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Abstract Video has become an important cover for steganography for its large volume.
There are two main categories among existing methods for detecting steganography which
embeds in the spatial domain of videos. One category focuses on the spatial redundancy and
the other one mainly focuses on the temporal redundancy. This paper presents a novel
method which considers both the spatial and the temporal redundancy for video steganalysis.
Firstly, model of spread spectrum steganography is provided. PEF (Prediction Error Frame)
is then chosen to suppress the temporal redundancy of the video content. Differential
filtering between adjacent samples in PEFs is employed to further suppress the spatial
redundancy. Finally, Dependencies between adjacent samples in a PEF are modeled by a
first-order Markov chain, and subsets of the empirical matrices are then employed as features
for a steganalyzer with classifier of SVM (Support Vector Machine). Experimental results
demonstrate that for uncompressed videos, the novel features perform better than previous
video steganalytic works, and similar to the well-known SPAM (Subtractive Pixel Adjacen-
cy Model) features which are originally designed for image steganalysis. For videos
compressed with distortion, the novel features perform better than other features tested.

Keywords Video steganalysis - Communication security - Steganography - SPAM - SPEAM

1 Introduction

Steganography is the art of hiding messages into cover objects such as images, texts, videos
and network protocol packets. In order to make the stego object unperceivable, the sender
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applies a mutually independent embedding operation to selected elements of the cover.
Steganalysis is the art of detecting the existence or even determining the location, volume
and extracting the content of hidden messages in various cover objects. When the existence
of hidden messages is detected, the security of the steganographic system is believed to be
destroyed. In this paper, the main concern lies in the detection of hidden messages embedded
in videos.

Most embedding methods for videos are developed from those for images. A popular
method under this paradigm is LSB (Least Significant Bit) matching[24, 27], which ran-
domly increases or decreases pixel values by one to match the LSBs with the candidate
message bits. Besides, Some other embedding methods, such as QIM (Quantization Index
Modulation) [13, 19], and SS (Spread Spectrum) steganography[6, 8, 16] etc., are also
introduced into spatial video steganography. Another kind of embedding method can be
represented as MSU StegoVideo [17] which is a spatial video steganographic software got
from the Internet. As videos are often coded before transmission to the receiver, and videos
got from the Internet are always compressed in volume to save bandwidth, the robustness of
steganographic methods in the spatial domain is very important for the restore of hidden
messages. Most of those steganographic methods maintain robustness by embedding several
copies of the original hidden messages into the cover videos.

Various methods have been designed to detect steganography in the spatial domain of
videos. Kundur and Budhia [2] proposed a detection method based on collusion. It was also
called TFA (Temporal Frame Averaging), which was commonly used in the research on
watermark attacking. The estimated cover was got coarsely through collusion, and residuals
between estimated frame and the stego frame were calculated. Kurtosis, entropy, and 25 %
percentile of the residuals were utilized as features for steganalysis. In [3], Kurdur and
Budhia further explained the basic theory and the effective condition of collusion. In [9],
MoViSteg (Motion-based Video Steganalysis) was proposed by Jainsky et al. Motion
interpolation was used to get a coarse estimation of cover object. Residuals between
estimated copy and the stego one were then analyzed by ARE (Asymptotic Relative
Efficiency), and adaptive threshold was adopted for the detection results. In [18], the local
variance of the prediction error frame was calculated in size of 3 3. Gamma distribution was
adopted to fit the distribution of the local variance, and two parameters of the distribution
were extracted as the steganalytic features.

Besides temporal redundancy utilized in the steganalytic methods stated above,
there is also spatial redundancy in the content of videos. Spatial averaging has been
used for video steganalysis. In [23], 3x3 spatial average filtering was adopted to
estimate the cover. Features used in [3] were then extracted for the steganalyzer.
Kashyap [12] proposed SABS (Spatial Averaging Based Steganalysis) to detect stego
videos. Differences of two averaging filters were calculated, and the same features as
[3] were extracted for classification.

Despite of potentially high time-complexity, in order to obtain better detection perfor-
mance on each frame, some image steganalytic methods are almost directly employed for
video steganalysis. A framework considering video steganalysis as an extension of image
steganalysis was proposed in [14], consisting of collusion, several video codec algorithms
(e.g., motion estimation), and image steganalytic methods. In [28], the embedding operation
was modeled as the convolution of the cover and the secret message on the histogram of
adjacent frames’ differences. Aliasing degree was then defined as the feature to detect the
presence of hidden messages. Liu etc. [15] extracted Markov features from the differences of
neighboring coefficients in the transform domain and achieved a satisfying result for the
detection of MSU StegoVideo. Kancherla [10, 11] introduced the JPEG steganalytic features
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[22] into spatial video steganalysis of MSU StegoVideo. Motion estimation was used to get
an estimated copy of the cover object. L1 norm between features of the given object and the
estimated object was employed to form the complete features.

In general, one kind of existing steganalytic methods based on TFA, PEF (Prediction
Error Frame) or spatial average filtering extract features from the global statistical character-
istics (like kurtosis, skewness, and 25 % percentile), while ignoring the correlation between
either temporally or spatially neighboring pixels. The other kind of methods derived from
image steganalytic methods are generally of high computing complexity and make insuffi-
cient use of the temporal redundancy. The most related works to this paper include Vinod’s
work in [18] which belongs to the former kind and Pevny’s work in [20] which belongs to
the latter one. Vinod suggested that lower dependencies within the video content exist in
PEFs (Prediction Error Frames) than in the original video frames, and extracted
features based on the distribution of the local variances of PEF samples. In pevny’s
method, no spatial redundancy was deployed. Differences of spatially neighboring
pixels were modeled by a Markov chain and empirical probability transition matrices
were calculated to form features, which were called the SPAM (Subtractive Pixel
Adjacency Model) features. Since designed for image steganalysis, no temporal
redundancy is utilized in Pevny’s method.

This paper originates in the thought of combining the utilization of temporal redundancy
and spatial redundancy. We focus on PEFs and model the differences of adjacent PEF
samples by a Markov chain. Motion estimation makes use of the temporal redundancy
between adjacent frames, while the differential filtering utilizes the spatial redundancy
between adjacent PEF samples to further suppress the video content and amplify the stego
noise. Those two kinds of processing lead to a higher WSNR (Watermark Signal to Noise
Ratio), which seems favorable for steganalysis.

The paper is organized as follows. Section II starts with the rationale of proposed
features: First, the model of spatial video steganography is stated. Second, the
correlation between PEF and collusion is discussed theoretically, and comparison of
PEF and PVD (Pixel Value Difference) is given according to the WSNR. At the last
of this section, the proposed SPEAM (Subtractive Prediction Error Adjacency Model)
features are presented, followed by a discussion of parameters in the feature extrac-
tion. The subsequent Section III presents the major part of experiments consisting of
1) comparison of several versions of the SPEAM features differing in the range of
block matching, 2) comparison to SPAM and prior art of video steganalysis on
uncompressed video sequences, and 3) compressed video sequences with format of
MPEG2 and H.264. The conclusions are drawn in Section V.

2 Proposed SPEAM features

Existing methods are mostly derived from collusion and image steganalysis. Aiming at
amplifying the WSNR of the frame for analysis, collusion effectively suppresses the
temporal redundancy between adjacent frames, while original image steganalytic methods
which commonly derive features from PVDs satisfactorily suppress the spatial redundancy
between adjacent pixels. In this section, the model of spatial video steganagraphy is stated,
which is the basis for subsequent analysis. For illustrating why we derive our features from
PEFs other than collusion or PVDs, the correlation between PEF and collusion is discussed,
and the comparison of PEF and PVD is analyzed according to the WSNR. Finally, the
proposed SPEAM features are presented.
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2.1 Model of spatial video steganography

In a video steganographic system, the cover video is denoted by U,(m,n), where k=1,2,...K
is the frame number, and m=1,2,...,M and n=1,2,...,N are row indices and column indices
of pixels in each frame respectively. Before embedding, the secret message is modulated into
a signal using a pseudo-random sequence, resulting in Wy(m,n). As in [3], we call W(m,n)
the watermark. We assume that the embedding operation is employed in the spatial domain,
and the related steganalysis is designed against spatial video steganography. Even if the
embedding operation is carried out in a non-spatial domain such as the DCT (Discrete
Cosine Transform) domain, and the DFT (Discrete Fourier Transform) domain, similar
results can be formulated. The embedding operation is modeled as in [3] by

Xk(man) = Uk(man) +C"k(ma”l)VVk('/’/la’/l)a k=12,...,K (1)

where ay(m,n) is a scaling factor used to tradeoff non-perceptibility and robustness. For
simplicity of analysis, « is considered to be constant over all of the pixels and frames to give

Xi(m,n) = Up(m,n) + aWi(m,n), k=1,2,...,K (2)

Only the Y component of video frames is taken into consideration unless emphasized.
For LSB steganography, we can get Wy(m,n)==+1 and a=1. For SSIS [16], W(m,n) is treated
as a 2-dimension Gaussian i.i.d. random process which obeys N(O,oﬁ,) . The scaled

watermark aW;(m,n) is a function of hidden messages, the scaling factor and the secret key.
2.2 Correlation between collusion and PEF

Spatial redundancy has been utilized for image steganalysis by some filtering methods such
as the differential filter and the wavelet filter [21]. Spatial redundancy has also been used for
video steganalysis by various methods such as spatial averaging [12, 23]. Besides spatial
redundancy, there is still temporal redundancy in video sequences.

Collusion [3] is a classical method to employ temporal redundancy for steganalysis.
When the watermark is embedded into the slow-moving video, collusion seems a good
method to pre-process the stego video. On the contrary, if the cover video is fast-moving,
motion estimation is needed as preprocessing before collusion.

The art of collusion calculates average values of pixels in the same position of adjacent
frames, i.e., the average of Uy(m,n), Uj—i(m,n) and Uy (m,n). Motion compensated collusion
gains (Uyx(m,n) + Ug_1(m,n) + Ugs1(m,n))/3 , where Ui_i(m,n) comes from the
corresponding block of Uy(m,n) in U;_;. Those average values are then subtracted by Uj(m,n)
to get the residual signal, from which steganalytic features are extracted. Motion
estimation is a high-complexity operation, which segments each frame into several
blocks, and searches for the corresponding blocks of the current frame Uy(m,n) in a
specific region of its reference frame (e.g., U;_1).

PEFs are got by replacing the averaging operation in collusion with the differential
filtering Uy (m, n) — Uj_1(m,n) . For compressed videos, PEFs can be gained directly from
the compressed bit stream, while motion compensated collusion needs two copies of PEFs
which the compressed bit stream of some codec (e.g., MPEG1) may not contain. This is why
we would rather focus on PEFs other than collusion.

Figure 1 shows the joint probability Pr(Ui(m,n), Ux_i(m,n)) and Pr(Ui(m,n),
Uj_1(m,n)) estimated from 3710 frames of 14 standard video sequences (found at http:/
trace.eas.asu.edu/yuv/index.html. Each video sequence has not more than 300 frames)
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captured with CIF size. Due to the high correlation between adjacent frames, the values of
pixels in the same positions (or in the corresponding positions) of adjacent frames are close
to each other. For fast-moving videos, the deviation between Ui(m,n) and Uy_1(m,n) is
much smaller than the deviation between Uy(m,n) and U;_;(m,n), which suggests
Ui(m,n) — Us_1(m,n) used below may be less correlated to the video content than
Ui(m,n) — Uy_1(m,n) . Figure 1 also suggests that the profile of the ridge along the major
diagonal does not change much with the pixel value. This observation allows us to model the
pixels in video frames by working with the differences Uy (m,n) — Uy_1(m,n) instead of the
co-occurrences (Ug(m,n), Ux_;(m,n)) , which greatly reduces the model dimensionality.
Further simplification can be achieved by only focusing on the differences falling in a certain
range. If well set, this range may tradeoff the performance and complexity of the detector.

To observe the correlation between two adjacent frames more clearly, two assumptions
are made as below:

1) There is always high correlation between Uy(m,n) and Uj_1(m,n) in the host video.

2) The watermark frames W(m,n) are independent to Uy, and are independent to each other.
In addition, W, obeys a Gaussian distribution N (0, azai,) , where va denotes the variance
of the stego noise and a denotes the embedding intensity.

The first assumption allows us to make use of the differences Uy (m,n) — Uy (m,n)
falling in a small range. It is not satisfied when motion estimation is not precise enough (e.g.,
motion searching range is set too small; videos are quick-moving with irregular trail or taken
with low frame rate). The second assumption leads to simpler analysis of SS steganography.

2.3 Comparison of PVD and PEF
Original PVDs before corrupted can be calculated by

PVDy(m,n) = Ur(m,n) — Up(m,n+ 1) (3)

and original PEFs can be got by

Py(m,n) = Ui(m,n) — Us_i(m, n) (4)
250 1 250 1
200 1 200 1
150 1 150 1
100 ] 100 |
50 1 50 . 1
50 100 150 200 250 50 100 150 200 250

Fig. 1 Distribution of two pixels (U(m,n), Uy_(m,n)) in the same position of adjacent frames (the left
figure), and distribution of two pixels (U/c(m7 n), Us_1(m, n)) in the correlated positions of adjacent frames
(the right figure) estimated from 3710 frames of 14 standard video sequences. The degree of gray at (x,y) in the
figure is the probability of Pr(Uy(m,n) =x A Uy_1(m,n) =y)
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After the embedding of SS steganography, PVDs are calculated by

PVD, (m,n) = Yi(m,n) — Yi(m,n+1)
= Ui(m,n) — Uy(m,n+1) (5)
+Wi(m,n) — Wi(m,n+1)

and PEFs are represented by the equation

= Ui(m,n) — Uy_1(m,n) (6)

The distribution of Wy (m,n) — W;_1(m,n) is the same as that of Wy (m,n) —
Wy (m,n+ 1) according to the second assumption, which allows us to just focus on
the remaining components of PVDs (i.e., Uy(m,n) — Uy(m,n+ 1) ) and PEFs (i.e.,
Ui(m,n) —Uy_1(m,n) ). It is quite difficult to compare those two components using
existing mathematical models, and thus, we focus on the first moment and second
moment of PVDs and PEFs got from the cover videos according to the experiments
and analysis below.

Each frame in the original videos is segmented into several blocks of size 8x8 for
block matching. Local variances of PVDs and PEFs with size of 3x3 are denoted by
Varpyp,, and Varp, , where i is the indices of blocks in a frame. The probabilities
of three cases of (Varp\/D,“.7 Varp,,) from all the original video frames are shown in
Table 1.

It is interesting that in most blocks of the original videos, Varp < Varpyp occurs
whether the video content is fast-moving or not. On the other hand, when motion
estimation is perfect as we expect, we can get E[Py(m,n)] ~ 0 for all the cover video

Table 1 Probabilities of three cases of (VanVDk’,Van“) , where P {>} implies the probability of
P{ Varpk‘ > V(lrpv[)k_,}

ID Name Frames Camera motion Object motion P{>} P{= P{<}
1 Akiyo 300 N/A slow 0.010 0 0.990
2  Bus 150  panning global(fast) 0.593 0 0.407
3 Coastguard 300  panning Translational 0222 0 0.778
4 Container 300 N/A Slow 0.074 0 0.926
5  Flower 250  translational(fast) N/A 0.138  0.000 0.862
6 Hall 300 N/A non-translational 0.260 0.011  0.730
7  Highway 300  non-translational(fast) non-translational(fast) 0.316  0.059  0.625
8  Mobile 300  panning translational, rotational 0.057 0 0.943
9  Mother-daughter 300  N/A local(fast) 0.117  0.022 0.860
10 News 300 N/A local(fast) 0.061 0 0.939
11 Silent 300 N/A local(fast) 0.107 0 0.893
12 Stefan 90  non-translational(fast) global(fast) 0407 0 0.593
13 Tempete 260  zooming slow 0.180 0 0.820
14 Waterfall 260  zooming slow 0.006 0 0.994
Average 0.1548 0.0075 0.8736
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frames, while E[PVDy(m, n)] > 0 is inherent for PVDs. A simple comparison of the WSNR of
PVD and PEF for the case that motion estimation is ideally accurate is given by

E[(Wi(mn) =W (m,n+1))*]

E[(Ui(mn)=U (mn+1))°|

_ 2e%ay,

~ Varpyp, +E*[PVDy(m,n)]
20{20{ < 2:120& (7)

— Vllrp\/nk — Varpk

N E [(W/;(m,n)fwk,l(m,n))z]

E [(Uk (mn)=Ugy (”’lv”))z}

WSNRPVD P

= WSNRpgr,

A larger WSNR in PEFs based on ideally motion estimation than in PVDs suggests that
features based on PEFs may be more efficient than those based on PVDs.

2.4 The SPEAM features

As mentioned above, PEF denoted by Py (m,n) = U;(m,n) — Us_1(m,n) seems to be a
favorable variable for steganalysis. Figure 2 shows Pr(Pi(m,n),Pi(m,n+ 1)) of the
original video sequence “akiyo”, “akiyo” corrupted with a=1, and the original video
sequence “waterfall”. It is quite easy to distinguish the first two cases. However, there seems
no obvious deviation between the corrupted “akiyo” and uncorrupted “waterfall”, which
suggests Pr(Py(m,n), Py(m,n+ 1)) may be still correlated with the content of videos.

In fact, motion estimation to obtain PEFs has suppressed temporal redundancy in the
video content, while spatial redundancy inherited from frame samples still exists within PEF
samples. We employ an additional differential filter to realize further suppression of spatial

redundancy within (Py(m,n + 1), Pi(m,n)) . The differential filter is denoted by
D, (m,n) = Pi(m,n) — Pr(m,n+ 1) (8)

where D, (m,n) denotes the left-to-right difference of PEF samples. In addition, instead of the
joint probability Pr(Dy(m,n + 1), Di(m,n)) , a more commonly used conditional probability
Pr(Dy(m,n + 1)/Di(m, n)) is calculated to model correlations between adjacent PEF samples.
Figure 3 summarizes the feature extraction process of the SPEAM features, where the SPEAM
implies modeling of adjacent PE samples’ differences by a Markov chain. First, difference
matrices of adjacent PEF samples are computed. Second, transition probabilities of difference
matrices along the same direction are calculated. Finally, several subsets of those transition
probability matrices are averaged into two Markov matrices, which form the SPEAM features.
The Markov chain is chosen here mainly because of two facts. The first fact is that Markov
features have performed well for image steganalysis, which implies that the Markov chain is

3r 3 3

2} ] 2t ] 2t

1t 1 1t ] 1t

. = - [ e

-1t 1 1) ] 10

-2t 1 -2t ] -2t
-3-2-1 01 2 3 3-2-1 01 2 3 3-2-1 01 2 3
a original “akiyo” b “akiyo” corrupted with a=1 c original “waterfall”

CLITS

Fig. 2 Pr(Pi(m,n),Py(m,n+ 1)) of original video sequence “akiyo”, “akiyo” corrupted with a=1, and
original video sequence “waterfall”, a original “akiyo”, b “akiyo” corrupted with =1, ¢ original “waterfall”
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Fig. 3 Scheme of extraction of SPEAM features
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useful for modeling spatially adjacent pixels and is favorable for steganalysis. The other fact is

that adjacent PEF samples in the same PEF are quite similar to adjacent pixels in the same

image. To avoid rigorous analysis of the complex dependencies between adjacent PEF samples

theoretically, we attempt to introduce the Markov chain to model the dependencies. Since

dependencies between adjacent PEF samples are manipulated when the secret message is

embedded into the cover, we extract Markov features for detecting the existence of the secret.
The steps of feature extraction are as follows.

Stepl: Calculate difference matrices.

Difference matrices are denoted by Dj (m.n) , where ke {1,...,K} represents the frame
indices, e € {—,—, 1,1, ,\, /, ./} gives the direction of difference. For e =" 1’

D,T{(m,n) =Pi(m,n) — Pr(m — 1,n) 9)
where m, n are the row and column indices. For e =’
Df (m,n) = Px(m,n) — Py(m —1,n+ 1) (10)
Other difference matrices are obtained in similar manners.
Step2: Compute transition probabilities of difference matrices along the same direction.

The SPEAM features model difference matrices D} by a first-order Markov process and
compute the empirical matrices. For e ='1" | the empirical matrix is given by

1
M;W:M—NZZH(D’I(”'_ 1,n) :v|D,T((m,n) :u) (11)
where u, ve{—T,...T}. T denotes the threshold of u,v we concern. If Pr (DIT”M = v) =0,
then M, ,_, . For e =
1
/S S _ /! _
M, =10 zn:zmzpr(Dk (m = 1,n+ 1) = vID{ (m,m) = u) (12)

It should be noted that the differential directions of the two matrices D} in Eq. (11) (or
(12)) are the same. Other empirical matrices are obtained in similar manners.

Step3: Average Markov matrices to get two final matrices.

To decrease the feature dimensionality, we simply average the matrices My , . with the
same distances between the two difference matrices in the calculations of My , , (e.g., D}( X
(m,n) =u and DL(m —1,n) for Ml,u,v in (11)). For @ € {«,—, T, ]}, the distance is

thought to be the same one, while for @ € {\,\, ",/ } , the distance is assigned to be the
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other one. According to the two distinct distances, the matrices My , |, ofall the 8 directions are

separated into two subsets, which are then averaged respectively. With a slight abuse of
notation, the SPEAM features of a PEF can be formally written as

1
Fi =7 (M0 M7+ ML+ M) (13)
1
Fﬁm ..... ZmZZ(MI;\+Mk\ +Mk/+Mk/) (14)

where the dimensionalities of M} , FX  andFX | =~ arethe same,ie.,m = (2T +1)*.

There are two main parameters in the extraction of SPEAM features. One parameter is the
searching range in the motion estimation scheme. A larger searching range may bring a
higher motion estimation precision, but takes more time. Experiments of the searching range
are presented in Section III.A. The other parameter is the upper bound of |D;( , which is
represented by 7. A larger T implies taking more cases of adjacent PE samples’ differences
into consideration. When T'is too large, however, most cases of adjacent PE samples may be
unrelated to steganography and may be useless for steganalysis.

In [20], Pevny has employed 7=4 as the upper bound of difference values of adjacent pixels
in image steganalysis, and experiments have proved its usefulness. Here we calculate the matrix

F’l‘m ofall the 3710 frames from 14 standard video sequences, and intend to decide 7' from the

average of F ’f m - Figure 4 gives the average F ]1( o ofall the 3710 original video frames, stego
frames embedded with SS of «=1, and stego frames embedded with SS of a=3. Three figures
at the top are amplified to obtain the bottom figures. It should be noted that the blank samples
lying near the anti-diagonal line are mainly caused by i.i.d. random numbers.

we can manually
distinguish the stego videos from the cover ones. Our tests in the next section have also shown
that it is effective to set 7=3, leading to the features’ dimension of 2 e (27 + 1)2 =098.

15 1 15
5
-
-5
-15 ‘ : 4 -15
-15 -5 5 15
5
0 H
-5 .
-5 0 5 0 5
Fig. 4 Ff_ ofall the original video frames (left), stego frames embedded with SS of a=1 (middle), and

stego frames with SS of a=3 (right). The upper figures are amplified to form the lower ones

@ Springer



322 Multimed Tools Appl (2014) 72:313-330

3 Steganalysis of spread spectrum steganography using SPEAM features

To evaluate the performance of the SPEAM features, we test them against SS steganography
which is a broadly-used embedding method in video spatial steganography. SS methods can
be simply categorized into two kinds [18] when used in watermarking. The first kind embeds
the same watermark pattern in all video frames, while the other kind never embeds the same
watermark pattern in two distinct frames. We mainly care about the latter, which is more
close to actual steganography.

Standard video sequences are usually used for researches on video steganalysis, video
codec, object tracking etc. Video sequences found at http://trace.cas.asu.edu/yuv/index.html
are used here. The size of those video frames is CIF (352 x288), and the frame rate is 30fps.
For simplicity, only the first 90 frames of each video are used here for the experiments.
Contents of them are listed in Table 1. SVM [5] is used as the classifier, and the radial basis
function kernel is employed to implement the transformation of the feature vector for SVM.
Grid searching is exploited to find the optimal parameter pair (C,y), where C is the penalty
parameter, and v is the controlling parameter of the kernel function. All grid points of
(C={1e2,1e3,1e4},y=—logy(98)+ {-3,—2,...,4}) are tested.

Each video sequence has a single scene, leading to high dependencies between
distinct frames which are even not neighboring. This makes it unreasonable to divide
each sequence into several sub-sequences and take experiments upon those sub-
sequences. Sequence-level cross validation stated in Algorithm 1 is designed to
evaluate the proposed features. The accuracy Acc(C,,y,) correlated to the optimal
parameters (C,,y,) forms the final testing result. The accuracy of each loop in
Algorithm 1 is calculated by

Acc_iter (i) = TP+IN (15)
N
where TP is true positive, and TN is true negative. When 5 videos are chosen for
testing, the whole loops of i for each (C,y) is as large as C3, = 2002 . For simplicity,
we set the maximum of i to be 100.

Algorithm 1 Sequence-level Cross Validation
Input: Features of each video tested, the number of videos, and all the grid points of

parameters {C 7}
Output: The optimal parameters (C..%), and the accuracy of the classification Aee(C¥] .
foreach < in {C¥
foreach ¥ in {G7)

1
2
3 set Ace_tfer to 0
4 foreach i from 1 to 100

5 randomly choose the features of 5 videos for testing;
6

7

8

choose the features of other 9 videos for training;
train and test using SVM with C,¥ , and record the accuracy #&ce_#er (i) ;
end

] o . .
9 calculate the average accuracy Ace(C,y]= Tl > Avc _tter i# e
1=
10 end
11 end

12 output (C.r)=agmax (Ace(C¥)) and Acc .
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3.1 Motion searching range

The SPEAM features with searching range of 0, 3, and 7 in the motion estimation scheme
are tested. Corresponding results are given in Table 2. The SPEAM features, which are
calculated with the motion searching range of * are denoted by SPEAM(e).

Corrupted pixel ratio (cpr), which is similar to bits per pixel (bpp) commonly used in
image steganography, is defined here to represent the ratio of the corrupted pixel number to
the total pixel number.

Generally speaking, a larger motion searching range implies a more precise
matching of blocks in two adjacent frames. This makes it easier for the steganalyzer
to distinguish the cover from the stego objects. Table 2 has shown that in most
cases, the larger the searching range is set, the better results we obtain. However,
deviations between SPEAM(3) and SPEAM(7) are not obvious. The reason may be
that precision of motion estimation depends on not only the searching range of block
matching, but also the content of videos, the size of blocks, the precision of motion
unit (such as pixel, sub-pixel, and quarter pixel), and effects of the embedding
operation, etc.

As a larger searching range takes more time for the feature extraction scheme of uncom-
pressed videos, we choose 3 for the tradeoff of motion estimation precision and complexity
in the following experiments of uncompressed video sequences.

3.2 Spatial steganalysis of uncompressed video sequences

To compare the SPEAM features with the SPAM features and Budhia’s features in [3]
(Block-based collusion features are tested here with motion searching range of 3), experi-
ments using sequence-level cross validation are taken here on uncompressed video sequen-
ces. Figure 5 gives the detection accuracy. Because of the poor performance of Budhia’s
features, we just test them for cpr=1.

Results shown in Fig. 5 imply that for all the cases tested, the SPEAM and SPAM features
are close and much better than Budhia’s features. This may be because more characteristics
(i.e., the Markov features) of the video sequences are utilized for steganalysis in the SPAM
and SPEAM features. The time consumed by SPEAM, however, is more than that of

Table 2 Detection accuracy of

the SPEAM features with motion a cpr SPEAM(0) SPEAM(3) SPEAM(7)

searching range of 0, 3, and 7 on

uncompressed videos 1 1.00 98.16% 99.90% 99.98%
1 0.50 91.20% 95.37% 96.48%
1 0.25 82.76% 83.72% 83.48%
1 0.10 70.66% 70.99% 71.91%
2 1.00 98.23% 99.64% 99.78%
2 0.50 98.34% 99.84% 99.84%
2 0.25 92.80% 94.79% 95.92%
2 0.10 84.15% 85.08% 87.16%
3 1.00 97.44% 99.74% 99.76%
3 0.50 97.51% 99.81% 99.37%
3 0.25 96.27% 95.53% 96.29%
3 0.10 85.72% 88.17% 89.23%
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¥ Budhia’s feature| 58.77% 80.11% 93.13%
5 SPAM 96.93% | 95.27% | 86.89% | 74.17% | 96.55% | 96.19% | 93.91% | 78.85% | 99.95% | 95.70% | 94.59% | 82.26%
SPEAM 99.90% | 95.37% | 83.72% | 70.99% | 99.64% | 99.84% | 94.79% | 85.08% | 99.74% | 99.81% | 95.53% | 88.17%

Fig. 5 Detection accuracy of the SPAM features, the SPEAM(3) features and Budhia’s features on uncom-
pressed video sequences

Budhia’s features, which is due to the calculation of probability transition matrices (such as
if-else decision) and block matching.

Figure 5 also implies that SPAM and SPEAM are generally similar for the spatial
steganalysis of uncompressed videos. This may be because that for uncompressed videos,
spatial dependencies between adjacent pixels may contain much enough information to
distinguish the stego videos from the cover videos, while combining the utilization of
temporal and spatial redundancy does not bring additional information to obviously improve
the detection accuracy.

With a more precise block matching scheme which gets a matching result from the stego
object more close to that of the cover one, the SPEAM features are believed to be more
favorable.

3.3 Spatial steganalysis of compressed video sequences(MPEG2)

To further evaluate the performances of the proposed features for actual steganalytic
systems, the experiment in the last subsection is replicated here on compressed video
sequences. SS steganography is implemented on cover videos of YUV format, which are
then converted to MPEG2 format by VcDemo [26] with GOP structure of [BBPBBPBBPBB
and motion searching range of 15. At last, features are extracted from the cover MPEG2
videos and the stego MPEG?2 videos, and sequence-level cross validation is employed to
obtain testing results.

Since PEFs can be obtained after partial decompression of the compressed videos, no
additional block matching is needed for the extraction of the SPEAM features. The Markov
features of PEFs are calculated directly to form the SPEAM features. For a B-type frame,
features of two PEFs are averaged, while for a P-type frame, features of the only PEF are
directly employed.

For simplicity, we just use SS for message embedding, regardless of whether the message
in the MPEG2 videos can be completely extracted. As the compressing scheme may erase
some of the watermarks, only cpr=1 is tested here.

Figure 6 shows the detection accuracy of the SPEAM features, the SPAM features,
Budhia’s features, and Vinod’s features [18]. When the bit rate is as low as 2 Mb/s, the
distortion of watermark and video content leads to degradation of all the tested features’
performances. Contrarily, when the bit rate is 5 Mb/s, the simulation result is similar as result
shown in Table 2. This is because the quality of videos which have bit rate of 5 Mb/s is close
to that of uncompressed videos (The bit rate of uncompressed videos is 352 %288 x30~=
3.04 Mb/s).
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B SPAM 56.76% 69.58% 75.05% 74.77% 89.29% 91.27%

U SPEAM 60.46% 77.17% 85.56% 71.62% 92.02% 98.92%

Fig. 6 Detection accuracy of Budhia’s features, Vinod’s features, the SPAM features, and the SPEAM
features on compressed video sequences (MPEG?2). Bitrates of 2 Mb/s and 5 Mb/s, and « of 1, 2, 3 are tested

In all the cases tested, the SPEAM features and the SPAM features perform much better
than other two features, which suggests that modeling with a Markov chain contains more
information sensitive to steganography than the i.i.d. model used in Budhia’s features and
Vinod’s features. Besides, the SPEAM features seem prior to the SPAM features in most
cases. The detailed ROC curves of the SPAM features and the SPEAM features are provided
in Section IILE.

3.4 Spatial steganalysis of compressed video sequences(H.264)

Experiments in this subsection are carried out on compressed video sequences compressed
in H.264 by libx264 encoder of FFMPEG [7]. Firstly, SS steganography is implemented on
the cover videos. Secondly, both the cover videos and the stego videos are encoded into
H.264 format by FFMEPG. Lastly, SPEAM features of videos are extracted and tested. The
profile of the H.264 encoder is set to “baseline”, and two cases of bit rate (i.e., 2 Mb/s. and
5 Mb/s) are tested.

Figure 7 shows the testing results of the SPEAM features and the SPAM features.
Generally, the results shown in the figure are similar to testing results on videos compressed
in MPEG2 format. This means when the bit rate is 5 Mb/s, two features perform similarly,
while when the bit rate is 2 Mb/s, the SPEAM features are prior to the SPAM features. The
detailed ROC curves are provided in the next subsection.

3.5 Experimental results of SPEAM and SPAM

To compare the SPEAM features and the SPAM features for compressed videos, Fig. 8 gives
the ROC curve of testing results when the SPAM features and the SPEAM features are tested
on MPEG2-format videos, and Fig. 9 gives the ROC curve of testing results on H.264-
format videos. Bit rate of 2 Mb/s and « of 1, 2, 3 are tested. Those two figures suggest that
when a=1, since most of the stego noise has been erased by the compression scheme, both
features perform poor. When av=1.3, distortion exists in the video content, and most of the
stego noise survives the compression scheme. In this case, the SPEAM features which
consider both spatial redundancy and temporal redundancy perform better than the SPAM
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Fig. 7 Detection accuracy of the SPAM features and the SPEAM features on compressed video sequences
(H.264). Bitrates of 2 Mb/s and 5 Mb/s, and « of 1, 2, 3 are tested

features which just consider spatial redundancy between adjacent pixels. This is why we
believe the SPEAM features are favorable for spatial video steganalysis.
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Fig. 8 ROC curve of the SPAM features and the SPEAM features on compressed video sequences (MPEG2).
The bitrate of 2 Mb/s, and « of 1, 2, 3 are tested. a ROC curve when a=1, b ROC curve when =2, ¢ ROC
curve when a=3
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Fig. 9 ROC curve of the SPAM features and the SPEAM features on compressed video sequences (H.264).
The bitrate of 2 Mb/s, and « of 1, 2, 3 are tested. a ROC curve when a=1, b ROC curve when a=2, ¢ ROC
curve when a=3

4 Conclusions

The work presented in this paper utilizes the fact that the correlation between adjacent PEF
samples exists in typical digital media while the dependences degrade because of the random
stego noise. The dependences between differences of neighboring PEF samples are modeled
by a Markov chain. Subsets of the empirical probability transition matrices are taken as a
feature vector for steganalysis, which is called the SPEAM features.

The main advantage of SPEAM is that for compressed video sequences which are the major
components of the Internet videos, SPEAM performs better than other methods tested. Fur-
thermore, the calculation of features is of low complexity and is suitable for real-time applica-
tions. For uncompressed video sequences, SPEAM performs similar to SPAM which is one of
the most effective image steganalytic methods, and is prior to previous works by Budhia.

In the future, we would like to investigate more advanced measures to merge the
utilization of temporal redundancy and spatial redundancy, aiming at achieving better
performances, especially for compressed videos with contents which are fast-moving with
irregular trails or of high texture complexity. In addition, the effectiveness of the steganalytic
features on videos of various codec should be further tested. Besides, steganography
utilizing information got in the compression schemes (such as motion vector [1]) has been
studied, and several steganalytic methods have been proposed [4, 25]. We also plan to
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research on dependencies between intra-frame MVs and correlation within inter-frame MVs,
and derive favorable features for steganalysis.
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