1.5) 8/10 7/15 3/13 0/11 8/9 6/10 3/11 0/8 9/10 13/23 4/13 0/4

Scaling (0.7) 7/10 2/15 0/13 0/11 8/9 4/10 1/11 0/8 9/10 6/23 0/13 0/4

Rotation 5 9/10 5/15 0/13 2/11 8/9 4/10 3/11 2/8 9/10 9/23 2/13 0/4

Rotation 30 9/10 4/15 0/13 0/11 8/9 4/10 0/11 0/8 9/10 7/23 0/13 0/4

Shearing (1 %) 7/10 6/15 0/13 4/11 9/9 4/10 2/11 2/8 8/10 7/23 0/13 1/4

Removed 5 rows
and 17 columns

6/10 6/15 2/13 2/11 5/9 5/10 3/11 1/8 6/10 11/23 0/13 0/4

Cropping (10 % off)
+ JPEG 70

8/10 6/15 0/13 1/11 8/9 5/10 2/11 1/8 9/10 6/23 0/13 2/4

Rotation 5+Cropping
+ JPEG 70

7/10 5/15 0/13 0/11 7/9 5/10 2/11 0/8 9/10 7/23 0/13 0/4

Removed 5 rows and 17
columns + JPEG 70

6/10 6/15 1/13 2/11 5/9 4/10 1/11 0/8 6/10 7/23 0/13 0/4
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existing methods. According to Table 3, it can be easily seen that the proposed RFPD based
scheme improves over the existing schemes; for example, the proposed scheme is robust
against scaling with the scale factor up to 0.3 while the others were mostly up to 0.7; the
proposed scheme is robust against Median filtering with the filter neighbor up to 10×10
while the others were mostly up to 8×8. Also the proposed scheme is robust against mixed
attacks while the others can’t.

7 Conclusion

In this paper, the digital image watermarking scheme based on feature extraction and local
Zernike transform is proposed. The RFPD is proposed for local region extraction, with
which, the distinct circular patches of given size can be extracted for watermark embedding
and extraction. Bit-plane decomposition method is used to decompose each extracted
circular patch into a collection of binary patches. Zernike transform is applied to each
appointed binary patches to calculate their Zernike moments for watermarking use.

The proposed scheme can survive both geometric distortions and common signal pro-
cessing. In the respect of geometric distortion, the scheme is very robust against image
rotation with the rotation angle from 0o to 360o; it is robust against image scaling when the
scale factor exceeds 0.3; and image cropping with the cropping percentage up to 40 %; also
it is robust against affine transformation of shearing with the shearing percentage both up to
30 %, for vertical and horizontal shearing, respectively. For common signal processing, the
scheme is robust against JPEG compression with a low quality factor of up to 10, against
median filtering with its neighborhood up to 10×10 and against Gaussian low-pass filtering
of size of 3×3, 6×6, and 9×9, with the standard deviation of the filter up to 2. Besides, the
scheme is robust against some combined attacks. The comparison results show the proposed
scheme outperforms the several representative feature extraction based schemes in terms of
robustness to various attacks.

Acknowledgments The authors would like to thank the referees for their valuable comments. This work was
supported in part by the Science and Technology Development Fund of Macau SAR (Project No. 034/2010/
A2) and the Research Committee of the University of Macau.

Table 3 Experimental results comparisons

Attacks Methods

Tang and Hang [28] Zheng et al. [38] Yuan and Pun [35] Proposed Scheme

Image Rotation 1°–5° 0°–360° 0°–360° 0–360°

Image Scaling – 0.7–1.8 0.4–3 0.3–3

Image Cropping Up to 10 % – Up to 40 % Up to 40 %

Affine Transformation Up to 5 % – Up to 20 % Up to 20 %

JPEG compression 40–100 10–100 10–100 10–100

Median Filtering 3×3 – 8×8 10×10

3×3 Gaussian Filtering Pass <= 0.5 <= 2 <= 2

Mixed Attacks – – – Robust

Embedding Image Gray Images Gray Images Gray Images Gray Images

In Table 3, the dash ‘–’ indicates that the simulation was not recorded in the literature
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