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Abstract Particle Filter has grown to be a standard framework for visual tracking. This
paper proposes a robust particle tracker based on Markov Chain Monte Carlo method,
aiming at solving the thorny problems in visual tracking induced by object appearance
changes, occlusions, background clutter, and abrupt motions. In this algorithm, we derive the
posterior probability density function based on second order Markov assumption. The
posterior probability density is the joint density of the previous two states. Additionally, a
Markov Chain with certain length is used to approximate the posterior density to avoid the
drawbacks of traditional importance sampling based algorithm, which consequently
improves the searching ability of the proposed tracker. We compare our approach with
several alternative tracking algorithms, and the experimental results demonstrate that our
tracker is superior to others in dealing with various types of challenging scenarios.

Keywords Visual tracking . Particle filter . Markov ChainMonte Carlo

1 Introduction

Visual tracking gains special attention in computer vision community due to its success in
various real-world applications, such as intelligent visual surveillance, human-computer
interaction, traffic monitoring or video indexing [15]. It has recently been addressed in
real-world scenarios rather than a lab environment by many researchers, because it is much
more challenging in complex real-world settings. Among the large amount of algorithms
proposed in the literature, particle filter based tracking method has been applied with great
success in solving various kinds of visual tracking problems. The basic idea behind such a
method is to approximate the posterior probability density function recursively with a set of
weighted particle (or sample) set evolving in the state space. The estimated object states can
be as close to the optimal states as possible.
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Isard M [6] first used the particle filter, which was called CONDENSATION, to solve
visual tracking problem. Thereafter, many researchers have been working on this topic.
Martínez-del-Rincón J [10] proposed a Rao–Blackwellised particle filter (RBPF) based
tracking algorithm, aiming at handling the uncertainties induced by illumination change
and short-time occlusions. He introduced a joint image characteristic-space tracking scheme
which updates the model simultaneously to the object location, and the RBPF is used to
avoid the curse of dimensionality. However, the algorithm can be failed in the face of long
time full occlusions, or abrupt change of object position. Khan Z [7] adopted Markov
random field (MRF) based motion prior model accompanied with Markov Chain Monte
Carlo method within the particle filtering framework, to track multiple interacting ants. But
the proposed tracking scheme only works well in lab environment with static background,
and tends to fail in real-world scenarios. On the basis of Khan’s work, Cong T [3] et al.
proposed a new visual tracking algorithm within the particle filtering framework, which
combined the color-based observation model with a detection confidence density obtained
from the histograms of oriented gradients (HOG) descriptor. The algorithm showed im-
proved robustness in slight object occlusions with static background. However, the
authors did not take into account the complex scenarios with severe appearance change
and full occlusion, and the algorithm can only yield limited improvement. Choo K [2]
proposed a hybrid Monte Carlo (HMC) method for 3D human motion inference, which
is much faster than the particle filter in 28D state spaces. But the authors did not use
the algorithm in real-world applications, and it tends to fail when several similar objects
appeared in the scenario.

Most of the algorithms in the literature are generally based on smooth motion assumption,
that is, the target being tracked is moving with stable motion. However, in many real world
applications, abrupt motions often appear due to camera switching, low frame rate video and
uncertain object dynamics, which could cause the conventional tracking approach to fail
since they violate the motion smoothness constraint. Kwon J [8] proposed a Wang-Landau
Monte Carlo (WLMC) based tracking algorithm within the Bayesian filtering framework.
The algorithm adopted a density of states (DOS) based prior distribution, and the images
containing the object are divided into several subspaces with equal size. The tracker is
guided to update the object state using the DOS computed online. Experimental results
demonstrated that the tracker can handle different kinds of abrupt motions. But there is no
rigorous convergence theory to support its convergence, and it could only achieve limited
precision in statistical and physical applications [9]. Based on this work, Zhou [16] proposed
an adaptive stochastic approximation Monte Carlo (ASAMC) sampling based particle
tracking algorithm. The authors constructed explicitly a DOS based trial distribution to
replace the traditional filtering distribution as the proposal distribution, and all the samples
are drawn from this trial distribution using the Metropolis-Hastings (MH) algorithm. The
algorithm showed improved efficiency and accuracy in handling various abrupt motions.
However, both the WLMC and the ASAMC based tracking algorithms need firstly divide
the sample space (the current video frames) into several equal-size subregions. But the
division decreases the algorithms’ efficiency when the size of the frame is moderately large.
Wang [13] proposed a Hamiltonian Monte Carlo (HMC) estimator for abrupt motion
tracking within the Bayesian filtering framework. The HMC is based on Hamiltonian
dynamics implemented by Leapfrog iteration which is the same as [2]. The random walk
behavior occurred in many MCMC based tracking algorithms can be suppressed. Thus, the
HMC algorithm can be avoided being trapped in local maxima during tracking. The main
drawback of the HMC is that it is difficult to choose an appropriate step size for Leapfrog
iterations. The Gibbs sampling in the proposal step still suffers from random walk behavior.
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In addition, the WLMC, ASAMC, and HMC are all sensitive to background clutter and
lighting condition changes. Moreover, they failed to track the object when the appearance
changes drastically or the object is occluded persistently by obstacles.

As is known to all, most of the particle filter based tracking algorithms in the literature are
all based on first-order Markov assumption, that is, the current state at time t only depend on
the state at time t−1. Although the assumption can simplify the expression of the posterior
probability density function and the implementation of visual tracking, it suffers several
disadvantages. On the one hand, the first-order assumption cannot accurately model the
dynamics of the tracking objects. On the other hand, if the particles at time t−1 are lost or
delayed, the performance of the algorithm would be severely affected.

In this paper, we address the tracking problems in different complex scenarios and
proposed a new tracking algorithm based on Markov Chain Monte Carlo posterior sampling
within the particle filtering framework. Firstly, the algorithm is based on second-order
Markov assumption. We assume that the object state xt depends on the states of the previous
two time instant, xt−1 and xt−2. This assumption can enhance the robustness of the tracker.
Secondly, we adopt a Markov Chain with certain length to approximate the posterior
probability density function discarding the traditional importance sampling based methods
which tends to fail due to sample impoverishment. The Markov Chain is simulated using the
MH algorithm; consequently the posterior density function is approximated using a set of

unweighted sample sets xit
� �N

i¼1 . This strategy can avoid the sample impoverishment
problem suffered by traditional particle filter based trackers and avoid the local trap problem
during visual tracking. We name the proposed algorithm as 2MCMC-PF. The experimental
results demonstrated that the proposed tracking algorithm showed improved robustness and
accuracy in different types of challenging tracking scenarios.

2 Bayesian tracking and particle filter

2.1 Bayesian tracking framework

Suppose the object state xt at time t is composed of position and scale information, xt ¼ xpt ; x
s
t

� �
,

where xpt is represented as the center of the object, and xt
s is represented using the height and

width of the object. The object tracking problem can be formulated as the Bayesian filtering
problem, that is to say, recursively estimate the hidden state variable xt, given a series of
observations z1:t={z1, z2,…, zt} up to time t. The posterior probability density of state variable
xt is p(x0:t|z1:t), but the filtering density p(xt|z1:t) is often adopted which can be estimated by

p xtjz1:tð Þ ¼ cp ztjxtð Þ
Z

p xtjxt�1ð Þp xt�1jz1:t�1ð Þdxt�1 ð1Þ

where p(xt|xt−1) is the system transition model describing the state evolution, p(zt|xt) is the
observation model, and c is a normalizing constant. After obtaining the posterior probability
p(x|z1:t), we can compute the Maximum a Posteriori (MAP) estimate over the sample set,

xMAP
t ¼ argmax p xðiÞt jz1:t

� �
; i ¼ 1; . . . ;N ð2Þ

The estimation xMAP
t calculated by (2) is considered as the best state estimates for the

current time instant. But it is usually infeasible to calculate the integral in (1), especially for
high dimensional state space.
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2.2 Particle filter

The particle filter is based on importance sampling, which uses a set of weighted samples

xit;w
i
t

� �Ns

i¼1 to approximate the posterior probability distribution,

p x0:k jz1:kð Þ �
XNs

i¼1

wi
kd x0:k � xi0:k
� � ð3Þ

All the samples are drawn from a so called importance density q(•), and the sample
weights under first-order Markov assumption is updated recursively using,

wi
k / wi

k�1

p zk jxik
� �

p xik jxik�1

� �
q xik jxik�1; zk
� � ð4Þ

Details of the derivation of (4) are discussed in [1]. A main drawback of the conventional
importance sampling based particle filter is the sample impoverishment problem, which can
greatly deteriorate the performance of the tracking algorithm in real-world applications
leading to local-trap problem especially in multiple objects tracking. Although many
improvement strategies have been proposed in the literature, the applications of these are
very limited in visual tracking.

3 Markov Chain Monte Carlo sampling based particle tracker

3.1 Second-order Markov assumption

The second-order Markov assumption assumes that the current state xt depends on the
previous two states xt−1, xt−2, so we can obtain

p xtjx0:t�1ð Þ ¼ p xtjxt�2:t�1ð Þ ð5Þ
Figure 1 shows the states evolution of second-order Markov process.
Based on this assumption, the posterior probability density p(x0:t|z1:t) is derived as follows:

p x0:tjz1:tð Þ ¼ p zt; x0:t; z1:t�1ð Þ
p zt; z1:t�1ð Þ ð6Þ

Fig. 1 Second order Markov process. The circle nodes denote the object states, while the square nodes
represent the observations correspond to the hidden states. The solid line denotes the first-order Markov model
and the dashed line represent the second-order Markov process
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¼ p ztjx0:t; z1:t�1ð Þp x0:t; z1:t�1ð Þ
p zt; z1:t�1ð Þ ð7Þ

¼ p ztjx0:t; z1:t�1ð Þp x0:tjz1:t�1ð Þp z1:t�1ð Þ
p ztjz1:t�1ð Þp z1:t�1ð Þ ð8Þ

¼ p ztjx0:t; z1:t�1ð Þp x0:tjz1:t�1ð Þ
p ztjz1:t�1ð Þ ð9Þ

¼ p ztjx0:t; z1:t�1ð Þp xt; x0:t�1jz1:t�1ð Þ
p ztjz1:t�1ð Þ ð10Þ

¼ p ztjx0:t; z1:t�1ð Þp xtjx0:t�1; z1:t�1ð Þp x0:t�1jz1:t�1ð Þ
p ztjz1:t�1ð Þ ð11Þ

/ p ztjx0:t; z1:t�1ð Þp xtjx0:t�1; z1:t�1ð Þp x0:t�1jz1:t�1ð Þ ð12Þ

¼ p ztjxtð Þp xtjxt�2:t�1ð Þp x0:t�1jz1:t�1ð Þ ð13Þ
The filtering density p(xt|z1:t) is formulated as:

p xtjz1:tð Þ / p ztjxtð Þp xtjxt�2:t�1ð Þp xt�1jz1:t�1ð Þ ð14Þ

The following conditional probability density equation is used during the derivation:

p mjnð Þ ¼ p m; nð Þ
pðnÞ ð15Þ

p m; njlð Þ ¼ p mjn; lð Þp njlð Þ ð16Þ

Our aim is to estimate the joint posterior probability density (14).

3.2 Markov Chain posterior sampling

The MCMC method constructs a Markov Chain in the state space to approximate the
posterior distribution p(xt|z1:t) that converges to the stationary distribution π(x). It is typically
used to search the state space for the MAP estimates, or introduced into the particle filtering
framework to suppress the sample impoverishment problem. Gilks [5] proposed the MCMC
based improved particle filtering algorithm, the basic idea of which is to add a MCMC move
step after the resampling process, which can guide the samples to move toward the more
promising area. In this paper, we use the MCMC method within the particle filtering
framework to construct a Markov Chain. Samples are drawn from this chain yielding an
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unweighted sample set xit
� �Ns

i¼1 which is used to approximate the filtering posterior
probability density p(xt|z1:t), that is,

p xtjz1:tð Þ ¼ 1

Ns

XNs

j¼1

d xt � xjt
� � ð17Þ

In this way, the conventional importance sampling procedure can be avoided, while the
MCMC method can enhance the searching ability of the particle filter in the state space.

The classical algorithm to construct the Markov Chain is the MH algorithm [4]. For the
given target posterior density p(xt|z1:t), the algorithm starts from a certain initial sample x0.
The samples are drawn from a so called proposal distribution in order to define the Markov
Chain of timet. Suppose the state of the Markov Chain is xk at the kth iteration, the MH
algorithm will generate a new sample xk+1 for the next iteration. The algorithm is described
as in Algorithm 1.

Algorithm 1 Metropolis-Hastings algorithm

Initialization Set the initial sample x1t , begin iteration for k=1:Ns−1

Step 1 Propose a sample x
0
t with the proposal distribution Q x

0
t; x

k
t

� �
.

Step 2 Compute the acceptance probability:

a ¼ p x
0
tjz1:t

� �
p xkt jz1:t
� � Q xkt ; x

0
t

� �
Q x0t; x

k
t

� � ð18Þ

Step 3 Randomly draw a number from a uniform distribution, ϑ~U (0, 1), then decide
whether or not accept the proposed sample state.

If ϑ<α, accept the sample, xkþ1
t ¼ x

0
t , else reject the sample, and set xkþ1

t ¼ xkt .

In order to avoid the numerical integration of the predictive density at each MCMC
iteration, Pang [11] proposed an improved MCMC algorithm based on the joint posterior
probability density p(xt, xt−1|z1:t) of xt and xt−1. The state variable xt and xt−1 will be updated
simultaneously during the MCMC iterations. We will adopt this joint density in our tracking
algorithm.

3.3 MCMC posterior sampling based particle tracking

As mentioned above, we consider the joint posterior probability density p(xt−1:t|z1:t). Accord-
ing to (14),

p xt�1:tjz1:tð Þ / p ztjxtð Þp xtjxt�2:t�1ð Þp xt�1jz1:t�1ð Þ ð19Þ
By sampling from this target distribution at each iteration, a Markov Chain is constructed.

During this procedure, the states xt and xt−1 will be updated simultaneously.
At the proposal step, we propose a new joint state sample fx0t; x

0
t�1g from the proposal

distribution Q(.).

fx0t; x
0
t�1g~Q xt; xt�1jxk�1

t ; xk�1
t�1

� � ð20Þ
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Then, compute the acceptance rate of the proposed sample.

y1 ¼ min 1;
p x

0
t; x

0
t�1jz1:t

� �
Q x0t; x

0
t�1jxk�1

t ; xk�1
t�1

� � Q xk�1
t ; xk�1

t�1 jx
0
t; x

0
t�1

� �
p xk�1

t ; xk�1
t�1 jz1:t

� � !
ð21Þ

Using y1, the sample is decided whether or not accepted at the acceptance step. If
accepted, set fxkt ; xkt�1g ¼ fx0t; x

0
t�1g ; otherwise, set xkt ; x

k
t�1

� � ¼ xk�1
t ; xk�1

t�1

� �
:

In the following process, individual refinement steps are taken to sample the individual
component of the joint state. Firstly, sample a state sample of xt−1 from the proposal distribution.

fx0t�1g~Qðxt�1jxkt ; xkt�1Þ ð22Þ
Calculate the acceptance probability using

y2 ¼ min 1;
p x

0
t�1jxkt ; z1:t

� �
Q x

0
t�1jxkt ; xkt�1

� � Q xkt�1jxkt ; x
0
t�1

� �
p xkt�1jxkt ; z1:t
� � !

ð23Þ

Decide whether or not accept the proposed sample x
0
t�1 . If accepted, set xkt�1

� � ¼ x
0
t�1

� �
,

otherwise, set xkt�1

� � ¼ xk�1
t�1

� �
:

Secondly, sample a state sample of xt.

x
0
t

n o
~Q xtjxkt ; xkt�1

� � ð24Þ

The acceptance probability is computed using

y3 ¼ min 1;
p x

0
tjxkt�1; z1:t

� �
Q x0tjxkt ; xkt�1

� � Q xkt jxkt ; xkt�1

� �
p xkt jxkt�1; z1:t
� � !

ð25Þ

Decide whether or not accept the proposed sample x
0
t . If accepted, xkt

� � ¼ x
0
t

� �
;

otherwise xkt
� � ¼ xk�1

t

� �
.

We can finally obtain the sample set fxkt gNs
k¼1 which is used to compute the posterior

probability density. The algorithm can be summarized as follow.

Algorithm 2 MCMC posterior sampling based particle tracking

Input Sample set of time t−1 fxkt�1; x
k
t�2gNs

k¼1

Output Sample set of timet xkt
� �Ns

k¼1 , and state estimate bxt .
For k=1, 2, …, Ns

Step 1 Proposal step- Propose x
0
t; x

0
t�1

� �
using (20).

Step 2 Acceptance step- Compute the acceptance probability y1using (21), and then accept
x
0
t; x

0
t�1

� �
with probability y1, xkt ; x

k
t�1

� � ¼ x
0
t; x

0
t�1

� �
. If the proposed state is

rejected, xkt ; x
k
t�1

� �
= xk�1

t ; xk�1
t�1

� �
.

Step 3 Refine xt−1- Propose x
0
t�1 using (22).

Step 4 Compute the MH acceptance probabilityψ2, then accept x
0
t�1 with probability ψ2

(23), xkt�1

� � ¼ x
0
t�1

� �
; If the proposed state is rejected, xkt�1

� � ¼ xk�1
t�1

� �
.

Step 5 Refinext- Propose xt
′ using (24)
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Step 6 Compute the MH acceptance probability y3 and accept xt
′ with probability y3(25),

xkt
� � ¼ x

0
t

� �
; If the proposed state is rejected, xkt

� � ¼ xk�1
t

� �
.

EndFor

Step 7 Obtain the sample set xkt ; x
k
t�1

� �Ns

k¼1 , and compute the state estimate bxt .
4 Implementation and experiments

Firstly, we use rectangular area to represent the tracking object, which is defined by its
spatial position center and the object scale, that is x=(x0, y0, s). As to the proposal
distribution, we adopt the following as in [8].

Q x
0
t; xt

� �
¼

QAR xs
0
t ; x

s
t

� �
QU xp

0
t

� �(
scale

position
ð26Þ

where QAR is used to propose a new scale state xt
s′ based on xt

s with a second-order
autoregressive process. We assume that the object scale is changed smoothly. QU is used
to propose a new position state xt

p′. The new position state is proposed uniformly from a
uniform distribution on the 2D spatial space.

We use a HSV color histogram based appearance model for the sake of handling
illumination change. The likelihood function for the filtering distribution based on the
HSV color histogram similarity is defined by the following equation.

p ztjxtð Þ ¼ e�xd2 H 0;H xtð Þð Þ ð27Þ

where the H0 is the target reference model, H(xt) is the candidate model, ξ is a scaling
parameter, and d is the Bhattacharyya distance over the HSV histogram which is defined by

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� zðH 0;HðxtÞÞ

p
ð28Þ

where ζ is the Bhattacharyya similarity coefficient.
As for the state transition dynamic models, we adopt a standard second order constant

acceleration model (29) under second-order Markov assumption for the proposed algorithm,
while a first order model (30) for the other tracking algorithms.

xt ¼ A0xt�1 þ B0xt�2 þΥut ð29Þ

xt ¼ A1xt�1 þ B1ut ð30Þ
where A0, B0, A1, B1, and Υ are predefined coefficient matrix.

For the sake of evaluating the performance of our proposed tracking algorithm, we use
nine video sequences to test its performance and make comparison to the other alternatives:
ASAMC [16], adaptive MCMC [12], WLMC [8], and HMC [2, 13]. The video sequences
are listed in Table 1.
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4.1 Qualitative results

For qualitative comparison purpose, we test our proposed tracker over different tracking scenarios
and compare the tracking results with other algorithms. 300 samples are used by default.

Table 1 Video sequences used in our experiments

Seq. No. Length
(frames)

Details

1 813 “ChoiHongMan”

Abrupt motion induced by camera switch.

2 195 “Baby”

Full and partial occlusions, illumination change.

3 539 “Hockey”

Background clutter, object interactions, similar moving object, and partial occlusion.

4 101 “Hockey2”

Background clutter, object interactions, similar moving object, and partial occlusion.

5 31 “Face1”

Fast moving human face.

6 500 “Face2”

Partial and full occlusions, background clutter, object appearance and pose change.

7 113 “Soccer”

Background clutter, object interactions, similar moving objects, and object
disappearing and re-entering..

8 50 “SeqMS”

Frequently occlude human face.

9 220 “ChenNa”

Illumination change.

Fig. 2 Tracking results over the face1 sequence. From top to bottom: 2MCMC-PF, ASAMC, WLMC, HMC,
and AMCMC, the sample frames are #2, #18, #19, #23, #25, #27, #28 (from left to right)
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Abrupt motion-fast moving object Sequence 5 is used in this experiment to test the
ability of the trackers of tracking a fast moving object with abrupt dynamic changes.
The 2MCMC-PF tracker uses 300 samples while the others use 600. Figure 2 displays
the tracking results. The results show that the proposed tracker shows better tracking
accuracy than the other four trackers, although some trackers give acceptable results at
certain frames. AMCMC shows the worst results, losing the object at frame #25, #27
and #28.

Object appearance change The goal of the experiment is to test the ability of
handling object appearance change of different trackers. Sequence 6 is used in
which a girl face is moving and rotating with appearance and pose changes in front
of the camera. The tracking results are shown in Fig. 3. It is clearly shown that the
2MCMC-PF tracker can accurately capture the object throughout the sequence. The
first object rotation occurred between frame #86 and frame #100, and our tracker
accurately tracked the object while other tracker failed. The second object rotation
occurred between frame #176 and #246, where all the trackers can capture the
object at frame #176, but only the 2MCMC-PF tracker can accurately track the
object throughout the rotation process, and the other four frequently lose the
object.

Background clutter, object interaction and similar moving object We use sequence 3, 4,
and 7 for this experiment. In these video sequences, the players wear the same sports
suites moving with frequent occlusions and interactions, which make tracking a player
more difficult. Sample frames of tracking results are shown in Figs. 4, 5 and 6, which
demonstrated that the 2MCMC-PF tracker could consistently track the object while
other tracking algorithms failed frequently. In sequence 7, the player disappeared from
the scenario and re-appear after several frames, and the 2MCMC-PF tracker can
efficiently capture the player exactly after re-appearing.

Illumination change, full and partial occlusions This experiment aims to test the algo-
rithms’ ability of handling illumination change and occlusions. We use the “Baby”

Fig. 3 Tracking results over the face2 sequence. From top to bottom: 2MCMC-PF, ASAMC, WLMC, HMC,
and AMCMC, the sample frames are #86, #94, #98, #99, #100, #176, #188, #215, #246 (from left to right)
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and “ChenNa” sequences for this tracking experiment. 100 samples are used for the
2MCMC-PF tracker, while 300 for the others. For the “Baby” sequence, the illumi-
nation change occurred after the baby entering the shadow, and it was full occluded
by the adult for a long time interval. Sample tracking frames are shown in Fig. 7. The

Fig. 4 Tracking results over the Hockey1 sequence. From top to bottom: 2MCMC-PF, ASAMC, WLMC,
HMC, and AMCMC, the sample frames are #69, #303, #320, #458, #470, #510, #512 (from left to right)

Fig. 5 Tracking results over the Soccer sequence. From top to bottom: 2MCMC-PF, ASAMC, WLMC,
HMC, and AMCMC, the sample frames are #12, #13, #29, #58, #59, #60 (from left to right)
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2MCMC-PF shows the best tracking accuracy compared to the other four algorithms.
The AMCMC and HMC shows worse tracking results than our tracker, while better
than the ASAMC and the WLMC. The latter two frequently lost the object.

Fig. 6 Tracking results over the Hockey2 sequence. From top to bottom: 2MCMC-PF, ASAMC, WLMC,
HMC, and AMCMC, the sample frames are #23, #24, #39, #40, #61, #82 (from left to right)

Fig. 7 Tracking results over the Baby sequence. From top to bottom: 2MCMC-PF, ASAMC, WLMC, HMC,
and AMCMC, the sample frames are #35, #52, #66, #82, #87, #138 (from left to right)
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As for the “ChenNa” sequence, we aim to track the girl’s face in a scenario with
illumination change. Tracking results are shown in Fig. 8. When illumination change
occurred between frame #108 and #157, the 2MCMC-PF tracker can accurately track

Fig. 8 Tracking results over the ChenNa sequence. From top to bottom: 2MCMC-PF, ASAMC, WLMC,
HMC, and AMCMC, the sample frames are #72, #108, #132, #136, #149, #157 (from left to right)

Table 2 RPEs of the algorithms over the 9 video sequences

Tracker Seq. 2MCMC-PF ASAMC WLMC HMC AMCMC

Face1 RPE mean 0.024 0.067 0.033 0.028 0.065

RPE std 0.0016 0.0040 0.0013 0.0014 0.011

Face2 RPE mean 0.0028 0.0082 0.0055 0.0068 0.0070

RPE std 0.0018 0.0073 0.0068 0.0087 0.0107

Hockey1 RPE mean 0.0070 0.1821 0.1450 0.1491 0.0948

RPE std 0.0046 0.0984 0.1037 0.1120 0.0862

Hockey2 RPE mean 0.0127 0.3511 0.1840 0.1871 0.1010

RPE std 0.0076 0.1423 0.1537 0.1424 0.0977

Soccer RPE mean 0.0057 0.1408 0.0901 0.1386 0.1519

RPE std 0.0053 0.0819 0.0815 0.0968 0.0725

Baby RPE mean 0.0031 0.0125 0.0189 0.0132 0.0037

RPE std 0.0022 0.0106 0.0135 0.0096 0.0030

ChoiHongMan RPE mean 0.0016 0.0074 0.0019 0.0049 0.0124

RPE std 0.0010 0.0022 0.0013 0.0079 0.0111

SeqMS RPE mean 0.0036 0.0059 0.0093 0.0083 0.0215

RPE std 0.0023 0.0056 0.0074 0.0080 0.0162

ChenNa RPE mean 0.0014 0.0116 0.0038 0.0038 0.0021

RPE std 0.0014 0.0080 0.0019 0.0022 0.0015
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the object. AMCMC algorithm shows acceptable results, but is worse than our tracker,
while better than the other three algorithms.
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Fig. 9 RPEs of the algorithms over the 9 video sequences. a Face1, b Face2, c Hockey1, d Hockey2, e
Soccer, f Baby, g ChoiHongMan, h SeqMS i ChenNa
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4.2 Quantitative results

4.2.1 Relative position error

In the quantitative comparison experiment, we compare the relative position error (RPE) of
different trackers which is defined as:

Δp ¼ ðx; yÞ � ðxg; ygÞ
		 		=sg ð31Þ

where (xg, yg, sg) is the ground truth state calibrated manually. We adopt this measurement for
evaluating the tracking accuracy because it can facilitate comparing the tracking accuracy for the
objects with different sizes [14]. As shown in Table 2, both themean and standard deviation of the
2MCMC-PF tracker over the nine sequences are almost consistently smaller than those of other
trackers. Figure 9 shows the curves of the RPEs of different trackers over the nine sequences,
which indicate that the 2MCMC-PF tracker is more accurate and stable than the alternatives.

4.2.2 Success rate

We define tracking to be lost when the distance between ground truth center and the estimated
object center is larger than the calibrated radius of the object. The calibrated radius is defined as
the smaller one of the half the width and half the height. This definition is different from that of
[16], which defined tracking to be lost when the estimated center was not in the calibrated object
area. The success rate (SR) is defined as the ratio between the successfully tracked frames and
the total frames of the sequences. In this experiment, we calculate the overall success rate of
different trackers over the nine sequences.We also compare the success rate of the trackers over
one single sequence. Results are shown in Table 3. The results indicate that all the SRs of our
proposed tracker over each of the sequences are higher than that of the other algorithms. The
SRs of the other four algorithms fluctuate severely over different sequences which indicate that
the robustness of the four trackers is worse than the 2MCMC-PF. We should note that our
tracking lost calculation is much stricter than that of [16]. If we use the method mentioned in
[16], the SR would be greatly different from that of calculated using our method. Take the
ASAMC algorithm over the “ChoiHongMan” sequence as example, the SR calculated using
our method is about 3.2 %, but the 2MCMC-PF tracker is 94.10 %, while the SR calculated
using method of [16] yields 88.68 % and 100 % respectively.

Table 3 SRs of the algorithms over the 9 video sequences

Tracker Seq. 2MCMC-PF ASAMC WLMC HMC AMCMC

Face1 100 % 83.87 % 100 % 100 % 87.10 %

Face2 100 % 68.80 % 87 % 83.40 % 84.80 %

Hockey1 95.19 % 0.74 % 18.52 % 19.26 % 39.44 %

Hockey2 82.18 % 0 % 22.77 % 18.81 % 37.62 %

Soccer 80.53 % 1.77 % 30.97 % 16.81 % 11.50 %

Baby 69.74 % 23.08 % 14.36 % 21.54 % 60.51 %

ChoiHongMan 94.10 % 3.20 % 88.19 % 75.52 % 42.31 %

SeqMS 98 % 94 % 84.00 % 78.00 % 44.00 %

ChenNa 97.73 % 32.27 % 82.73 % 81.82 % 97.27 %

Overall SR 93.05 % 21.90 % 62.96 % 57.18 % 55.15 %
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5 Conclusions

We have proposed a robust tracking algorithm within the particle filtering framework using the
Markov Chain Monte Carlo posterior sampling and second-order Markov assumption. In our
tracking algorithm, we use a Markov Chain with certain length to simulate the approximated
posterior probability density, which avoid the drawbacks of the traditional importance sampling
based algorithm. The second-order Markov assumption can make better use of the history
information and enhance the searching ability of our tracker. Experimental results have demon-
strated that our proposed tracker can give stable and accurate tracking results in various tracking
scenarios. We have to mention that the proposed algorithm can only handle abrupt motions with
camera switching, as for abrupt motions induced by sudden dynamic changes, low frame rate
videos and rapidmotion, it tends to fail. Our further studywill focus on backgroundmodeling and
object appearance adaptation in much more complex tracking scenarios.
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