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Abstract Reliable people counting is a crucial task in video surveillances. Among
the available techniques, map-based approaches have shown a good performance in
estimating the number of people in crowds. These approaches generally subtract the
background, and then map the number of people to some features such as foreground
area, texture features or edge count. However, in complex scenes, they suffer from
inaccurate foreground/background segmentations, erroneous image features, and
require large amount of training data to capture the wide variations in crowd
distribution. This paper proposes a method using motion statistics of feature-points
to estimate the number of moving people in a crowd. Simple feature-points are
tracked within the scene. Then moving feature-points are partitioned into clusters
corresponding to separate groups of people. For each group, three statistical features
are calculated from related feature-points. The amount of moving feature-points is
used to provide a rough estimate of group size. Furthermore, motion trajectories of
feature-points are utilized to extract two other features related with the amount of
occlusions present in groups. The extracted data are used to estimate the number of
people in each group, so that the total crowd size is the sum of all group estimates.
The experimental results show that the proposed method outperforms the state of
the art approaches, e.g., with MSE of 2.357 and MAE of 1.093 for the benchmark
video clip “Peds1”. The proposed approach is good for estimating the number of
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people in public places, such as pedestrian walkways and parks, where people are
moving and partial occlusions present in the scene.

Keywords People counting ·Crowd counting ·Feature point ·Feature tracking ·
Occlusion ·Video surveillance

1 Introduction

Counting people in crowds is a crucial and challenging problem in video surveillance
applications. An accurate estimation of the number of people in a crowd is a key
indicator of the crowd security and safety, and it can be extremely useful information
for economic purposes, resource management, scheduling public transportation,
indexing multimedia archives, or advertising. Some other important applications
have to do with estimating the number of people in over-populated places. For
example, knowing the size and density of a crowd outside a school or public event
can be helpful for the detection and early warning of unsafe situations. This capability
can be useful in planning evacuation strategies [10, 13, 26], which is probably on the
top of the list of public safety issues. Hence, a lot of work based on computer vision
technology has been done to collect this data automatically.

Current approaches to this problem are generally classified into three categories:
model-based methods, trajectory-clustering-based methods, and map-based methods
(also called measurement-based or feature-regression-based). In the first two cate-
gories, people in the scene are first detected individually, and then the total number
of people in the scene is counted. The model-based approaches attempt to segment
and detect every single person in the scene using a model or appearance of human
[14, 22, 24, 25, 28, 36, 41–43], and the trajectory-clustering-based approaches try to
detect every independent motion by clustering interest-points on people tracked over
time [4, 7, 34]. In contrast, the map-based approaches count the number of people
without having to segment or detect each individual [1, 5, 6, 8, 9, 16, 18, 19, 30–
32, 35, 37]. These approaches generally map the number of people to foreground
pixels or some other features by training. The map-based method is considered to
be more robust, since the correct segmentation and detection of people is a complex
problem that cannot be solved accurately, especially when occlusions are present in
the crowd.

Map-based approaches usually subtract the background and then utilize holistic
features (i.e. features from the entire crowd) from the scene such as foreground area
[6, 9, 16, 32, 37], texture features [6, 30, 35], edge count [6, 9, 37], or histograms of edge
orientations [6, 19, 37] to estimate the crowd density by a regression function, e.g.
linear [9, 32], Gaussian process [6], or neural networks [8, 16, 18, 19, 31, 37]. Almost
all of these approaches have shown that the relationship between the foreground
area and the number of people in the scene is approximately linear. However, this
relation usually fails due to the occlusions and perspective problem.

In order to overcome the effects of perspective, a variety of techniques have
been proposed in the literature. For example, a geometric factor was used in [32]
to weight each pixel according to its location on the ground plane; or a perspective
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map was proposed in [6] to weight all extracted features from image. The problem
of occlusions have been mitigated by using additional features, e.g. edge count in
[9], histograms of edge orientations in [19], or by using a great quantity of features
in [6]. The approach in [6], used a mixture of dynamic textures to segment the
foreground motion in two directions. Then, a large number of features were extracted
including foreground area, edge orientation histogram, perimeter pixel count and
textural features. In total, 29 features were extracted to estimate the number of
people walking in each direction. However, in complex scenes, these approaches
suffer from some issues as follows:

– The foreground/background segmentation process which is needed in these
approaches is by itself a difficult task that cannot be carried out accurately in
crowded scenes.

– Edge-based features that are usually used in these methods can be extremely
erroneous because the edges are completely messy when the background is
complicated and the textures of human clothes are not smooth.

– Extracting a large amount of features, especially edge extraction, is very time-
consuming.

– Because of the wide variability in crowd density and distribution, using holistic
features from scene can give rise to extensively different features, and there-
fore a large amount of training data is required to capture the various crowd
distributions.

To deal with the later problem and in order to reduce the required training data,
some approaches proposed to use local features rather than holistic features. Local
features are specific to one person or a group of people in the scene, while holistic
features are calculated from the entire crowd. The important advantage of the local
features is the availability of more training cases in one training image. Therefore,
extracting local features from scene can help to capture various crowd distributions
from a small amount of training data. For example, the approach proposed in [5]
assumed a linear relationship between blob size and group size, and method in [17]
used an elliptical cylinder model to estimate the number of people moving in separate
groups. A supervised learning framework was proposed in [23], which estimates an
image density whose integral over a region of interest yields the number of people.
Approach in [37] used a foreground segmentation algorithm to obtain blobs in
an image and then utilized several blob features to estimate group sizes, however
obtained blobs are still prone to errors due to imperfect foreground segmentation in
densely crowded scenes.

Recently, Albiol et al. [1] proposed a map-based approach and used corner-
points as features. In this approach, firstly, corner-points are detected using Harris
corner detector [15]. Then, moving corner-points (foreground corner-points) are
distinguished by computing motion vectors between adjacent frames. Finally, the
count of moving people is estimated from the number of moving corner-points in
the scene. The estimation is done based on a direct proportionality relation with
a constant factor determined using one frame of the video sequence. Although
the underlying assumption in this method may appear rather simplistic, it was the
winner of the PETS 2009 [33] contest on people counting task and has proven
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to be quite robust when compared to more sophisticated competitors [12]. Beside
the good performance, this approach has other important advantages: no need to
estimate the background, no need to deal with shadow problems, no need to segment
foreground/background areas or individuals, and no need to extract a large amount
of complicated features. However, it still meets problems in complex scenes and the
attained accuracy is limited by the perspective effects and the presence of occlusions
in various crowd distributions.

In this paper, we propose an approach using the motion statistics of low-level
feature-points (FPs) to estimate the number of moving people in a crowd. Similar to
Albiol’s method, the amount of moving-feature-points (MFPs) in the scene is used
as a clue to the foreground area, which can provide a coarse estimate of crowd size.
Furthermore, our approach utilizes the motion trajectories of MFPs to capture other
clues about crowd complexity. Our motivation is to extract some statistical features1

from MFPs that are highly correlated with the level of occlusion present in a crowd.
We introduce two occlusion-related features, namely the rate of boundary-feature-
points and the mean duration of torso-feature-points, to produce more accurate
estimates of the crowd size. In order to make our system generalizable to various
crowd distributions, these features are extracted on a local level, i.e. local with respect
to the groups of people moving together. To this end, MFPs are partitioned into
clusters corresponding to separate groups of moving people in the crowd, and then
statistical features are calculated for each group separately. Finally, the extracted
features are used to estimate the number of people within each group, so that the
total crowd size is the sum of all group estimates.

The proposed approach is evaluated on a large pedestrian dataset, containing
very distinct camera views, locations, and pedestrian traffic. The proposed system
is compared to Albiol’s method and some other map-based approaches. The results
show that our approach outperforms those methods. It is also shown that counting
crowd in separate groups of people results in a quite robust and generalizable
approach that is capable of extrapolating to count crowds not encountered during
training and can be trained on a small amount of training data.

The proposed system is suitable to count the number of moving people in public
places such as busy pedestrian walkways, shopping malls, parks, etc. where people are
moving and partial occlusions present in the scene. Although the feature extraction
based on motion information of FPs might be not accurate enough in highly dense
crowds and mass gatherings such as music festivals, sports events or pilgrimage where
it is not possible to generate meaningful trajectories of FPs, our experiments on very
crowded videos show that the proposed method is able to provide a rough estimate
of crowd size in such scenes.

The rest of this paper is organized as follows; Section 2 presents the proposed
crowd counting system. Our experimental results are presented and analyzed in
Section 3. Finally, in Section 4 we draw conclusions and discuss possible directions
for future work.

1To avoid confusion, “feature” will be used when referring to the statistical features extracted from
feature-points and “feature-point (FP)” will be used when referring to feature-points detected for
tracking.
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Fig. 1 An example frame of a
crowd containing pedestrians
moving away from, and
towards the camera

2 Crowd counting using motion statistics of FPs

2.1 System overview

An example frame of a crowd containing pedestrians moving away from, and towards
the camera is shown in Fig. 1. The goal is to estimate the number of moving people
by using features that we extract from a set of FPs and their trajectories within each
time-window of the video sequence. Firstly, a number of FPs are tracked within a
specified time-window of the video. To detect and track the FPs, we use the KLT
tracker [27, 39, 40], which has been widely used in people tracking [2, 34, 38]. Then,
MFPs are separated from static FPs (background FPs). An example frame containing
detected FPs inside the region of interest is shown in Fig. 2. Afterwards, in order to
extract local features from MFPs, they are clustered into clusters corresponding to
one person or a group of people in the scene. Then, three statistical features are
extracted from each cluster in order to capture some clues about the number of
people and occlusion level within each cluster. Finally, a classifier is trained to map
the extracted features to the number of people within each group, and the total count
for the scene is calculated by the sum of the group estimates.

In order to train this system, the ground truth annotation must specify a crowd
count for separate groups of people in the scene. Therefore, ground truth annotation
is performed after MFP clustering step, once the groups of people are detected. The
number of people is manually counted for each group in an image; therefore each
frame provides several instances of ground truth. This results in a system that is

Fig. 2 An example frame
including detected FPs. The
MFPs are drawn in green
and the static FPs in red
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generalizable to crowd volumes not seen in the training set and can be trained on
a small data, comparing with system that extract features from whole scene and each
frame contains one instance of ground truth.

In the extraction of statistical features from FPs it is important to consider the
effects of perspective, which cause that the farther the person is from the camera,
the fewer are the detected FPs. Because objects far from the camera appear smaller
than objects closer to the camera (see Fig. 2). One possibility is to weight each
FP according to a perspective normalization map. In this work, we calculate the
perspective map in the same manner as [6]. The calculated perspective map is used to
weight FPs when we calculate any features from clusters of MFPs. In a more general
setting, one can use the calibration methods presented in the literature for exam-
ple [20].

2.2 Clustering of the MFPs

In order to extract local features from MFPs, the algorithm needs to partition the
MFPs into clusters corresponding to separate groups of people. In a crowded scene,
people can appear in different positions and can be gathered in many different ways.
Therefore, we cannot apply commonly used clustering methods (such as k-means)
to cluster the MFPs, as we do not have any prior knowledge about the number and
the shape of the clusters. For such a clustering problem, we use a scheme based on
the graph theory. The set of MFPs in a frame are represented as a graph in which
each MFP corresponds to a node. To build the edge set, an adjacency rule is defined
based on the minimum distance between two FPs in the KLT tracker. We assume
there exist an edge between two MFPs if distance between them is equal or less than
3q, where q is the minimum distance between two FPs in the KLT tracker. Since FPs
cannot be closer than q, we choose 3q as the radius of adjacency. Finally, the obtained
graph is traversed (using standard algorithms such as breadth-first-search (BFS)
or depth-first-search (DFS)) to find its connected components, corresponding to
separate groups of people in the scene. Two sample frames containing the clustered
MFPs are demonstrated in Fig. 3.

2.3 Extracting statistical features

After partitioning the MFPs into clusters, statistical features are extracted for each
cluster in a given frame. Considering the good performance shown by Albiol’s
method in [1], it is expected that there should be a nearly linear relationship between
the number of MFPs and the number of moving people in a crowd. Figure 4 plots the
number of MFPs versus the crowd size on a part of “Peds1” video (see Subsection
3.1). While the overall trend is indeed linear, there exist local non-linearities that
mostly arise from occlusion and the effects of perspective. Normalizing FPs by

In order to count people at a given frame, our algorithm processes the set of
trajectories bounded by a finite time-window τ =± 2 s, which spans equally forwards
and backwards in time with respect to the current frame (i.e. at a frame rate of 10
fps, the time-window is 40 frames). The time-window is shifted frame by frame to
process the entire video, which means that the counting is performed for all frames
and for each one independently. In the next subsections we present the details of the
proposed crowd counting approach.
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Fig. 3 Two sample frames containing the clustered MFPs. Clusters are depicted in distinct colors

using the calculated perspective map will compensate for the effects of perspective.
Accordingly, for each cluster of MFPs, we calculate the amount of MFPs instead of
the number of MFPs as follows:
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Fig. 4 Correspondence between number of MFPs and crowd size on a part of “Peds1” video

|Mt
c| =

∑

i∈Mt
c

wi (1)

where Mt
c is the set of MFPs in c-th cluster at frame t and wi refers to weight of i-th

FP in perspective map.
The remaining problem is occlusion. Indeed, the estimation function fails when

occlusions happen and overlapping people cover some body-parts of each other.
Consequently, only a subset of the corresponding FPs are detected. To model these
non-linearities, we extract other features for each cluster. We hypothesize that there
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could be some relations between the level of occlusion (complexity of the crowd)
and the motion statistics of MFPs. Therefore, in order to extract occlusion-related
features from a cluster of MFPs, we utilize motion trajectories of MFPs within a
specified time-window (see Subsection 2.1).

To extract the desired occlusion-related features, an initial pitfall is the detected
FPs on the limbs of people, which are named as limb-feature-points (LFPs). These
FPs usually move with varying speeds and in various directions, and their motion is
not consistent with the other FPs on torso and head of the corresponding human,
which are named as torso-feature-points (TFPs). Since our aim is to find some
motion-based features that are highly correlated with the level of occlusion in a
crowd, these irregular movements of LFPs prevent us from making an accurate
statistical analysis of the MFPs’ motion information. For example they are often lost
very soon during the tracking, so they usually have very short trajectories; distance
between them and other FPs varies continuously, etc. Therefore, before extracting
occlusion-related features, we need to distinguish and separate the LFPs from the set
of MFPs. In the following subsections, firstly, we present how LFPs are detected and
then introduce the other features extracted from remaining MFPs.

2.3.1 Detecting LFPs

Due to the swinging motion of LFPs, they usually move with various speeds along the
successive frame sequences, while other FPs on stable body-parts (i.e. TFPs) almost
always have a continuously uniform motion with a constant speed. We make use of
this fact to distinguish LFPs form TFPs. We assume that an FP is more likely on a
limb if the variance of its motion speed is large.

Let Ti refer to the trajectory of i-th FP, Tt
i =

(
xt

i, yt
i

)
is its coordinates at time t, vt

i =(
vt

xi
, vt

yi

) = (
xt

i − xt+1
i , yt

i − yt+1
i

)
is its motion vector at time t, st

i =
√(

vt
xi

)2 + (
vt

yi

)2

refers to its speed (magnitude of motion vector in pixel/frame) at time t, and �i is
for the whole lifetime of Ti (i.e. frames within the specified time-window that Ti has
been tracked along them). In order to determine that whether i-th FP is an LFP or
not, the variance of its motion speed along time (i.e.

{
st

i; t ∈ �i
}
) is checked. If the

variance value was greater than a specified threshold the FP is treated as an LFP. As
an example, Fig. 5 shows the speeds of two sample FPs along the given time-window,
where one FP is an LFP and the other is a TFP. In the figure, comparing speed
variations of two FPs, one can observe that the speed of the LFP varies drastically
within its lifetime while there is only a slight speed reduction along the time for the
TFP. This speed reduction with time is caused by the perspective effect, i.e. in this
case (“Peds1” video) the corresponding person is moving away from the camera.
Although this variation is much smaller than the speed variance of the LFP (because
perspective scale varies less during our considered time-window), we deem that these
speed variations could be excessive in other cases and may affect the LFP detection
process, therefore, we enrich our analysis as follows.

As shown in Fig. 5, in contrast to the LFPs, the speed of TFPs changes smoothly
with time, and the speed difference between two successive frames is usually very
slight. Therefore, to cope with the effects of perspective, firstly, we calculate the
speed-difference between two successive frames during the lifetime of the motion
trajectory of an FP, and then check the variance of the set of speed-differences.
More precisely, instead of considering variance of

{
st

i; t ∈ �i
}
, the variance
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Fig. 6 The speed-differences between two successive frames for two FPs over time. The variance of
speed-differences for TFP is very small (almost equal to zero)

Fig. 5 The speed of two FPs over time. There is more variation in speed of LFP

of
{(

st
i − s(t+1)

i

); t ∈ �i
}

is taken into account. Figure 6 shows the speed-differences
between successive frames for same FPs in Fig. 5. It can be seen that the variance
of speed-differences for TFP is very small (almost equal to zero) while for LFP, it
still has high variations. As a result, we can easily distinguish LFPs by applying a
minimal threshold on the variance value. Therefore, i-th FP is an LFP if the following
condition is satisfied:

Var
({(

st
i − st+1

i

) ; t ∈ �i
})

> � (2)

where � is a threshold value.
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After removing LFPs from the set, we can analyze the motion behavior of
remaining TFPs to find the features related to the level of occlusion present in each
group of people.

2.3.2 Extracting occlusion-related features from TFPs

Two statistical features for capturing the various levels of occlusion are extracted
from TFPs of each cluster as follows:

(1) Rate of boundary-feature-points

Our aim is to discover the level of occlusion existing in a crowd of people. One
possibility is to determine how much overlapping people are present in the crowd.
Since overlapping people share some overlapping boundaries, the amount of shared
boundaries increases as the occlusions increase. Hence, we can acquire a clue to the
level of occlusion by determining the amount of shared boundaries between people
in a crowd. To capture this data, we try to determine the amount of FPs placed on the
boundary regions between overlapping people. These FPs are named as boundary-
feature-points (BFPs). In order to detect the BFPs, we use the temporal motion
consistency of two adjacent FPs to discover whether these FPs belong to the same
individual or they are placed on the overlapping boundary of two people which are
treated as BFPs. We use the assumption that pairs of adjacent FPs corresponding to
a region straddling two people are expected to have higher variance in their mutual
distance when compared to pairs of adjacent FPs that are placed on one individual.
A visualization of a sequence of FPs is provided in Fig. 7. As shown in the figure, the
distance between two FPs on different persons is highly probable to vary with time,
while the distance between FPs on the same person is almost constant.

Fig. 7 A visualization of a
sequence of FPs on two
overlapping persons. BFPs are
depicted in red and the others
in green. Distance between
two FPs on different persons is
varying along the time, while
distance between FPs on same
person is almost constant

Current Frame

time

To calculate the variance in distance of two adjacent i-th and j-th FPs with motion
trajectories Ti and T j, which are, respectively, extended in time over �i and � j, we
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consider only the overlapping range of the time, �i ∩ � j. We say two FPs are BFPs
if the following condition is satisfied:

Var
(
DistanceEucl

(
Ti, T j

))
> θ (3)

where,

Var
(
DistanceEucl

(
Ti, T j

)) = Var

({√(
xt

i − xt
j

)2 +
(

yt
i − yt

j

)2 ; t ∈ �i ∩ � j

})
(4)

and θ is a threshold value.
Our algorithm to detect the BFPs is as follows: For each FP in the set of TFPs in

a cluster, we check its distance variance with remaining TFPs in its neighborhood
using (3). If there is any FP that satisfies the condition, the under-analysis FP is
treated as a BFP. To check the distance variance between each FP with its neighbors,
we only consider those FPs that are within a box centered on the FP position at the
time the trajectory begins. We choose 4q for the diameter of the box, where q is
the minimum distance between two FPs in the KLT tracker. Because FPs cannot
be closer than q, we choose 2q as the radius of adjacency, so 4q is the diameter.
Algorithm 1 presents the detailed procedure of BFP detection process.

Algorithm 1 BFP Detection

Input: F = {F1, F2, . . . , Fn} set of n TFPs with trajectories T = {T1, T2, . . . , Tn},
threshold θ

Output: B: set of detected BFPs
Begin
Forall Ti ∈ T do

N ← FindNeighbors(Ti)
if ∃ T j ∈ N subject to

(
Var

(
DistanceEucl

(
Ti, T j

))
> θ

)
then

B ← B ∪ {Fi}
end
End

FindNeighbors(T): Finds neighbor trajectories of T inside the defined neighborhood box.

After detecting BFPs in c-th cluster at frame t, we measure the amount of them,
by taking into account their weights in the perspective map as follows:

|Bt
c| =

∑

j∈Bt
c

w j (5)

where Bt
c is the set of detected BFPs in c-th cluster at frame t and w j refers to weight

of j-th FP in the perspective map. Finally, we measure the rate of BFPs as follows:

rt
c =

|Bt
c|

|Mt
c − Lt

c|
(6)

where rt
c is the rate of BFPs in c-th cluster at frame t, Lt

c is the set of detected LFPs
in c-th cluster at frame t, and |Mt

c − Lt
c| is the amount of TFPs in c-th cluster at that
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frame. It is expected that the value of this rate increases as the amount of occlusions
increase in crowds.

(2) Mean duration of TFPs

When moving people are well separated from each other in the scene, the TFPs are
tracked excellently, and therefore, their motion trajectories usually have complete
durations along the given time-window. However, in complex scenes, occlusions can
result in some short trajectories due to the lost FPs in the tracking stage. Accordingly,
we hypothesize that the duration of trajectories of TFPs (i.e. lifetime of TFPs) are
highly correlated with the level of occlusion present within a group of people moving
together. In other words, the number of short trajectories increases as the occlusions
increase. The key idea is to compute the mean duration of trajectories of TFPs in
each cluster. This parameter can tell us the occlusion level of the related group. We
compute it as follows:

mt
c =

∑
k |Tk|·wk∑

k wk
, k ∈ {

Mt
c − Lt

c

}
(7)

where mt
c is the mean duration of TFPs in c-th cluster at frame t, |Tk| is the number

of frames that the trajectory of the k-th FP is present in, wk refers to its weight in
the perspective map, and

{
Mt

c − Lt
c

}
is the set of TFPs in c-th cluster at frame t. It

is expected that the value of this parameter decreases as the amount of occlusions
increase in crowds.

2.4 Estimating crowd size

The extracted features from each cluster of MFPs serve as inputs to a classifier. The
output of the classifier is the number of moving people within each cluster. Such a
standard regression problem can be addressed by a multitude of machine learning
tools. We use a single hidden layer feed-forward neural network to perform clas-
sification. Feed-forward neural networks are successful to model nonlinear systems
[3], and have shown good performances in previous research [8, 16, 18, 19, 31, 37]. In
our system, the input layer of neural network has three units, which correspond to
features (i.e. the amount of MFPs, the rate of BFPs and the mean duration of TFPs)
extracted from a cluster. There is only one output unit in the network, representing
estimation of the people count for each cluster. Suppose the number of moving
people in c-th cluster at frame t is denoted by Xt

c, and f expresses the relationship
between number of moving people and the extracted features, as in (8).

Xt
c = f

(|Mt
c|, rt

c, mt
c

)
(8)

A training set is used for building the neural network to learn the relationship f ,
and the neural network is then used to estimate the number of people in clusters, and
the total crowd estimate for frame t containing Nc clusters is calculated as:

Et =
Nc∑

i=1

Xt
c. (9)
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3 Experiments

In this section, the proposed system is evaluated using different video sequences.
Firstly, we examine the relationships between the extracted occlusion-related fea-
tures and the level of occlusion present in the scene. Then, we report the counting
results of the proposed approach on different video datasets, and compare them with
results of other methods proposed in [1, 6, 9, 18, 19, 23, 37]. Afterwards, the results of
our experiments are shown in order to demonstrate the effectiveness of the extracted
features and perspective normalization scheme. Finally, the result of our experiment
is presented in order to demonstrate the robustness and generalizability of our system
against equivalent holistic system which calculate holistic rather than local features
from scene.

3.1 Datasets

We use seven different videos with a large number of annotated frames for
evaluation:

1. “Peds1” [6]2: An oblique view of a walkway, containing a large number of
pedestrians. The ground truth pedestrian counts inside a region of interest are
available for 2000 frames of this video, featuring 11 to 46 people.

2. “Peds2” [29]3: A side-view of a walkway, containing fewer people, compared
with the “Peds1” dataset. In this video, the pedestrian movement is parallel to
the camera plane. The ground truth pedestrian counts inside a region of interest
have been provided for 2000 frames, consisting of 0 to 15 people.

3. “USC” [43]: A view of a walkway, consisting of 4 to 13 people captured from a
camera above a building gate. We provide the ground truth counts for 300 frames
of this video, manually.

4. “Bridge”: We captured this video on a bridge. The location is the entrance to
a bridge stairway and people are walking very closely together and in various
directions. The crowd density is variable, ranging from sparse to very crowded.
We provide the ground truth counts for 1000 frames of this video, manually. It
consists of crowds of size 6 to 30 people.

5. “Gate”: We captured this video with a camera mounted on top of a building gate.
People are entering and exiting a building from various directions. The ground
truth counts for 1000 frames of this video are provided, manually. It features
crowds of size 1 to 22 people.

6. “PETS2009” [33]: This dataset is organized in four sections, but we use the
section named S1 that was used to benchmark algorithms for the “estimation
of the number of people in the field of view” PETS2009 contest. The ground
truth count is obtained by annotating the number of moving people by hand,
consisting of 0 to 43 people.

2Available at: http://www.svcl.ucsd.edu/projects/peoplecnt
3Available at: http://www.svcl.ucsd.edu/projects/anomaly

http://www.svcl.ucsd.edu/projects/peoplecnt
http://www.svcl.ucsd.edu/projects/anomaly
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Table 1 Characteristics of five video sequences

Peds1 Peds2 USC Bridge Gate

Length 1 hour 1 hour 30 sec 10 min 5 min
Frame ratea 10 fps 10 fps 10 fps 10 fps 10 fps
Frame size 720×480 720×480 360×240 640×480 640×480
Number of annotated frames 2000 2000 300 1000 1000
Number of training frames 160 80 60 66 66
Training frames 600:5:1400b 400:10:1200 1:5:300 1:15:1000 1:15:1000
a Refers to the number of annotated frames per second. The frame rate of all original videos is
30 fps.
b In Matlab notation. Within frames 600-1400, last frame of every five consecutive frames is selected.

7. “Loveparade2010” [21]: A video footage from crowd disaster at Loveparade
2010 in Duisburg, Germany. In this terrible stampede, 21 visitors died and more
than 500 were injured. The festival area was monitored by seven cameras where
three of them were static cameras. We use videos from “Camera 15” which is a
static camera, and monitors huge number of visitors entering or exiting from the
festival area.

Both of our own captured videos (i.e. “Bridge” and “Gate”) are publicly avail-
able4 to encourage future comparisons. Example frame of videos are shown in
Figs. 14 and 19, and Table 1 summarizes some characteristics of each video. Due
to existence of multiple scenarios in the experiments on “PETS2009” dataset and
“Loveparade2010” video, the relevant information about these videos is reported in
Subsections 3.4 and 3.8 respectively. As can be seen in Table 1, the resolutions of
the videos used in our experiments are moderate. The KLT tracker can easily detect
and track FPs on these videos. However, in the case of very poor image qualities, we
may need to improve the efficiency of KLT tracker using techniques proposed in the
literature such as [34].

A subset of annotated frames on each video is used to train the counting system,
and the remaining frames are used for the testing purpose. The annotated frames and
selected training frames for each video are reported in Table 1. In order to compare
the performance of our system with the approaches in [6, 23, 37], the training and the
testing frames on “Peds1” video are selected the same as in [6, 23, 37].

3.2 Parameter setting

3.2.1 Parameters in the KLT tracker

One of the parameters in the KLT tracker is the number of FPs. In our experiments, it
is set to be large enough such that people show sufficient evidence of their existence.
For all video sequences in our experiments, we extract the most significant 1200 KLT
feature-points. Different numbers of FPs have been attempted in our evaluations.
The results show that the counting system is not very sensitive to the number of FPs.
However when the number of FPs is too small, there will be some people in the scene
without any FPs detected on them, which can affect the counting results. Another
parameter in the KLT tracker is the minimum distance between two FPs. For a

4Available at: http://www.cs.zju.edu.cn/~gpan/database/crowd.html

http://www.cs.zju.edu.cn/~gpan/database/crowd.html
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human being, FPs may be detected on the contours or clothing. Head-shoulder parts
usually contain crucial KLT feature-points. Therefore, we set the minimum distance
between two FPs such that the FPs from head-shoulder can be easily detected. The
value of this parameter for all videos in our experiments is fixed to q = 6 pixels.
However, in a more general setting, this parameter can be automatically adjusted in
the training phase of the system and the optimal value is selected with respect to the
best counting error rates. Finally, we use a fixed size of 7×7 pixels as the size of KLT
feature window in all of the experiments.

Since the value of parameter q (minimum distance between two FPs) is also used
to determine the radius of the specified neighborhood box in the BFP detection
process, we test the sensitivity of this process to the value of q. We evaluate the
accuracy of the BFP detection algorithm on different sets of FPs that are generated
by using different values of q in the KLT tracker. To this end, after generating
different sets of FPs on a video, we randomly select 100 FPs from each set and
manually label the FPs on overlapping boundaries as BFPs. Then, we run the BFP
detection algorithm on each set of the selected FPs. Figure 8 compares the false
negative rate, false positive rate and total accuracy of the algorithm on different sets
of FPs. As shown in this figure, the performance of the algorithm is slightly reduced
as q decreases. The reason for this issue is that the small values of q results in a
small radius for the defined neighborhood box. Consequently, there could be some
BFPs that within the small search area around them, there will not exist any other
BFPs, therefore, some BFPs are not detected by the algorithm. This fact is more
obvious by considering the high false negative rates obtained by small values of q in
the Fig. 8. Also, we can observe that by increasing the value of q, the performance
of the algorithm is decreased remarkably. Because within a large search area (large
radius of neighborhood box) around any FPs, it is highly probable to find some FPs
that have inconsistent motions with under-analysis FP. As two FPs on one individual
but far from each other do not always have a consistent motion. For example, as
demonstrated in Fig. 8, almost all of the FPs are detected as BFPs when q is set
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Fig. 8 Performance of the BFP detection algorithm on different sets of FPs generated using different
values of q



468 Multimed Tools Appl (2014) 72:453–487

to 12. In the case of using dense FPs (i.e. small values of q), in order to improve
the robustness of BFP detection algorithm, we can consider a larger radius for the
specified neighborhood box. However, for our application the fixed value of q = 6
pixels for all videos results in a satisfactory performance.

3.2.2 Adjacency radius in MFP clustering process

To partition the MFPs into clusters, an adjacency radius is defined based on the
minimum distance between FPs in KLT tracker (see Subsection 2.2). It is obvious
that two kinds of clustering error can occur if an unreasonable value is selected
for this parameter; 1) some clusters will be split into several parts if very small
radius is selected (for example people in one group are split into upper body and
lower body parts), and 2) separate clusters of people will be joined together if the
selected radius is very large. Accordingly, to test the sensitivity of the MFP clustering
process regarding to the value of the adjacency radius, the accuracy of this process is
evaluated using different values of this parameter. To this end, we randomly select
some sample frames from each testing video containing more than 100 clusters of
people, and manually label the desired clusters corresponding to the separate groups
of people moving together. Then, we run the MFP clustering algorithm on the
selected frames, using different radius values. Figure 9 compares the rates of error
1, error 2 and total accuracy obtained by the algorithm using different radius values.
As shown in this figure, while very small and very large radiuses have influenced the
clustering performance, there is not any remarkable change in the performance of
the algorithm by using reasonable values for adjacency radius. For our application
the fixed value of 3q for all videos almost avoids the occurrence of error 1. The error
2 happens in very rare cases which do not impact the overall performance of the
system, because the joined clusters are considered as a large cluster of people similar
to counting people on a holistic level.
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Fig. 10 Counting error rates obtained by different values of thresholds on “Peds1” video.
a Threshold �, b Threshold θ

3.2.3 Parameters in the LFP and BFP detection processes

The values of thresholds � and θ in LFP and BFP detection processes are auto-
matically adjusted during the training phase of the system. For each testing video,
the counting system is trained using different combinations of � and θ values and
optimal values of these thresholds are determined with respect to the best counting
error rates. The optimal values found for each video are reported in Table 2. As
an example, Fig. 10 shows the counting error rates (mean-squared-error and mean-
absolute-error) obtained with different values of two thresholds on “Peds1” video.
As shown in this figure, by using very large values of � or very small values of θ , the
performance of the system is decreased remarkably. Because with large values of �

LFPs are not detected accurately, and with very small values of θ most of the TFPs
are detected as BFPs.

3.3 Experiment 1: Examining the relation between extracted features
and level of occlusion

In order to demonstrate the relativeness of the extracted occlusion-related features,
we examine the relationship between them and the level of occlusions present in
the scene. To this end, we select all frames with 23 people from the “Peds1” video,
which is the most common pedestrian count within the annotated range of this video
(i.e. frames 600–1400). In total, there exist 154 frames with this count. The level
of occlusion varies from frame to frame due to different amount of overlapping
people in each frame. Thus, the amount of MFPs is different in different frames. In
other words, although the number of people is the same in the selected frames, the

Table 2 Optimal values of
thresholds used for each video

Peds1 Peds2 USC Bridge Gate

Threshold � 1.8 2.1 1.5 1.7 1.8
Threshold θ 7 6 5 8 8
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amount of MFPs is reduced as the occlusions increase. Therefore, we expect that the
extracted occlusion-related features (the rate of BFPs and mean duration of TFPs)
should be highly correlated with the amount of MFPs which varies with the amount
of occlusions in the selected frames.

After calculating the amount of MFPs in selected frames, we measure the rate
of BFPs and the mean duration of TFPs for each frame. Then, we examine the
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3.4.1 Results on “Peds1” video

Since the majority of recent work [6, 23, 37] have performed experiments on
“Peds1” video and quantitative results have been provided in the related papers,
firstly, we report the counting results obtained by our approach on this data and
compare them with results of other methods. Table 3 shows the MSE and MAE

Table 3 Comparison of
different approaches
on “Peds1” video

MSE MAE

Ours 2.357 1.093
Ryan et al. [37] 3.850 1.558
Chan et al. [6] 4.181 1.621
Lempitsky et al. [23] N/A 1.70
Chan et al. [6] using features of [19] 5.438 1.808
Chan et al. [6] using features of [9] 6.953 1.995
Kong et al. [18] 6.492 2.043
Ours using only the amount of MFPs 7.022 2.167
Albiol et al. [1] 9.351 2.821

expected relationships. Figure 11 plots the relationships between occlusion-related
features and the amount of MFPs in frames with the same crowd size of 23 people but
with different occlusion levels. It can be seen that the rate of BFPs increases as the
amount of MFPs reduces. This linear relationship between these statistics confirms
that the rate of BFPs can be an extremely useful clue to the level of occlusion in a
scene. Also, we observe that the mean duration of TFPs is highly correlated with the
amount of MFPs in frames with the same crowd size and various occlusion levels.
This relationship indicates that this feature is also very helpful for discovering the
various levels of occlusion in the scene.

3.4 Experiment 2: Crowd counting results and comparisons with other methods

The proposed system is trained and tested using training and testing sets of
each video reported in Table 1. Two measures, Mean-Squared-Error (MSE) and
the Mean-Absolute-Error (MAE), are used to analyze the accuracy of counting
quantitatively:

MSE = 1
N
·

N∑

t=1

(
Gt − Et)2

, (10)

MAE = 1
N
·

N∑

t=1

|Gt − Et|, (11)

where Gt and Et are the ground truth and estimated count for frame t, and N is
the number of testing frames. Since the results of the neural networks differ slightly
from test to test (because initial values for neural network are selected, randomly),
the system is retested five times for each video and the average results are recorded.
The calculated average value is rounded to the nearest integer to produce the final
crowd count. In the following subsections, the obtained results on different videos
are presented.
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rates of different approaches on “Peds1” video. The reported results of methods in
[6, 23, 37] are quoted directly from the related papers. Since the approach in [6]
estimates pedestrian counts in either direction and does not provide a total count,
we report the error rates of this approach on counting pedestrians walking away
from the camera, which contains the majority of the crowd in “Peds1” video. The
performance of approach in [18] has been measured by authors in [37] with their own
implementation. For the sake of comparison, the error rates of approach in Albiol
et al. [1], which we have provided our own implementation, are also reported in
Table 3.

From the results in Table 3, it is evident that the proposed method outperforms
the other approaches with respect to both MSE and MAE performance indices.
Our approach, even by using only the amount of MFPs, performs better than the
method proposed by Albiol et al. [1]. This is due to the effects of perspective and
also simple proportionality relation assumed between crowd size and the number
of moving corner points in [1]. The result of our approach, utilizing three features
from FPs, is better than approaches in [6] and [37], while approach in [6] uses a
larger quantity of complicated features (29 features) and approach in [37] utilizes
similar features used in [6] on a local rather than holistic level. The performance of
our system is also better than approach in [23] that uses foreground and gradient
information. Most of the utilized features in approaches [6, 9, 18, 19, 37] are based on
the edge features. Edge-based features can be extremely erroneous, as the edges are
completely messy when the background is complicated and the textures of human
clothes are not smooth. In contrast, our detected BFPs are related to the overlapping
boundaries (edges) between people not to the all of the edges present in the scene.

3.4.2 Results on “PETS2009” dataset

Before discussing the results on “PETS2009” dataset, it is important to indicate
the frame rate instability problem that we faced in our experiments on this data.
During the LFP detection process on “PETS2009” dataset, we found that almost
all of the MFPs are detected as LFPs (i.e. FPs with large variations in speed). We
observed that these large speed variations of all MFPs are caused by changes in the
frame rate (acquisition problem); a problem which had been further confirmed by
the PETS2009 committee [1]. The PETS2009 metadata states that the frame rate is
approximately 7 fps, but we found that it is not constant along the frame sequences
and the time-interval between two successive frames changes at some moments.
Therefore, the displacement vectors of MFPs change depending on that time interval.
However, in order to make this dataset usable for our experiments, we track the FPs
by block-matching technique and use a time filter in LFP detection process in the
same manner as [1]. Hence, in our LFP detection process on “PETS2009” dataset,
we do not take into account the speed of FPs in frames where the average speed of
FPs is very large (i.e. there is a large time-interval between two consecutive frames).
For more details about the time filtering technique used on this data, see [1].

For our experimentations, we use View1 from the S1.L1.13-57, S1.L1.13-59,
S1.L2.14-06, and S1.L3.14-17 videos of this dataset that were used in the people
counting contest held in PETS2009 [33]. An example frame of a video is shown in
Fig. 12, along with the three defined regions of interest (R0, R1, and R2). For each
test videos and regions, we train our system by using the training sets listed in Table 4,
and test it on the remaining frames of each video. The selected testing regions are



Multimed Tools Appl (2014) 72:453–487 473

Fig. 12 An example of View1
from “PETS2009” dataset,
along with regions of interest

as same as those in Albiol et al. [1] that were reported in [12]. Table 5 shows the
obtained results and compares them with results of approach in Albiol et al. [1] which
are quoted directly from [12]. From Table 5 it is clear that the proposed approach
again outperforms Albiol’s method with respect to the counting error rate on most
of the testing videos. The poorer performance of our approach on S1.L3.14-17 video
is due to the very small amount of training data existed for this video.

3.4.3 Results on “Peds2”, “USC”, “Bridge”, and “Gate” videos

Table 6 summarizes the performance of our system on four testing videos together
with results of approach in [1], obtained by our own implementation, on the same
videos. As shown in the table, the counting results of our approach on different
videos are promising. Again, its performances, even by using only the amount
of MFPs, are better than the results obtained by Albiol’s method [1]. Figure 13
compares the counting results of our approach and the ground truth on four testing
videos. As shown in this figure, the crowd estimations by our system track the ground
truth well in most of the testing frames. Figure 14 shows some result frames produced
by our system on six videos.

We also compare the performance of our approach against a model-based human
detection approach in [43]. Although, existing model-based approaches are not able
to deal with high level of occlusions in crowds, they have shown good performances
in the situations where crowds are small such as “USC” video. We calculate the
counting error rate of approach in [43] on “USC” video by using reported scores
(i.e. correct detections, false alarms, and valid humans count) in the corresponding
paper. This rate is become equal to 7 %. Also, we measure this rate from counting
results obtained by our approach on this video, considering total ground truth count
of people and the total estimation for all testing frames. For our approach, this rate

Table 4 Test videos and training sets in “PETS2009” dataset

S1.L1.13-57 S1.L1.13-59 S1.L2.14-06 S1.L3.14-17

Length 221 frame 241 frame 201 frame 91 frame
Testing region R0 R0 R1 R1
Number of training frames 44 48 40 22
Training frames 1:5:221 1:5:241 1:5:201 1:4:91
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Table 5 MAE rate of each approach on different test videos in “PETS2009” dataset

S1.L1.13-57.R0 S1.L1.13-59.R0 S1.L2.14-06-R1 S1.L3.14-17.R1

Ours 1.031 1.146 1.687 1.463
Albiol et al. [1] 1.4 1.8 1.9 1.4

is equal to 5 %. This comparable result of the proposed approach implies that the
performance of the system does not drop in sparse scenes.

3.5 Experiment 3: Effects of occlusion-related features

To show the influences and advantages of extracted occlusion-related features,
Fig. 15 compares the counting error rates of the system using different feature
sets on five testing videos. As shown in this figure, by using the occlusion-related
features, considerable improvements in counting are achieved on all testing videos.
Our approach, using only the amount of MFPs performs the worst, and performance
improves steadily as the other features are added. This shows the informativeness of
the extracted features: the amount of MFPs provides a coarse linear estimate, which
is refined by the rate of BFPs and mean duration of TFPs accounting for various
non-linearities.

3.6 Experiment 4: Effect of perspective normalization

To cope with the effects of perspective, we propose to normalize the features,
using a perspective map. To examine the effectiveness of this normalization on the
final results, we evaluate our approach with and without perspective normalization.
Figure 16 compares the error rates of our approach in both cases on five testing
videos. This figure obviously shows the effectiveness of the perspective normalization
on all videos. This improvement is especially remarkable on “Peds1” video as it
contains a wide camera-view of the scene and due to very low camera tilt angle, the
size of people varies greatly in different locations of the scene.

3.7 Experiment 5: Scaling the approach on long-range videos

In order to examine the robustness of the proposed approach against the wide
variability in crowd density and distribution, we run our system on long-range videos
(i.e. on one hour of “Peds1”, one hour of “Peds2”, 10 minutes of “Bridge”, and 5
minutes of “Gate” dataset). It is obvious that these long testing videos contain much
various crowd distributions, compared with the small amount of frames used to train
and test the system. In this experiment, same training frames (reported in Table 1)

Table 6 Results on “Peds2”, “USC”, “Bridge”, and “Gate” videos

Peds2 USC Bridge Gate
MSE MAE MSE MAE MSE MAE MSE MAE

Ours 1.647 0.893 2.118 1.034 2.694 1.168 2.766 1.289
Ours; only amount of MFPs 5.842 2.028 5.559 2.271 8.026 2.107 7.437 2.119
Albiol et al. [1] 8.714 2.521 7.036 2.451 9.148 2.754 8.891 2.415
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Fig. 13 Counting results of our method and the ground truth on a “Peds1”, b “Peds2”, c “Bridge”,
and d “Gate” videos
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(a) (b)

(c) (d)

(e) (f)

Fig. 14 Examples of crowd counting on a “Peds1”, b “Peds2”, c “Bridge”, d “Gate”, e “USC”, and
f “PETS2009” datasets

are used for each video, and testing is performed on full video of each dataset. The
counting results are evaluated manually, using 100 frames of each video, chosen by
a random number generator. Figure 17 compares the MSE and MAE rates of these
tests with corresponding rates for each video in Table 3 and Table 6. As shown in the
figure, the counting results on all long-range videos are comparable with the obtained
results for the finite number of testing frames of each video. It is evident that the
proposed method, using local features from scene, is able to capture wide variations
in crowd distribution from a small amount of training data.
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Fig. 15 Comparisons of counting error rates of the system using different feature sets on five testing
videos. a MSE, and b MAE

Another important advantage of our approach, which can be deduced from this
experiment, is the robustness of extracted features against small environmental
changes (e.g. illumination, shadows) over pretty long time-periods. In fact, feature-
points are not very sensitive to small environmental changes, while the methods
based on foreground segmentation are very sensitive to these variations.

3.8 Experiment 6: Evaluating the approach on highly dense crowds

In order to assess the performance of our system on very dense crowds, we run it on
“Loveparade2010” video. The main goal of this experiment is to examine whether
the proposed approach is able to extract features from FPs tracked in a highly dense
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Fig. 16 Counting results produced by our system with and without perspective normalization on five
testing videos

crowd or not. In “Loveparade2010” video, dense crowds of visitors are passing in a
tunnel to enter or exit from Loveparade festival area. Video recordings are available
for the time between 13:30 h and 16:40 h. In this video, the number of people is
increasing with time. For example, between 13:30 h and 15:00 h, crowds of people
are moving in the scene with normal walking speed and occasionally some gaps occur
between crowds, while 30 minutes later, the crowd density is almost doubled and
people are moving very close together. Finally, an extremely dense crowd is formed
around 16:20 h where a large number of people are present in the scene that can
hardly move. For more details about this video, see [21].
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Fig. 17 Counting results produced by our system on finite number of testing frames and long-range
full video of four datasets
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Fig. 18 A sample frame from
“Loveparade2010” video
including selected region of
interest and detected FPs
within that

In order to evaluate our approach on different levels of crowd in this video, we
provide ground truth count for 3000 frames from three separate parts of the video.
A region of interest is selected on the scene, as shown in Fig. 18, and ground truth
count is annotated every 5 seconds manually. Assuming that the number of people
does not change substantially in consecutive frames, crowd counts in the remaining
frames are estimated with linear interpolations. Each annotated part contains 1000
frames (100 seconds) of the video as follows:

– “Part1”: Between 14:20:00 h and 14:21:40 h, consisting of 60 to 80 people inside
the selected region of interest.

– “Part2”: Between 15:20:00 h and 15:21:40 h, featuring denser crowds, compared
with the “Part1”, and contains crowds of size 85 to 120 people inside the region
of interest. In this part, people are moving very close together.

(a) (b)

(c)

Fig. 19 Example frames from annotated parts in “Loveparade2010” video. a “Part1”, b “Part2”, and
c “Part3”
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– “Part3”: Between 16:25:00 h and 16:26:40 h, featuring a huge crowd of visitors
about 250 people congested in the scene and stepping from one foot to the other
in order to keep their balance.

Example frame of each part is shown in Fig. 19. Due to the very large number of
people in “Part3”, the ground truth counts for this part are provided based on Jacobs
method. This method involves dividing the area occupied by a crowd into sections,
determining an average number of people in each section, and multiplying by the
number of sections occupied.

The counting system is trained using frames 251–750 (500 frames) from each part,
and testing is performed on the remaining frames (frames 1–250 and 751–1000) of
related part. In addition, the performance of the system is also evaluated on all
three parts together, using training and testing frames from all parts (1500 frames for
training and 1500 frames for testing purpose). In order to analyze the effectiveness
of each statistical feature, different subsets of features are used in these experiments.
Table 7 shows the error rates for different sets of data, under different feature
representations.

As shown in Table 7, the performance of the system on “Part1” data, where
people are moving fluidly and torsos of them are not entirely occluded, is comparable
with results obtained for other testing videos (see Subsection 3.4). It is obvious that
the amount of MFPs has provided a rough estimate of crowd size which has been
improved steadily by adding other features. The larger error values obtained here
are not unexpected because the densities of crowds in the videos used in our previous
experiments are not as high as this video. However, as can be seen in Table 7, the
performance of the system is dropped remarkably when it is run on “Part2” and on
three parts together (“Part1”, “Part2”, and “Part3”). Since the number of people
in other parts is much larger than “Part1”, larger error values obtained by using
only amount of MFPs are reasonable, but the important issue is that the occlusion-
related features (i.e. rate of BFPs and mean duration of TFPs) have not significantly
decreased these error rates. The MAE of 15.741 obtained by amount of MFPs on
“Part2” data which contains crowds of size 85 to 120 people, is a promising result.
However, adding occlusion-related features only reduces this rate about one people,
which is achieved by adding mean duration of TFPs, and the rate of BFPs has not
any contribution. This shortcoming of occlusion-related features in highly dense
crowds is due to the impossibility of generating meaningful and sufficient motion
trajectories for FPs in such scenes. Our analysis on trajectories obtained by KLT
tracker on “Part2” and “Part3” show that due to the heavy occlusions present in
crowds, most of the FPs are lost quickly during the tracking. Therefore, majority of
the motion trajectories become very short and do not contain enough information to
be compared with other trajectories. This problem results in weakness of occlusion-
related features which are calculated based on only motion trajectories of FPs.

Table 7 MAE rates on four sets of data, using different combinations of features

Part1 Part2 Part3 Three parts

Amount of MFPs 8.618 15.741 7.634 28.337
Amount of MFPs and rate of BFPs 6.324 15.426 7.126 27.663
Amount of MFPs and mean duration of TFPs 5.671 14.632 6.873 21.754
All three features 4.416 15.329 6.711 21.207
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However, as shown in Table 7, an improvement is obtained by utilizing mean
duration of TFPs for counting crowds on all three parts together. This improvement
is due to the very different levels of crowds present in different parts, i.e. the mean
duration of TFPs calculated for frames in “Part1” are much larger than for frames
in “Part2” and “Part3”. Therefore, it is helpful to capture the occlusion level in
different parts. Also, it should be noted that, good estimation of crowd size obtained
on “Part3” is due to this fact that all training and testing frames of this part contain
an almost equal number of people congested in the scene.

Although the feature extraction based on motion information of FPs might be
not accurate enough in highly dense crowds, the proposed approach is capable to
provide a rough estimate of crowd size in such scenes. Even in highly crowded
scenes, MFPs can be separated from static FPs due to small motions of people in
the scene (e.g. stepping from one foot to the other in order to keep their balance).
So we can calculate amount of MFPs as a clue to the foreground area and crowd size,
while methods based on foreground/background segmentation are absolutely prone
to errors in this kind of scenes.

3.9 Experiment 7: Examining the robustness and generalizability
of the local features

To gain an understanding of the advantages of local features, the performance of the
proposed system is compared against equivalent holistic system. The holistic system
uses the same features as the proposed system, taken on a holistic level. In this
system, MFPs are not clustered into clusters, i.e. statistical features are calculated
from all MFPs in the scene. Ground truth is also provided on a holistic level. To
compare the accuracy of two systems, the holistic system is trained and tested on
“Peds1” video by same training and testing sets used for evaluate the proposed
system (reported in Table 1). Table 8 presents counting error rates of two systems
on “Peds1” video. In addition, cumulative error rates (CEs) are reported in order
to compare the uncertainty rates of two methods in estimating the crowd size. The
CE(x) is defined as the percentage of frames for which the counting error is less
than or equal to x number of people. For example, the count is within 3 people of
the ground truth 98 % of the time for the proposed system. As shown in Table 8,
by all measures of accuracy and uncertainty, the proposed system outperforms the
equivalent holistic system. The good performance of the proposed system is due to
the availability of more training cases existed in one training frame, while in holistic
system each frame contains only one training case.

To compare the generalizability of two systems, we reduce the training set of
“Peds1” video from 160 frames to 80 frames. The training set is formed by taking
the last frame out of every five consecutive frames within frames 1201–1600, which
contain crowds of size 30–46. These frames include a mixture of small and large
groups of people. The testing is done on frames 1–1200 and 1601–2000, featuring
crowds of size 11–40. The counting results provided by two systems are shown in

Table 8 Comparison of two
methods on “Peds1” video

MSE MAE CE(1) CE(2) CE(3)

Proposed system 2.357 1.093 65 % 87 % 98 %
Holistic system 2.612 1.259 61 % 87 % 97 %
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Fig. 20. As this figure demonstrates, the holistic system fails and it is unable to
provide any meaningful results for crowd volumes not seen in the training set. In
contrast, the proposed system, trained on clusters of various sizes, is able to count
smaller crowds, too. This problem may happen for any other approaches that utilize
holistic features from scene unless they use a large amount of training data to capture
the wide variations in crowd distribution. However, it is not practical to provide
hundreds of frames of ground truth to setup a counting system in a real world
application, especially in facilities that contain numerous cameras.
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Fig. 20 Crowd counting result. a By holistic system. b By proposed system



Multimed Tools Appl (2014) 72:453–487 483

Table 9 Performance of
the neural network using
different numbers of hidden
neurons

Number of hidden neurons
10 30 50 70

Training time 6.6 s 6.4 s 8.2 s 9.4 s
MSE 2.764 2.873 2.357 2.419

Although counting people on a local level increases the generalizability of system
very well, in a real-life application where the statistics may changes due to the tempo-
ral changes in environment (e.g. illumination, shadows) and crowd density, a simple
trained classifier is not always adequate to achieve a good performance. Instead, it
would be desired to have a mechanism, which would provide the system with the
capability to automatically test its performance and be automatically retrained when
its performance is not acceptable. In our case, we can utilize a retrainable neural
network structure proposed in [11].

3.10 Implementation

We implemented our algorithm in C++ for the KLT and feature extraction parts,
and Matlab for the neural network side. The neural network fitting tool in Matlab
is used in our experiments. We use a single hidden layer feed-forward neural
network with sigmoid hidden neurons, and train the network using Levenberg-
Marquardt backpropagation algorithm. In order to determine the number of neurons
in hidden layer, different numbers are tried in our experiments. Table 9 compares
the performance of the network using different numbers of hidden neurons on the
same training and testing data. All the results are an average of five trials. As can
be seen, the differences between the training times are not considerable. However,
the number of hidden neurons is chosen to be 50 which results in a more accurate
performance. Since the training procedure is an offline procedure, the computational
cost of neural network would not be a big concern for the proposed method.
However, due to small structure of the neural network in our application, the training
phase is done very fast.

In our experiments, the average execution time to estimate the crowd count in
one frame across all the videos is about 0.35 sec (i.e., ≈ 3 fps). Currently, our method
performs the counting process for all frames in the sequence. In order to make the
approach suited for counting people in an online video, the given time-window (see
Subsection 2.1) can be shifted by more than one frame, assuming that the number of
people does not change substantially in consecutive frames.

4 Conclusions and future work

This paper proposed a crowd counting approach based on only motion information
of low-level feature-points. The proposed approach detected some feature-points in
the scene and tracked them along the time. Moving-feature-points were detected
and partitioned into clusters, corresponding to separate groups of moving people, in
order to extract some local features for each cluster. Then, feature-points of each
cluster were carefully classified into categories of: limb-feature-points, torso-feature-
points, and boundary-feature-points. Three statistical features were extracted for
each cluster: first feature, the amount of moving-feature-points, was used as a clue
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to the foreground area, and the other two features, namely the rate of boundary-
feature-points and the mean duration of torso-feature-points, were extracted to
capture the various levels of occlusion present in the scene. To cope with the
effects of perspective distortion, a perspective map was used to weight the FPs.
A neural network was trained using extracted features to estimate the number
of people in crowds. Promising counting results were obtained on different video
sequences. Comparisons with other methods showed that the proposed approach
has a superior performance. The results of our extensive experiments demonstrated
that the extracted features are highly informative: the amount of moving-feature-
points provides a coarse linear estimate of crowd size, which is refined by the rate of
boundary-feature-points, and mean duration of torso-feature-points accounting for
various non-linearities caused by occlusions. With the method proposed in this paper,
we might not expect a fully accurate estimate of crowd size in highly crowded scenes
such as music festivals, sports events or pilgrimage, as it is not possible to generate
meaningful motion trajectories of feature-points in such situations. However, our
experiments on highly crowded videos showed that the proposed approach is able to
provide a rough estimate of crowd size in such scenes.

The limitations of our motion-only method are not unexpected. Counting errors
can occur when non-human objects such as cars, bicycles, etc. appear in the scene,
which result in an overestimation of the crowd size. Also, the system proposed here
is only able to estimate the number of moving people and is not able to consider
stationary people in the estimation. These cases might be mitigated by using some
robust object detector techniques. However, these flaws exist in other map-based
methods including work that were compared with the proposed approach, as they
mainly use motion information of people to segment the foreground area. Finally,
similar to other map based approaches, the crowd size is estimated independently for
each frame, meaning that the proposed system either cannot count the total number
of people passed through a field-of-view.

As a future work, we plan to use further motion information from feature-points
to improve the proposed counting system. We are interested in exploiting motion
direction of trajectories to segment the crowds into sub-parts moving in different
directions. This will enable us to provide a count for the number of people moving
in each direction. Also, other motion features of trajectories like velocity, speed,
etc. can be used in order to distinguish different kinds of object which improve the
system to provide class-specific counts (e.g. cars vs. pedestrians). Another interesting
extension of this approach is to improve the system to work with moving cameras
which would be truly beneficial in densely crowded scenes. Finally, the proposed
approach will also be tested on low-resolution videos, and the use of other type of
corner points will be investigated in such videos.
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