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Abstract In this paper we propose a monophonic constrained signal decomposition
model applied to polyphonic signals composed of several monophonic sources from
different musical instruments. The harmonic constraint is particularly effective for
tonal instruments because each note is associated with a unique basis. The mono-
phonic constraint is implemented by enforcing single-non-zero gains per instrument
in the factorization process. The proposedmethod uses previously trained instrument
models with a supervised procedure. Both constraints (harmonic and monophonic)
are implemented in a deterministic manner. The proposed method has been tested
for two audio signal applications, Sound Source Separation and Automatic Music
Transcription. Comparison with other state-of-the-art methods using a dataset of
polyphonic mixtures composed of monophonic sources has produced competitive
and promising results.

Keywords Non-negative sparse coding (NNSC) ·Sparse representations ·
Non-negative matrix factorization (NMF) ·Spectral analysis ·Harmonicity ·
Sparsity ·Monophony ·Music transcription ·Source separation

1 Introduction

Sound Source Separation (SSS) and Automatic Music Transcription (AMT) are two
different signal processing tasks but share certain processes in common. In fact, some
authors claim that AMT is a prerequisite for music SSS [14], while others think that
music SSS is prerequisite for AMT [15].
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On the one hand, SSS can be applied to many real-world audio signals that
are composed of mixtures of several sound sources. SSS is the process by which
individual sources are decomposed from the signal mixture. Depending on the
number of sources and sensors used in the experiments, SSS can be classified into
three cases. Overdetermined cases are those which the number of sensors is higher
than the number of sources [22, 34, 36, 44]. For determined cases, the number of
sources and the number of sensors are the same. Finally, underdetermined cases are
those for which the number of sensors is lower than the number of sources. In this
paper, we discuss SSS for a single sensor (channel in our case) [27, 35], which is the
most critical case within the underdetermined class.

On the other hand, AMT is the process of generating a score (i.e. a symbolic
representation of played notes) from a piece of audio. Music transcription is a very
complicated task for polyphonic signals, because the signals from individual notes
overlap in time and frequency. A common type of music transcription is the pitched
transcription [23], where the onset times, offset times, and pitches of each note are
estimated from a recording. However, current transcription systems do not provide
individual transcriptions for each instrument that contributes to the mixture.

In this work, we present a method that may be applied to both AMT and SSS at
the same time. The method has been designed for the particular case of monaural
polyphonic signals composed of several monophonic and harmonic sources.

The proposed method may be classified as a signal decomposition method. In fact,
similar methods have been intensively used for audio applications such as SSS and
AMT, with reliable results [20, 34, 43]. These methods try to decompose the audio
spectrogram into a linear combination of spectral basis functions. The short-term
magnitude (or power) spectrum of the signal x( f, t) in the frame t and frequency f is
modelled as a weighted sum of basis functions as

x̂( f, t) =
N∑

n=1

gn(t)bn( f ) (1)

where gn(t) is the gain of the basis function n at frame t, and bn( f ), n = 1, ..., N are
the bases. When dealing with harmonic sounds in the context of automatic music
transcription, each basis function should ideally represent a single pitch, so that the
corresponding gains contain information about the onset and offset times of notes
having that pitch.

The process of learning basis functions can be Supervised orUnsupervised depend-
ing on whether prior information about the musical composition (such as instruments
actually being played) is used or not. In the supervised case, the basis can be fixed
or adapted to the actual music scene of the analysed signal. In this work, we use a
supervised learning process with fixed basis that have been shown [6] to provide a
good generalization of the model parameters.

There are several methods in the literature for performing signal decomposition
such as Atomic Decomposition [19], Independent Component Analysis (ICA) [32],
Non-Negative Matrix Factorization [24], and Sparse Coding [1].

Sparsity constraints can be applied to the signal decomposition process. Sparse
representations have received increased attention for audio applications such as
polyphonic audio transcription [1, 2] and audio source separation [29, 40]. Sparse
coding attempts to produce a sparse spectral decomposition in regions where the
probability densities of the gains are centred around zero and have long tails [21],
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such that most of the energy is grouped by only a few basis with non-zero gains.
This assumption fits well with the concept that only a relatively small fraction of
the available notes in music are sounded at each frame. For power or magnitude
spectrograms NMF and sparse coding leading can be combined into a non-negative
sparse coding (NNSC) [2, 21] method for signal decomposition.

The method proposed here (using monophonic constraints for each instrument),
enforces sparseness such that only one gain is active at each frame. This extreme
sparseness constraint has been previously used in other signal decomposition meth-
ods in the literature. For example, within a statistical framework, this kind of re-
striction is introduced into Gaussian Scaled Mixture Model (GSMM) [3] or Factorial
Scaled Hidden Markov Model (FS-HMM) [30] under Gaussianity and Itakura Saito
(IS) divergence assumptions.

In this paper, we propose a deterministic factorization method that is used to
process monoaural signals from polyphonic mixtures of several monophonic instru-
ments. Several works have utilised these kinds of signals (such as GSMM [3] and
FS-HMM [30]), but within a probabilistic framework. The method proposed here is
novel because single-pitch and harmonic constraints are enforced deterministically.
Each instrument contributing to the signal is explicitly assumed to be monophonic,
i.e., there is only one possible state (note) per instrument at each frame. These
kinds of signal are very typical for some wind and rubbed string instruments (in
some cases). Some instrumental chorals have been composed for such kind of
instruments, (e.g. the Bach chorals used in this work as a test database). The
source separation and the transcription identifying the gains are computed for each
instrument being played, the computation can be run at real time in some cases. In
AMT, individual transcription for each instrument in the mixture is estimated. To the
best of our knowledge, no other work in the literature evaluates AMT by obtaining
the transcription per instrument in polyphonic mixtures. In this work, the instrument
models are learned in a training stage and held fixed during the testing stage, as
proposed in [6]. The proposed methods are tested for SSS and AMT and compared
to other state-of-the-art methods with promising results.

The paper is structured as follows: Section 2 reviews the harmonic and sparsity
constrained signal models from previous studies, as well as theoretical background
on NMF and instrument modelling; Section 3 explains the proposed method for
constraining a polyphonic signal model to have a single non-zero gain per instrument
at each frame and provides the algorithm for signal spectral decomposition; the
proposed approach is applied in Section 4 for SSS and AMT using polyphonic
mixtures composed of several monophonic single-instrument sources, the results are
compared with those obtained by other state-of-the-art methods; finally, we draw
some conclusions and discuss future work in Section 5.

2 Theoretical background

2.1 Basic Harmonic Constrained (BHC) model

Musical notes (excluding transients) played on tonal instruments are pseudo-
periodic, with a spectra of regularly spaced frequency peaks [6]. In fact, models
are commonly constrained to be harmonic [4, 6, 33, 39]. The harmonic constraint
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improves the modelling because each basis function is associated, in advance, with a
pitch n by means of its fundamental frequency f0(n). This constraint is introduced in
the model presented in (1) as

bn, j( f ) =
M∑

m=1

an, j[m]G( f −mf0(n)) (2)

where bn, j( f ) are the bases for each note n and instrument j, m is the selected
harmonic, M is the number of harmonics, an, j[m] is the amplitude of harmonic m
for note n and instrument j,G( f ) is the magnitude spectrum of the window function,
and the spectrum of a harmonic component at frequency mf0(n) is approximated by
G( f −mf0(n)).

The model for the magnitude spectra of a music signal is then obtained as (see (1))

x̂( f, t) =
J∑
j=1

N( j)∑
n=1

M∑
m=1

gn, j(t)an, j[m]G( f −mf0(n)) (3)

where J is the number of instruments and N( j) is the total number of possible notes
for the instrument j. Here the time gains gn, j(t) and the harmonic amplitudes an, j[m]
are the model parameters to be estimated. These parameters are ussually estimated
byminimizing the reconstruction error between the observed spectrogram x( f, t) and
the modelled one x̂( f, t).

The most popular cost functions are the Euclidean (EUC) distance, the gen-
eralised Kullback–Leibner (KL) and the Itakura–Saito (IS) divergences. The β-
divergence (see (4)) is another commonly used cost function that encompasses the
three previously mentioned cost functions in its definition, i.e., EUC (β = 2), KL
(β = 1) and IS (β = 0), and is defined as follows,

Dβ(x|x̂) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1

β(β − 1)

(
xβ + (β − 1)x̂β − βxx̂β−1

)
β ∈ (0, 1) ∪ (1, 2]

x log
x
x̂
− x+ x̂ β = 1

x
x̂
+ log

x
x̂
− 1 β = 0

(4)

Several systems using the β-divergence cost function can be found in [12, 13, 39].

2.2 BHC with sparse constraint model

Sparsity is a natural restriction applied to gains that forces the signal model to have
only a few non-zero gains gn, j(t) at each frame t. The assumption of sparsity conforms
to the notion that only a relatively small fraction of the available musical notes are
sounded at each frame [1]. Signal processing studies with constrained sparsity in
signal models can be found in [1, 6, 16, 21, 40].

A typical way of introducing sparsity into signal models for minimizing a diver-
gence is to use a regularization penalty term [16]. This penalty term discards the
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solutions where most of the gains takes non-zero values. The global distortion can be
formulated as:

D(x( f, t)|x̂( f, t)) = Dβ(x( f, t)|x̂( f, t))+ λ
∑
f,t

φ(gn, j(t)) (5)

where Dβ is the reconstruction distortion defined in (4), λ is a parameter controlling
the importance of the regularised term, and φ is a function that penalises non-zero
gains. Several definitions for the penalty term can be found in the literature. For
example, Olshausen and Field [28] have suggested the functions φ(x) = − exp(−x2),
φ(x) = log(x2 − 1) and φ(x) = |x|, as possible penalty terms. For practical purposes
we have used the third function in the experimental section, as it has been shown to
be less sensitive to variations in the parameter λ [40] and provides an effective means
of finding sparse solutions [5, 7].

2.3 Monophonic constrained models

For polyphonic signals composed of monophonic sources, the sparseness should
be enforced such that only one gain per instrument is active at each frame. This
extreme sparsity constraint has been previously used in other probabilistic signal
decomposition methods. For example, Benaroya et al. [3] proposed a method for
SSS in which each source STFT is modelled by a Gaussian Mixture Model (GMM);
the GMM is modulated by a frame-dependent amplitude parameter accounting for
nonstationarity, resulting in the Gaussian Scaled Mixture Model (GSMM) where the
source is implicity assumed to be monophonic with many possible states. Ozerov
et al. [30] proposed a method called the Factorial Scaled Hidden Markov Model
(FS-HMM) that generalised GSMM and NMF using the Itakura Saito divergence
(IS-NMF) and incorporates temporal continuity through Markov Modeling.

2.4 Augmented NMF for parameter estimation

Constraining parameters to be non-negative has been efficient in learning the
spectrogram factorization models [41]. In fact, this constraint has been widely used
in music transcription [4, 6, 39] and source separation [31, 41].

When the parameters are restricted to be non-negative, as in the case of magnitude
spectra, a common way to compute the factorization is to minimize the reconstruc-
tion error between the observed spectrogram x( f, t) and the modelled one x̂( f, t).

To obtain the model parameters that minimize the cost function, Lee et al.
[25] proposes an iterative algorithm based on multiplicative update rules. Under
these rules, Dβ(x( f, t)|x̂( f, t)) is shown to be non-increasing at each iteration while
ensuring non-negativity of the bases and the gains. These multiplicative update rules
are obtained by applying diagonal rescaling to the step size of the gradient descent
algorithm (see [25] for further details). The multiplicative update rule for each scalar
parameter θl is given by expressing the partial derivatives of the cost function ∇θl Dβ

as the quotient of two positive terms ∇−
θl
Dβ and ∇+

θl
Dβ :

θl ← θl
∇−

θl
Dβ(x( f, t)|x̂( f, t))

∇+
θl
Dβ(x( f, t)|x̂( f, t)) (6)
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The main advantage of the multiplicative update rule in (6) is that non-negativity
of the bases and the gains is ensured, resulting in an augmented non-negative
matrix factorization (NMF) algorithm. For the harmonic-constrained model of (3),
multiplicative updates that minimize the β-divergence for the amplitudes of the
model are computed by [12],

an, j[m] ← an, j[m]
∑

f,t x( f, t)x̂( f, t)
β−2gn, j(t)G( f −mf0(n))∑

f,t x̂( f, t)β−1gn, j(t)G( f −mf0(n))
(7)

Furthermore, when using the regularised penalty term of (5) with φ(x) = |x|, the
gains are estimated with the following multiplicative updates [16],

gn, j(t) ← gn, j(t)

∑
f,m x( f, t)x̂( f, t)β−2an, j[m]G( f −mf0(n))

λ+ ∑
f,m x̂( f, t)β−1an, j[m]G( f −mf0(n))

(8)

where λ is the regularization term. The sparsity constraint is not imposed for λ = 0.

2.5 Instrument modeling

All the revised models of this section require that the basis functions bn, j( f ) to be
estimated for each note n and instrument j. As given in (2), the basis functions can
be derived from the peak amplitudes an, j[m], m being the considered partial when
using the harmonic restriction. The amplitudes an, j[m] are estimated in advance by
using the RWC database [17, 18] as a training database of solo instruments (more
details on the training database can be found in the experimental setup section).
Let Rn, j(t) denote a binary time/frequency matrix that represents the ground-truth
transcription of the training data. The time dimension t represents frames and the
frequency dimension represents the MIDI scale. As Rn, j(t) is known in advance for
the training database, gains in the training stage are initialised such that only the
gain value associated with the active pitch n at frame t and played by instrument j
is set to unity, whereas the rest of the gains are set to zero. Gains initialised to zero
remain at zero, and therefore the frame is represented with the correct pitch. With
this initialization, the application of sparse constraints is not necessary at the training
stage. The training procedure is summarised in Algorithm 1.

Algorithm 1 Training algorithm description
1 Compute x(t, f ) from a solo performance for each instrument in the training

database
2 Initialise gains gn, j(t) with the ground truth transcription Rn, j(t) and amplitudes

an, j[m] with random positive values.
3 Update amplitudes an, j[m] using (7).
4 Update gains gn, j(t) using (8) with λ = 0.
5 Repeat steps 2–3 until the algorithm converges (or the maximum number of

iterations is reached).
6 Compute basis functions bn, j( f ) for each instrument j using (2).

The training algorithm computes the basis functions bn, j( f ) required at the factor-
ization stage for each instrument. The instrument-dependent basis functions bn, j( f )
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are known and held fixed, and therefore, the factorization of new signals of the
same instrument can be reduced to estimate the gains gn, j(t). The training procedure
summarised in Algorithm 1 is suitable for all revised spectral decomposition models.

3 Proposed factorization method

3.1 Monophonic Basic Harmonic Constrained Model for Monophonic Signals
(MBHC-MS)

First, we introduce the monophonic restriction for the simpler case of monophonic
signals (the j index is removed from the equations). As stated above, the gains can
be computed once the instrument’s models have been estimated. The magnitude
spectrogram can be reconstructed with (9), using the fixed basis functions derived
from the training stage. The basis functions bnopt( f ) and the gain gnopt,t are chosen to
minimise the β-divergence function at frame t, under the assumption that only one
gain is non-zero at each frame. Thus, the signal model with the monophonic con-
straint (which is implemented deterministically) is defined for monophonic signals as
follows.

x̂n,t( f ) = gnopt,tbnopt( f ) (9)

where x̂n,t( f ) is the modelled signal for the optimum note nopt at frame t.

nopt(t) = arg min
n=1,...,N

Dβ

(
xt( f )|gn,tbn( f )

)
(10)

3.1.1 Gain estimation using sparse coding for monophonic signals

The MBHC-MS model of (10) allows the gains to be directly computed from the
input data x( f, t) and the amplitudes an[m] without the need of an iterative NMF
algorithm for monophonic signals. In this method, the optimum non-zero gain at each
frame gnopt,t is the gain that minimises the cost function. The gain is estimated using an
exhaustive search, without any iterative algorithm, over the set of distortion values
generated for each note at each frame. In practical terms, the note that achieves the
minimum distortion is the optimum note at each frame.

For β-divergence, the cost function for note n and frame t can be formulated as

Dβ(xt( f )|gn,tbn( f ))

=
∑
f

1

β(β − 1)

(
xt( f )β + (β − 1)(gn,tbn( f ))β − βxt( f )(gn,tbn( f ))β−1

)
(11)

The value of the gain for note n and frame t is then computed by minimizing (11).
Conveniently, this minimization has a unique non-zero solution due to the scalar
nature of the gain for note n and frame t.

gn,t =

∑
f
xt( f )bn( f )(β−1)

∑
f
bn( f )β

(12)
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Finally, the note that minimises the β-divergence at each frame is selected as the
optimum note.

nopt(t) = arg min
n=1,...,N

Dβ

⎛
⎜⎝xt( f )|

∑
f
xt( f )bn( f )(β−1)

∑
f
bn( f )β

bn( f )

⎞
⎟⎠ (13)

The proposed solution is valid for β ∈ [0, 2] and for monophonic signals.
Equation (13) describes the selection of the optimum note at frame t for the

MBHC-MS model. It represents the note that minimizes the distortion between the
original signal and the reconstruction with the estimated gains and the selected basis
for each note.

In summary, a novel method is presented that enforces single-pitch and harmonic
constraints in a deterministic manner, performs the NNSC-based decomposition
with β-divergence [13], and uses instrument specific information that is learned in
a supervised way (i.e. using a training stage).

3.2 Monophonic Basic Harmonic Constrained Model for Polyphonic Mixtures
(MBHC-PM)

Polyphonic signals occur when mixtures of multiple monophonic instruments are
played at the same time. Polyphonic signals are very common in Western music,
especially with wind instruments. The monophonic constraint can be extended to
model polyphonic signals. The signal model is now defined as

x̂( f, t) =
J∑
j=1

gnj(t), jbn, j( f ) (14)

where j = 1, ..., J is the instrument index and n j(t) is the note played by instrument
j at time t. The signal model now includes different basis functions bn, j( f ) for each
instrument. It must be stressed that such a model is monophonic constrained because
only one note n j(t) can be active at each frame t for each instrument j.

Equation (14) describes the signal decomposition model for the MBHC-PM
model. Here, in contrast with (9) (where only one note was present at the signal),
there are more than one note played at the same time (one note per instrument).
Then, the signal is composed by the sum of the J instrument notes contributions.
Each contribution can be described as the multiplication of the estimated gain for
the selected note and the corresponding basis.

As in MBHC-MS method, the basis functions bn, j( f ) for each instrument j are
learned in advance and then held fixed. Each basis function models the spectrum of
unique note for a given instrument (see (2)).

In this method, information about the instruments being played is required to
select the appropriate basis functions. The audio applications then only have to
estimate the gains gnj(t), j for the different instruments at each frame.
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In the monophonic constrained model for polyphonic mixtures, the distortion at
frame t using β-divergence can be expressed as

Dβ(xt( f )|
J∑
j=1

gnj(t), jbn, j( f )) =
∑
f

1

β(β − 1)
(15)

·
⎛
⎝xt( f )β + (β − 1)

⎛
⎝ J∑

j=1

gnj(t), jbn, j( f )

⎞
⎠

β

− βxt( f )

⎛
⎝ J∑

j=1

gnj(t), jbn, j( f )

⎞
⎠

β−1
⎞
⎟⎠ (16)

Equation (15) represents the same as (11) for the MBHC-MS model. This is
the distortion caused by the reconstructed signal with the selected note for each
instrument. In the case of MBHC-MS (only one note is active at each frame) it has
a unique non-zero solution (12). However in the case of MBHC-PM (more than one
note is active at each frame, one per instrument), the solution can be reached by two
methods one by NMF (Section 3.2.1) and other with sparse coding (Section 3.2.2).

The optimum note for each instrument j at frame t is computed as the combination
of notes for all the instruments that minimises the distortion at frame t. Once the
gains gnj(t), j are obtained, each distortion is computed and the optimum combination
of notes (one per instrument) is selected.

3.2.1 Gain estimation using NMF for polyphonic mixtures of monophonic sources

The monophonic constraint for polyphonic mixtures of monophonic sources is
enforced, within a deterministic framework by requiring the gains gnj(t), j to be single-
non-zero at each frame and instrument. Thus only J notes (one per instrument) can
be active at a given frame. The J active notes (a maximum of one per instrument) are
those that minimises the distortion between the original signal spectrogram and the
estimated one. This optimum combination of notes is searched for over the dynamic
range of notes for each instrument. The combinatorial search space is represented as
follows,

� = {Mk, 1 � k � S} (17)

where Mk is the k-th combination composed of a single note candidate for each
instrument and S is the total number of possible combinations. Each combination
Mk can be formulated as

Mk =
{
nkj , j = 1, ..., J

}
(18)

where nkj is the note played by instrument j at the k-th combination from �.
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For polyphonic signals, the gains can not be computed directly as in the MBHC-
MS method. The gains must now be estimated using a gradient-based algorithm.
This procedure is based on the minimization of the distortion between the estimated
spectrogram and the target one using augmented NMF with multiplicative update
(MU) rules as described in (6), following [25]. Here, the distortion to be minimised is
shown in (15) and should be computed for each combination Mk from�. In practice,
the minimization is performed by computing the partial derivative of the distortion
for note nki (t) and instrument i of gain gnki (t),i can be formulated as

dDβ

dgnki (t),i
=

∑
f

⎛
⎝ J∑

j=1

gnkj (t), jbnkj (t), j
( f )

⎞
⎠

β−1

bnki (t),i
( f ) (19)

−
∑
f

xt( f )

⎛
⎝ J∑

j=1

gnkj (t), jbnkj (t), j
( f )

⎞
⎠

β−2

bnki (t),i
( f ) (20)

where nki (t) and i indicate the selected note and instrument respectively, that must
be minimised for the combination Mk. Thus, the MU rule for each gain gnki (t),i can be
formulated, as

gnki (t),i ← gnki (t),i

∑
f
xt( f )

(
J∑
j=1

gnkj (t), jbnkj (t), j
( f )

)β−2

bnki (t),i
( f )

∑
f

(
J∑
j=1

gnkj (t), jbnkj (t), j
( f )

)β−1

bnki (t),i
( f )

(21)

The gain of note nki (t) and the selected instrument i for the combination Mk at
each frame t is estimated using the gradient algorithm and applying (21) with only a
few iterations. In fact, only α = 5 iterations were used. Performing more iterations
did not produce better results in our preliminary tests. This NMF computation is
used in order to factorize the analysed frame with only these notes and evaluate the
distortion that it causes. As the maximum number of selected notes is 4 (when there
are four instruments) and only the gain of these 4 notes must be estimated, a low
number of iterations is needed. Besides, the gains are initialized by using the direct
gain estimation of MBHC-MS, supposing that there is only one active note. Then the
NMF iterative code must only refine the initialization.

To justify the use of only 5 iterations Table 1 shows the distortion caused by the
factorization of a four instruments file with 5, 10, 15 and 20 iterations. The 0 iteration
column represents the distortion caused only by the initialization gains.

After estimating the gains gnki (t), j for all the combinations Mk, (15) is applied to
compute the associated distortion. The optimum solution at each frame is obtained

Table 1 Distortion caused when applying MBHC-PS with [0, 5, 10, 15, 20] iterations over a file with
four instruments

No. of iterations 0 5 10 15 20
Distortion 2.8548 ∗ 106 2.5949 ∗ 106 2.5948 ∗ 106 2.5948 ∗ 106 2.5948 ∗ 106
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by selecting the combination Mk that generates the minimum distortion, as indicated
in (22).

Mkopt = arg min
Mk∈�

Dβ

⎛
⎝xt( f )|

J∑
j=1

gnkj (t), jbnkj (t), j
( f )

⎞
⎠ (22)

In summary, the method for decomposing polyphonic signals from monophonic
instruments using β-divergence is shown in Algorithm 2. The performance of this
algorithm for SSS and AMT is shown in Tables 4 and 6 at Section 4.4 in comparison
with other state-of-the art methods.

Algorithm 2 MBHC-PM gain estimation algorithm
1 Initialise bn, j( f ) with the trained instrument models
2 for t = 1 to number of frames do
3 for k = 1 to S do
4 Initialise gains gnkj (t), j with MBHC-MS values (assuming that only one

instrument is present on the signal) for notes nkj of the combination Mk and
zero for the rest

5 for α iterations do
6 for i = 1 to J do
7 Update the gains gnki (t),i using (21).
8 end for
9 end for

10 Compute the β-divergence with (15)
11 end for
12 Select the combination of notes Mk that generates the lowest β-divergence

using (19).
13 end for

3.2.2 Gain estimation using non negative sparse coding (NNSC) for polyphonic
mixtures of monophonic sources

Despite the reduced number of NMF iterations needed when using the factorization
algorithm described in Section 3.2.1, the process must be repeated for each combina-
tion Mk from �. As is well-known, the iterative nature of NMF factorization makes
it unsuitable for real-time applications.

MBHC-PM can be adapted for sparse coding to produce a direct solution (as in
MBHC-MS), and avoiding an iterative procedure. This option allows MBHC-PM to
be used in real-time applications for a low polyphony level, as we will demonstrate in
Section 5. For β = 2 (Euclidean distance), (19) can be simplified to compute the gains
directly using Non Negative Sparse Coding (NNSC), i.e., an iterative algorithm is not
needed. The global minimum of the distortion function in (19) is found for β = 2 by
assuming Dβ = 0. The resulting expression can be modified for the combination Mk

at frame t as follows,

J∑
j=1

gnkj (t), j
∑
f

bnki (t),i
( f )bnkj (t), j

( f ) =
∑
f

bnki (t),i
( f )xt( f ) (23)
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Equation (23) can be rewritten using matrix notation as,

gB = c (24)

where g is a 1× J gains vector, B is a J × J matrix depending on the basis and c
is a 1× J vector dependent both on the gains and the audio signal. g( j) = gnkj (t), j
is the unknown gain vector for the selected combination Mk at frame t, B( j, i) =∑
f
bnki (t),i

( f )bnkj (t), j
( f ) and c(i) = ∑

f
bnki (t),i

( f )xt( f ). B can be already computed be-

cause it contains the cross correlation matrix of the basis bnkj (t), j
. B takes high values

when the notes are harmonically related and low values otherwise. c should be
computed online because it depends on the audio signal spectrogram.

Then the gains can be estimated in just one step by

g = cB−1 (25)

where g( j) = gnkj (t), j. Equation (25) can generate negative values that are set to zero
as in [26].

After estimating of the gains for all the combinations from�, (22) is used to select
the optimum combination Mkopt that generates theminimum distortion at each frame.

3.3 Candidates selection for polyphonic mixtures of monophonic sources

An exhaustive search over � is highly computationally intensive, because there is
a large number of combinations, which increase dramatically with the number of
instruments (with the level of polyphony).

A general expression for calculating the number of combinations of elements from
a group with repeated notes per instrument is

S =
(
Nt

J

)
= Nt!

J!(Nt − J)! (26)

where S is the total number of combinations Nt =
J∑
j=1

N( j) is the total number of

notes from all the instruments (with repeated notes per instrument), N( j) is the
number of notes for the instrument j, and J is the number of notes in a combination,
which reduces to the number of instruments in the case of monophonic instruments.
This expression should be modified to subtract the combinations that contain more
than one note by the same instrument (without repeating notes for each instrument)
as follows,

S = Nt!
J!(Nt − J)! −

J∑
j=1

N( j)!
J!(N( j)− J)! (27)

where J is the number of instruments and N( j) is the number of possible notes for
instrument j.

For example, a duet for the violin (46 possible notes) and clarinet (40 possible
notes) produces 1,840 combinations according to (27). Moreover for polyphony
level 4 (with bassoon, clarinet, violin and saxophone) the number of combinations
is over 23 million. This large number of combinations has a correspondingly large
computational cost, and thus the space � to be searched should be reduced. This
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reduction is facilitated by limiting the possible notes for each instrument. In (27),
the number of possible notes per instrument N( j) is the whole range of notes for
instrument j. Instead, the exhaustive search is limited to only C note candidates per
instrument, which were previously selected using a fast transcription algorithm.

Note candidates are selected using information about the instrument models and
the mixed signal. The candidates selection must be fast to serve as a good alternative
for saving computational cost and time.

In this work, we obtain a list of candidates list using the MBHC-MS model from
Section 3.1. Although the model is designed for monophonic signals, it is adapted
to polyphonic signals by assuming that only one instrument is being played. The
distortion caused by this monophonic solution is then computed using (11) and (12).
The C notes that causes a lower distortion rate are the selected candidates for the
instrument in the reduced exhaustive search at the next stage. This factorization has
a very low computational cost, resulting in a fast selection of candidates.

Algorithm 3 describes the computational procedure for the selection of note
candidates.

Algorithm 3 Description of the candidates selection algorithm
1 Initialise bn, j( f ) to the trained instrument models
2 for j = 1 to J do
3 for t = 1 to number of frames do
4 Compute MBHC-MS with (12) and (11)
5 Select the C notes that causes the lowest β-divergence for the instrument j

at frame t, C being the number of note candidates
6 end for
7 end for

The key here is to determine the optimal number of candidates C that reduces the
computational cost while not being so restrictive such that the correct note is lost.
The performance of the candidates selector has been tested using the Bach Chorals
database [9] to determine the number of candidates per instrument. The results
are shown in Table 2. Fifteen candidates per instrument are needed to maintain an
accuracy at least 5 % in selecting the correct note from the note candidates.

Table 3 compares the number of combinations with and without the proposed
candidate selection algorithm, showing that the number of combinations is greatly
reduced by selecting 15 candidates for each instrument. It must be stressed the
number of combinations for the candidate selection algorithm is computed using (27)
where C replaces N( j) as the number of possible notes per instrument. The effect of
applying this candidate selection algorithm will be next tested with the AMT and SSS
applications.

Table 2 Percentage of notes
lost by candidates selection

% of lost notes No. of candidates per instrument

Polyphony 5 (%) 10 (%) 15 (%) 20 (%) 25 (%)

2 9 5 1.6 0.3 0.08
3 16 7 2.2 0.4 0.1
4 24 10 2.8 0.4 0.1
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Table 3 Number of combinations S for candidate selection (15 candidates) using the entire dynamic
range of each instrument. Polyphony 2 is computed using a bassoon and a clarinet, Polyphony 3 is
computed using a bassoon, a clarinet and a saxophone, and Polyphony 4 is computed using a bassoon,
a clarinet, a saxophone and a violin

Polyphony 2 Polyphony 3 Polyphony 4

Candidate selection (C = 15) 225 12.825 483.000
Entire dynamic range 1,560 197.000 23,987.000

4 Evaluation

In this section, the algorithms proposed in Section 3 are evaluated for applying
both SSS and AMT to polyphonic mixtures composed of monophonic sources.
These algorithms are compared to other state-of-the-art algorithms to assess their
performance.

For AMT, individual the transcription is computed for each instrument present
in the mixture. To the best of our knowledge, no other work in the literature
simultaneously performs AMT and SSS for polyphonic mixtures. For comparison,
we have adapted other state-of-the-art signal decomposition methods specifically
designed for monophonic instruments.

4.1 Training and testing data

At the training stage (see Section 2.5), the basis functions are estimated using
the RWC musical instrument sound database [17, 18] and the full pitch range for
each instrument. Four instruments are studied in the experiments (violin, clarinet,
tenor saxophone and bassoon). Individual sounds are available with a semitone
frequency resolution over the entire range of notes for each instrument. Files from
the RWC database have different playing styles. Files with a normal playing style
and mezzo dynamic level are selected as in the literature. Training with different
playing styles leads to different models. However, as demonstrated in [6], the selected
configuration (normal playing style andmezzo dynamic level) is representative of the
different models.

The database proposed in [9] is used for the testing stage. This database consists
of 10 J.S. Bach four-part chorales [9, 10] with the corresponding aligned MIDI data.
The audio files are approximately 30 s long and are sampled at 44.1 KHz from
real performances. Each music excerpt consist of an instrumental quartet (violin,
clarinet, tenor saxophone and bassoon), and each instrument is given in an isolated
track. Individual lines were mixed to create a total of 10 performances with four-part
polyphony from, 60 duets and 40 trios.

4.2 Experimental setup

4.2.1 Time-frequency representation

ManyNMF-based signal processing applications usually adopt frequency logarithmic
discretization. For example, uniformly spaced subbands on the Equivalent Rectan-
gular Bandwidth (ERB) scale are assumed in [4, 39]. Here, we use the resolution of
a single semitone as in [6]. Additionally, the training database and the ground truth
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score information are composed of notes that are separated by one semitone in fre-
quency. In this work, we implement a time-frequency representation by integrating
the STFT bins corresponding to the same semitone interval.

The frame size and the hop size for the STFT are set to 128 ms and 32 ms
respectively. Other values for the experimental parameters are the following:
(1) 20 partials per basis function for the harmonic constraint models (M = 20); and
(2) 50 iterations for the NMF-based algorithms, except for the MBHC-PM algorithm
where this value is set to 5, as justified in Section 3.2.1.

4.2.2 Music separation: method and metrics

• Source separation consists of estimating the corresponding amplitude of each
time-frequency cell for each source. Some systems utilises binary separation,
which means that the entire energy of a bin is assigned to a single source.
However, it has been demonstrated that better results can be obtained with
a non-binary decision, i.e., distributing the energy proportionately over all the
sources. Practically, this method is more suitable for harmonic polyphonic signals
due to partial overlapping. The use of separation Wiener masks is common in
the source separation literature [11]. In the present work, instrument models
are used as separation method, providing reliable amplitude estimation for the
overlapped partials.

• For an objective evaluation of the performance of the separation method we use
the metrics implemented in [37, 38]. These metrics are commonly accepted by
the specialised scientific community, and therefore facilitate a fair evaluation of
the method. Each separated signal is assumed to produces a distortion model
that can be expressed as follows,

ŝ j(t)− s j(t) = etargetj (t)+ einterfj (t)+ eartifj (t) (28)

where ŝ j is the estimated source signal for instrument j, s j is the original signal
of the instrument j, etarget is the error term associated with the target distortion
component, einterf is the error term due to interference of the other sources and
eartif is the error term attributed to the numerical artifacts of the separation
algorithm. The metrics for each separated signal are the Source to Distortion
Ratio (SDR), the Source to Interference Ratio (SIR), and the Source to Artifacts
Ratio (SAR) [37, 38].

SDRj = 10 log10

∑
t

∣∣s j(t)∣∣2∑
t

∣∣ŝ j(t)− s j(t)
∣∣2 (29)

SIRj = 10 log10

∑
t

∣∣∣si(t)+ etargetj (t)
∣∣∣2

∑
t

∣∣∣einterfj (t)
∣∣∣2 (30)

SARj = 10 log10

∑
t

∣∣∣si(t)+ etargetj (t)+ einterfj (t)
∣∣∣2

∑
t

∣∣∣eartifj (t)
∣∣∣2 (31)
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4.2.3 Music transcription: method and metrics

• Given the time-varying amplitudes of all the basis functions gn, j(t), our method
for music transcription is the same as in [4, 6, 39], i.e., we determine whether a
note is active or not on a frame-by-frame basis using the following equation:

�(n, j, t) = gn, j (t) ≥
(
10T/20 max

nt
gn, j (t)

)
(32)

where �(n, j, t) is the resulting binary transcription and T is the fixed detection
threshold in decibels (dB) which is learned from the training data.
A threshold is required in BHC-based methods to decide which notes are
activated at each frame. In contrast, MBHC-based methods do not need a
threshold for activating notes, because only one note per instrument is active
at each frame. However, a threshold is necessary so that no notes are activated
during intervals of silence.

• Transcription methods can be tested by two groups of metrics: note-wise and
frame-wise metrics. Frame-wise metrics are used in this work, as in [6]. Practi-
cally, we use the frame-level version of the metric proposed in [8] to objectively
evaluate transcription performance. The overall accuracy Acc(%) is defined as
follows:

Acc = TP
FP+ FN + TP

(33)

where TP (true positives) is the number of correctly transcribed note-frames
(over all notes), FP (false positives) is the number of inactive note-frames tran-
scribed as active, and FN (false negatives) is the number of active note-frames
transcribed as inactive. Acc ranges from 0 to 1, where Acc = 1 corresponds to
perfect transcription.

4.3 Algorithms for comparison

The advantages of the methods proposed here are highlighted by comparing the
approach in Section 3 to the methods described in Section 2 (BHC and BHC
with sparse constraint). The proposed methods were compared to two state-of-the-
art monophonic restricted methods: Gaussian Scaled Mixture Models (GSMM) [3]
and Factorial Scaled Hidden Markov Models (FS-HMM) [30], which were both
implemented using the Flexible Audio Source Separation Toolbox (FASST) [29].
The last two models are constrained to have a single non-zero entry for each
instrument at each frame.

Although FASST was originally designed for sound source separation, we have
adapted it for automatic music transcription. FASST gives a gains matrix as output of
the signal factorization for each source. Then, a threshold is applied to each matrix in
order to obtain a binary transcription of the source. This thresholding is also applied
to the gains matrixes obtained from the proposed method from Section 3 and it is
explained at Section 4.2.3.

Different FASST configurations have been tested, but the results are not provided
here due to space consideration. FASST allow to use the classical FFT time-
frequency representation or the QERB one, which is more suitable for musical
instrument because it uses a logarithmic frequency resolution scale instead of the
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FFT which uses a linear scale. At a linear scale, small variations of the fundamental
frequency can produce variations larger than the main lobe of the window transform
at high frequencies. The best performance was obtained using the QERB time-
frequency representation and by computing the decompositions with the Gener-
alised Expectation Maximization (GEM) algorithm where the generative model was
modified to use a Poisson distribution (in its original form, FASST utilises a Gaussian
distribution with IS divergence). Using the Poisson distribution is equivalent to
performing the factorization with the Kullback-Leibler divergence (β = 1) [42]. The
number of bases K was set to 114 (i.e. the MIDI notes ranged from 24 to 137), which
is independent of the modelled instrument, all the modeled instruments have its
dynamic ranges between this MIDI notes.

4.4 Results

As just stated, we have tested the reliability of our method for SSS and AMT tasks
using polyphonic mixtures of monophonic sources from the database proposed in
[9]. We have analysed the performance of the BHC, BHC with sparse constraints
and MBHC-PM methods as functions of the parameter β. Practically, a value for
the divergence β = 1.5 produces the most reliable results, but the optimization of
β is omitted here due to space considerations. Therefore, the proposed MBHC-PM
method uses this optimum β value. β = 2 will be used to evaluate the MBHC-PM
method using Sparse Coding. As will be explained later, the results obtained using
MBHC with NNSC do not differ much from the iterative version (MBHC-PM with
NMF), and because a very low runtime is required to perform the factorization, the
method is a suitable alternative for real-time applications.

The results are averaged between all the files and are presented separately for
each method and application. Following [6], the NMF free parameters are randomly
initialised and the measures for each file are computed after 30 executions. In our
experiments, the 95% confidence intervals for the accuracy (Acc) are less than 1.6%
for all the algorithms, which means that the differences between most algorithms
are statistically significant. A similar result is observed for the source separation
metrics, where the 95 % confidence intervals for the SDR are less than 1.4 dB for
all algorithms.

4.4.1 Source separation results

The numerical results for SSS in terms of SDR, SIR and SAR (in dB) are displayed
for all the tested methods in Table 4.

The MBHC-PM and MBHC-PM methods with candidate selection show very
similar results for all polyphony levels, demonstrating that using 15 candidates per
instrument is a good choice. In Section 3.3, we justified the use of candidates selection
based on the large reduction in computational cost. Table 2 showed that less than
5 % of the correct notes are lost for 15 note candidates. Table 4 also shows that the
candidates selection procedure has no effect on the separation results.

The NNSC MBHC-PM (β = 2) method is slightly outperformed by the NMF
MBHC-PM (β = 1.5) method for all polyphony levels. Thus, MBHC-PM method
with NNSC is a reliable and fast method that can be used for real-time applications.

Taking all these considerations into account, all the MBHC-PM algorithms per-
form better that the other tested methods , attaining SDR values of 7.94 dB at
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Table 4 Source separation results (dB) for the methods using polyphony 2, 3 and 4: MBHC-
PM with the NMF approach (NMF MBHC-PM β = 1.5), MBHC-PM with the NMF approach
and candidates selection (NMF MBHC-PM with candidates selection β = 1.5), MBHC-PM with
the NNSC approach (NNSC MBHC-PM β = 2) and MBHC-PM with the NNSC approach with
candidates selection (NNSC MBHC-PM with candidates selection β = 2). A comparison with state-
of-the-art methods (BHC, BHCwith sparse constraints (λ = 1), GSMM and FS-HMM) is also shown

Method J = 2 J = 3 J = 4

SDR SIR SAR SDR SIR SAR SDR SIR SAR

NMFMBHC-PM 7.94 20.03 11.95 3.14 15.63 4.84 – – –
NMF MBHC-PM with 7.94 20.01 11.95 3.14 15.56 4.82 1.81 14.33 1.43
candidates selection

NNSC MBHC-PM 6.15 17.83 9.38 2.51 14.77 3.6 – – –
NNSC MBHC-PM with 6.31 18.32 9.6 2.51 14.77 3.6 1.38 13.64 0.51
candidates selection

BHC with sparse constraint 4.32 17.34 4.72 2.04 15.64 3.62 1.26 14.13 −2.01
BHC 4.19 18.24 4.56 1.9 14.41 1.5 1.13 23.9 0.77
FS-HMM 3.6 14.54 5.5 1.4 12.32 4.35 0.94 10.27 3.05
GSMM 3.72 14.7 5.9 1.56 13.01 4.56 0.96 10.58 3.12

polyphony level 2. The next best method (BHC with sparse constraint) produces
a SDR approximately 2.5 dB below that of the MBHC-PM methods. MBHC-PM
algorithms produce better results than BHC and BHC with sparse constraints due
to the use of the monophonic constraint. Additionally, the monophonic constrained
models avoid interferences between different instruments and artifacts as can be seen
from the SIR and SAR values of Table 4 at all polyphony levels. BHC (when the
sparse constraint is not enforced), yields a similar SDR value to that obtained by
using BHC with sparse constraints, while FS-HMM and GSMM methods produce
lower values. This under-performance of the FASST-based methods may be caused
by the smaller number of parameters that are estimated with MBHC-PM, BHC and
BHC with sparse constraints methods than with the FS-HMM and GSMM methods.
The harmonic constrained methods have a smaller number of parameter to be
estimated because each basis function is only defined by M amplitudes as expressed
in (2), while the FASST-based methods require all the points in the frequency range
to be estimated.

Table 5 shows measures from a runtime test for 30 s excerpts of a duet and a
tercet. The candidate selection stage considerably reduces the computation time.
BHC with sparse constraints, BHC, FS-HMM, and GSMM are not feasible for
real-time implementation. NNSC MBHC-PM method with candidate selection and
β = 2 reduces the runtime approximately 40 %, but the results in Table 4 are

Table 5 Runtime test for a
30 s excerpt at polyphony
levels 2 and 3

Method J = 2 (s) J = 3 (s)

NMF MBHC-PM 18.074 1,026.342
NNSC MBHC-PM 3.157 179.949
NMF MBHC-PM with candidates selection 21 1.228
NNSC MBHC-PM with candidates selection 13 747
BHC with sparse constraint 356 20.295
BHC 356 20.295
FS-HMM 23.425 1,335.225
GSMM 24.362 1,388.634
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worse. However, the strongest runtime reduction is achieved using the candidate
selection algorithm. Selecting C = 15 note candidates per instrument produces the
same separation results while reducing the runtime by more than 99 % for the
examples shown in Table 5. MBHC-PM without candidate selection is not run at
polyphony level 4 because of the large number of combinations involved (an example
using the same number of combinations is given in Table 3).

The MBHC-PM method (for the two NMF MBHC-PM and NNSC MBHC-PM
algorithms) with and without candidate selection produces very little differences in
the results as shown in Table 4. The AMT results will therefore be computed only
for the candidate selection version.

Finally, real-time implementation is only possible for the NMF MBHC-PM and
NNSCMBHC-PMmethods, both with candidate selection and when J = 2, as shown
in Table 5.

All experiments were performed using Matlab on a 2.00 GHz Intel Xeon proces-
sor. Examples of source separation results at different polyphony levels are available
at http://anclas3.ujaen.es/monosourceseparation.

4.4.2 Automatic music transcription results

Table 6 shows the AMT results using the same methods as SSS, although the method
without candidate selection is not included. The AMT results agree with the SSS
results.

The MBHC-PM method clearly outperforms the other methods as in the SSS
testing, demonstrating the reliability of the monophonic constrained method for
polyphonic signals composed of monophonic sources. Better results are obtained
once more for NMFMBHC-PM (β = 1.5) than for NNSCMBHC-PM (β = 2). Thus,
we conclude, as in [6], that the Euclidean distance (β = 2) is not the optimal value
for β. However, the NNSC algorithm that can only be used with this β value is less
complex than the NMF based algorithms.

The main difference between the AMT and SSS results comes from the BHC and
BHC with sparse constraints methods. A significant gap is seen when comparing
the results of both methods in Tables 4 and 6. Thus, the sparse constraint is more
effective in the AMT task, probably due to the difficult decision that was taken to
select a threshold to obtain the transcription (see (32)). In contrast, the SSS task with
Wiener masks and the sparse constraint favours the concentration of energy in some
of the time-frequency cells, but as the energy is proportionately distributed between
instruments, all the instruments possess some energy at each time-frequency cell.

In general, the sparse and monophonic constrained models are observed to fit
monophonic sources better than the methods without these constraints (such as
BHC). The monophonic constraint also appears to be a better choice for polyphonic
signals composed of monophonic sources than the sparse constraint given by (5).

All the methods decrease in accuracy as the polyphony level increases because
it is more difficult to distinguish each note that arises, with the instrument, as the
polyphony level goes up. This is because as the number of instruments increases,
it is not easy to fit the basis function associated with each note derived from
the corresponding instrument model to the spectral shape of the signal. It must
be stressed that the proposed method allows an independent transcription to be
obtained for each instrument. Other transcription methods for polyphonic signals,
such as those proposed in [23, 39], compute the general transcription without
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Table 6 Automatic Music
Transcription (Acc) results for
the following methods at
polyphony levels 2, 3 and 4:
NMF MBHC-PM with
candidate selection and
β = 1.5 and NNSC
MBHC-PM with candidate
selection and β = 2).
Comparison with
state-of-the-art methods
(BHC, BHC with sparse
constraints (λ = 1), GSMM
and FS-HMM) is also shown.
From [6], the Euclidean
distance (β = 2) is not the
optimum value for the β

parameter. However, the
NNSC-based algorithm (which
uses β = 2) is less complex
than the NMF-based algorithm

Method Instrument J = 2 J = 3 J = 4

NMF MBHC-PM Bassoon 0.55 0.4 0.32
with candidates Clarinet 0.65 0.44 0.39
selection Saxophone 0.64 0.43 0.38

Violin 0.55 0.39 0.33
Mean 0.60 0.42 0.35

NNSC MBHC-PM Bassoon 0.38 0.3 0.23
with candidates Clarinet 0.6 0.41 0.28
selection Saxophone 0.56 0.36 0.27

Violin 0.43 0.31 0.22
Mean 0.49 0.35 0.25

BHC with sparse Bassoon 0.33 0.26 0.20
constraint Clarinet 0.53 0.41 0.34

Saxophone 0.5 0.33 0.19
Violin 0.32 0.21 0.16
Mean 0.42 0.3 0.22

BHC Bassoon 0.33 0.23 0.19
Clarinet 0.41 0.26 0.20
Saxophone 0.36 0.18 0.12
Violin 0.3 0.16 0.14
Mean 0.35 0.21 0.16
Bassoon 0.27 0.15 0.1

FS-HMM Clarinet 0.33 0.16 0.12
Saxophone 0.22 0.09 0.09
Violin 0.25 0.14 0.11
Mean 0.27 0.14 0.11
Bassoon 0.24 0.14 0.09

GSMM Clarinet 0.35 0.17 0.12
Saxophone 0.22 0.15 0.1
Violin 0.3 0.16 0.12
Mean 0.28 0.15 0.1

distinguishing between instruments. Thus, these methods do not show the same
decrease in accuracy as the polyphony level increases. The same underperformance
is observed for the SSS results (Table 4) for increasing polyphony levels.

FS-HMM and GSMM suffer from the same difficulties in SSS: more free parame-
ters must be estimated than in the other methods, as there is no harmonic restriction,
resulting in under-performance compared to the other methods. The FASST-based
methods must estimate the entire frequency bin range from the QERB transform.
However harmonic constrained methods must only estimate one set of M amplitudes
per note, as described in (2).

Examining the results for each instrument, the saxophone and clarinet outperform
the bassoon and violin by 10 %. The difference in performance can be attributed to
the fit of the trained model to the actual instrument being played. This mismatch
between the actual instrument and the associated instrument model can be caused
by the way the musician plays the instrument, such as how a violin string is rubbed,
or by physical differences between the model and the actual instrument, as in the case
of bassoon. It must be stressed that the instrument models are obtained from a music
database, so that the learned instrument models have significant differences with
respect to the instrument signals used for testing, that are from a different database.
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5 Conclusions

In this paper, a monophonic restricted factorization method (MBHC-PM) is pro-
posed to model polyphonic mixtures of monophonic sources, where harmonic and
single-non-zero gain constraints are enforced in a deterministic manner. We present
two different algorithms to perform the factorization: an NMF-based algorithm
(suitable for β = [0, 2]) and a less complex NNSC based algorithm (which is only
valid for β = 2). TheMBHC-PMmethod method and other state-of-the-art methods
have been tested using a database containing 40 solo files of bassoon, clarinet, tenor
saxophone and violin performances (10 per instrument). SSS and AMT results have
been computed for all methods; the best results were obtained using the MBHC-PM
method.

An independent transcription per instrument from each file is obtained in the
AMT tests, facilitated by the use of instrument models to distinguish the timbre of
notes between different instruments.

BHC and BHC with sparse constraints methods does not use a monophonic
constraint, and therefore more suitable for polyphonic signals because they suffer
from the activation of more than one pitch at each frame. Using the MBHC-PM
method, the single-non-zero constraint mitigates this problem, as demonstrated by
the results.

The FS-HMM and GSMM methods suffer from the large number of parameters
that need to be estimated due to the lack of harmonic restrictions in these methods.

The SSS and AMT results show that increases in polyphony seriously affect the
results. However, promising results are obtained for low levels of polyphony by using
instrument-dependent basis functions, which have been trained in advance.

Finally, this paper highlights the advantages of the proposed MBHC-PMmethods
over other state-of-the-art methods. Additionally, the proposed approach can be
implemented in real-time for a polyphony level of 2.

In future work, we will combine information from the instrument models and the
score to reduce the high computational cost associated with polyphony levels above
2. We will also update the instrument models during testing to achieve a better fit
between the modelled instruments and the instruments being played.
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