Multimed Tools Appl (2014) 72:385-415
DOI 10.1007/s11042-012-1348-x

Synthetic content generation for auto-stereoscopic
displays

Carlos Gonzalez - José Martinez Sotoca -
Filiberto Pla - Miguel Chover

Published online: 7 February 2013
© Springer Science+Business Media New York 2013

Abstract Due to the appearance of auto-stereoscopic visualization as one of the most
emerging tendencies used in displays, new content generation techniques for this
kind of visualization are required. In this paper we present a study for the generation
of multi-view synthetic content, studying several camera setups (planar, cylindrical
and hyperbolic) and their configurations. We discuss the different effects obtained
varying the parameters of these setups. A study with several users was made to
analyze visual perceptions, asking them for their optimal visualization. To create the
virtual content, a multi-view system has been integrated in a powerful game engine,
which allows us to use the latest graphics hardware advances. This integration is
detailed and several demos and videos are attached with this paper, which represent
a virtual world for auto-stereoscopic displays and the same scenario in a two-view
anaglyph representation for being visualized in any conventional display. In all these
demos, the parameters studied can be modified offering the possibility of easily
appreciate their effects in a virtual scene.

Keywords Auto-stereoscopic displays - Virtual reality - Interactive visualization -
Multimedia applications

C. Gonzilez (<) - J. Martinez Sotoca - F. Pla - M. Chover
Institute of New Imaging Technologies, Universitat Jaume I,
Avda. Sos Baynat, s/n, 12071 Castell6n, Spain

e-mail: carlos.gonzalez@uji.es

J. Martinez Sotoca
e-mail: sotoca@uji.es

F.Pla
e-mail: pla@uji.es

M. Chover
e-mail: chover@uji.es

@ Springer

386 Multimed Tools Appl (2014) 72:385-415

1 Introduction

Visualization techniques are in continuous advance, attempting to produce realistic
sensations for the viewers. One of the latest visualization tendencies is the use
of auto-stereoscopic displays. This kind of displays emits the light information in
different directions, generating several views of the scene, allowing the viewer to
perceive different stereo pairs depending on his/her position. This can cause an effect
of displacement over the scene just moving around the display without needing any
special gadget, such as stereo glasses or head tracking devices.

Thus, auto-stereoscopic visualization emerges as one of the most innovative
technologies for the future of 3D displays. Auto-stereoscopic displays offer to the
viewer a three-dimensional sensation with a realistic feeling of been immersed in the
scene. In this paper we focus the proposal on the generation of synthetic 3D content
using game engines.

To produce realistic effects in 3D synthetic scenes, 3D game engines usually
make use of the GPU programming advances, such as shaders. Shaders allow the
programmers to modify the pre-defined workflow of the static graphics pipeline,
providing the possibility of programming new actions for the vertices, fragments or
geometry of the scene. This is performed directly on the GPU, generating very fast
operations that are executed in parallel with the operations executed on the CPU.

Auto-stereoscopic visualization also presents some problems, such as the
“convergence-accommodation” mismatch. This is, the accommodation of the eyes
on the screen is independent of the objects position. In auto-stereoscopic displays,
our eyes look to the screen, focusing on certain objects on which our eyes converge.
However, our brain perceives objects with different depths, what makes the accom-
modation of our eyes difficult.

In this paper a study about the generation of multi-view synthetic content is
presented, proposing three different setups: planar, cylindrical and hyperbolic. We
have studied the effects of modifying several parameters in these configurations,
relating this parameters modification to common visual aspects. A test with several
user participants has been done in order to analyze the visual results. Moreover, the
steps for integrating the proposed system in a well-known and powerful game engine,
such as Unity 3D, are detailed. Several demos, videos and source codes are provided.
To build a synthetic video content generation system, we put a set of cameras in a
virtual world and pre-process the information “seen” in an interactive frame rate.
GPU shaders are used to manage all the content information directly in the graphics
hardware, reducing the load on the CPU.

The remainder of the paper is the following. Section 2 describes the background
related to the topics of this paper. In Section 3 we explain the proposed experimental
device system and present a study of different configurations. Results are discussed in
Section 4. A study with users about optimal configurations of the setups is presented
in Section 5. Finally, we conclude the work in Section 6.

2 Background

Interactive visualization is in continuous advance, being auto-stereoscopic technol-
ogy one of the most emerging techniques in this field. This kind of technology

@ Springer

Multimed Tools Appl (2014) 72:385-415 387

generates a real depth perception for multiple viewers without any special aids, like
stereo glasses [23]. The brain perceives a 3D sensation through pairs of 2D images,
providing a stereo parallax view.

Among various techniques, auto-stereoscopic displays, using lenticular lenses to-
gether with flat panel, have been long recognized and developed [12, 20]. To partially
overcome the drawback of the reduction of horizontal and vertical resolution, the use
of slanted optical elements has been applied for multi-view 3D system [34]. Viewing
zone of auto-stereoscopic 3D is mainly determined by the position of the RGB-stripe
sub-pixels structure [24] and the optical elements which control light directions. If
the objects’ parallax is fixed, their stereoscopic depth is proportional to the viewing
distance, which is related to the focal length of lenticular lens [29]. Thus, different
considerations of these two parameters significantly affect the design of the device.
Some works related to the multi-view content generation have been proposed, such
as [21, 33].

Another important issue is how to generate contents from virtual and real scenes
for the device. The strategies used to get information about the scene are based on
image based rendering [28]. One of the considered techniques in this topic has been
the configuration of systems based on light fields [8, 16, 25].

Visual fatigue and other visual aspects, such as spherical and chromatic aberration,
astigmatism of oblique rays, coma or distortion have been studied [22]. Lambooij et
al. [15] studied various causes and aspects of visual discomfort. In order to measure
the response of the users to virtual content can be also useful a human study, such as
the one performed in [14].

In the literature there are several studies about the subjective evaluation of
the usability and qualitative user experience with auto-stereoscopic displays. Vi-
sualization sensations are considered comparing auto-stereoscopic displays with
other devices, such as polarized glasses and 2D displays. In [13] the 3D sensation,
visualization conditions and the search of sweet spot are treated comparing 2D and
3D configurations. In [27] the video coding is treated for measuring the quality
established by the users. In [32] the visualization of landscape architecture in auto-
stereoscopic devices is studied, comparing 2D and 3D images.

Additionally, some objective measures have been proposed for the study of factors
that affect the stereo image quality in auto-stereoscopic displays [4, 26]. These
previous works are focused in establishing the optimal visualization characteristics
of the device, analyzing aspects such as the viewing zone. Other works propose the
generation of virtual views from real cameras by depth-image-based rendering and
3D image warping [5, 37]. In general, this kind of techniques works with an static
configuration of cameras. However, there is a lack of study in the parameterization
of content generation for a correct 3D navigation in virtual worlds with different
camera setups, such as the one proposed in this paper.

GPU advances can help to speed up 3D content generation to manage multiple
views in an interactive frame rate. The traditional graphics pipeline has a static
sequence, being its stages: vertex transformation, primitive assembly, rasteriza-
tion, fragment texturing and coloring, and raster operations. However, the latest
graphics cards enable to modify its behavior with editable algorithms using GPU
shaders.

There are several kind of shaders, depending on the stage where they work, i.e.,
the vertex shader, the geometry shader and the fragment shader. Vertex shaders and
fragment shaders work in the vertex transformation and fragment texturing/coloring

@ Springer

388 Multimed Tools Appl (2014) 72:385-415

stages, respectively. Shaders allow the programmers to modify the vertex and
fragment behavior, while geometry shaders can generate new primitives.

GPU shaders have been used for multiple purposes in the literature: mesh sim-
plification [3], normal map generation [9], shadows generation [10]. GPU program-
ming has also been used for auto-stereoscopic purposes, such as [11, 17, 18, 30, 31].
In [11] a point-based rendering technique for avoiding the multi-pass rendering for
different views was presented. In [30, 31] the authors generate multiple views for
auto-stereoscopic display in a single render pass, making use of geometry shaders
and duplicating and transforming the primitives. In the works introduced in [17, 18] a
multi-view system integrated in Chromium was proposed. In all these works fragment
shaders are used to interlace the different views.

Shaders and layered rendering was also used for accelerating the multi-view
rendering in the GPU. An example can be found in [30, 31], where Sorbier et al.
used geometry shaders and multiple render targets to accelerate the content creation.
Marbach proposed an optimization for the performance of multi-view applications
using layered rendering [1]. A study of the performance of single-pass stereo and
multi-view techniques was done in [19]. They concluded that layered rendering
should be avoided if the application is efficient in terms of batching behavior and
GPU idle time.

Image interlacing is also a crucial point for displaying correctly the content in
auto-stereoscopic displays. In [2] a rendering hardware architecture based on hybrid
parallel depth image based rendering and pipeline interlacing is presented. Fu et al.
[7] proposed an architecture for image reconstruction based on pixel rearrangement,
color space conversion and pixel downsampling.

All the last graphics advances can be employed in game engines to generate
realistic synthetic scenarios. The first well-known approaches in this field were
introduced by John Carmack (Id Tech Engine, 1992), allowing the use of ray casting,
animated light and textures, BSP trees and static lightmaps. After this, several game
engines appeared improving the game production. Game Maker offered in 1999
control structures, movement automation libraries, and an easy drag and drop editor.
Unreal Engine 2 appeared in 2000, making use of dynamic code and content load.
Bump mapping, normal mapping and specular highlight were firstly used in Id Tech
Engine 4.

At mid-2005 appeared Unity [35]. This engine is usually used for the production
of independent games. The engine has a built-in platform that enables the creation
of games with the most advanced technology in a lot of platforms (PC, Mac, Wi,
iPhone, Web...). A lot of games have been created with this powerful engine. In
last years, other game engines have appeared, attempting to improve the integration
to different platforms or visual impact, such as Torque Game Engine (2006), Cry
Engine 2 (2007) and X-Ray (2007).

3 Multi-view content generation
In this section, we present a study about the visualization and integration in an auto-

stereoscopic device of synthetic scenarios seen from a set of cameras with different
configurations and geometric distributions. To present this study a multi-view system

@ Springer

Multimed Tools Appl (2014) 72:385-415 389

content generation has been designed. The configuration and workflow of the system
are also explained in this section.

Our system has the following steps. First, the cameras are located in the virtual
world looking for an adequate configuration of the parameters to generate a realistic
3D sensation. In this step, we have tested several camera configurations that produce
different multi-view results of the scene (Section 3.1). Then, each frame is interlaced
to send accepted content in auto-stereoscopic displays (Section 3.2). In order to
generate the interlaced images maintaining a interactive frame rate, GPU shaders
are used. These two steps have been integrated in a powerful game engine (Unity
3D) to create virtual 3D worlds using the latest computer graphics technologies in
order to allow interactive real-time visualization. This integration is explained in
Section 3.3.

3.1 Camera setups

Camerasetup is a crucial point for multi-view content generation. Several parameters
can be modified producing different effects in the visualization of the scenes. Thus,
different setups and parameters for these configurations have been tested.

The study shown in this paper can help to find an optimal configuration for
given auto-stereoscopic display and requirements, attempting to solve or minimize
the main problems, such as the “convergence-accommodation” mismatch in human
vision.

Accommodation enables the eyes to focus on an object contracting the ciliary
muscle. It is measured in diopters and is equal to the value of near point, that is,
the smallest distance at which eyes can see sharply. Convergence enables to join two
slightly separated images by diverting the optical axes horizontally. This is performed
by rotating the eyeballs. The near point is considered the closest distance in which we
still perceive a unique image. Thus, the values of convergence and accommodation
are changing proportionally in relation to each other. They must be adjusted to
see well at the same object, contrarily a double vision or eye fatigue can be
perceived.

The “convergence-accommodation” mismatch can be appreciated in Fig. 1, where
the eyes are looking at an object in the real world (Fig. 1a) and in the display (Fig. 1b).
In the first case, the focal and vergence distance are the same. However, these two
distances vary, causing this problem when we look to the display. Different studies
related to this topic can be found in the literature. A review was presented in [15].

In order to feel a realistic three-dimensional sensation, the viewer should receive
different slightly separated images for each eye. Moreover, the cameras should be
located at the same distance between them, being around the interocular distance.
Taking these considerations into account, the user can feel moving around the objects
in the scene. Depending on the number of views provided by the device, a different
number of cameras and geometric distribution will be managed in the scene. Thus,
for a n-view auto-stereoscopic display, #» cameras will be used. In this section, we
propose several distributions for any number of views.

To accomplish the 3D sensation only the horizontal parallax is considered. The
device used in the experimental results provides this kind of parallax. With this
parallax, when viewers move side to side, objects in far distances appear to move
more slowly than objects close to the viewers. Note that the figures about the

@ Springer

390 Multimed Tools Appl (2014) 72:385-415

Fig. 1 Vergence distance
Convergence-accommodation

mismatch. a Real world. Focal distance
b Display

l | | l
\ | { /
\ | |
|
\ | |
\ | |

Object
Eyes
(@
Vergence distance
Focal distance
-)
Object
Eyes Display
()

geometric distributions are plotted projected in a plane, but the main considerations
can be generalized for volumetric configuration setups of cameras with a full parallax.

Two demos are attached with the paper: an interactive virtual world with some
configurable parameters for a multi-view visualization and the same virtual world
rendered with a stereo anaglyph system, in order to simulate the effect of these
configurable parameters in any conventional display. Moreover, several videos and
code are also available (see Appendix A).

We propose three different camera setups for the auto-stereoscopic content gen-
eration: planar, cylindrical and hyperbolic. Figure 2 shows the geometric distribution
of these setups. They are detailed in Sections 3.1.1, 3.1.2 and 3.1.3.

3.1.1 Planar setup

In the planar setup the n cameras are located in a parallel distribution looking
towards the scene. This setup attempts to imitate a planar rack of cameras. This can

@ Springer

Multimed Tools Appl (2014) 72:385-415 391

be seen in Fig. 2a. Only two cameras are shown in the figure, in order to make easier
the understanding.

The parameters considered in this configuration are the distance between the
cameras (D), the angle of the field of view of the cameras (FOV') and the near and
far clipping planes of the cameras (N and F).

The possibilities and effects of changing the distance D are:

— If we have a small D, the different views will be similar and 3D sensation and
parallax will be lost. This is because each eye will receive a similar image.

— If we fix an excessive D, each view will vary a lot from the other ones and the
viewer will perceive a double image sensation. Thus, the bigger is the distance
between the cameras, the more parallax is obtained.

Cameras

(@)

Cameras

(b) ©

Fig. 2 a Planar setup, b cylindrical setup and ¢ hyperbolic setup

@ Springer

392 Multimed Tools Appl (2014) 72:385-415

Fig. 3 FOV parameter — FOVA

--- FOVB
--- FOVC

Camera

— An acceptable value for D should be around the interocular distance (about
6 cm). In this range, we can slightly modify this parameter generating reasonable
3D content.

If we modify FOV, zoom effects are produced, having a zoom-in when FOV is
reduced and a zoom-out when it is increased. In Fig. 3 it can be seen that reducing
FOV, smaller parts of the scenario are rendered in the whole viewport (FOV B),
having to render bigger parts of the scene in the same viewport with bigger values of
FOV (FOV C).

N and F parameters define the clipping planes of vision, that is, the limits of the
viewing frustum. The depth of rendered objects is determined by these two planes. In
Fig. 4, an example of changing N and F is shown. Only the objects located between
these planes (Object B) will be rendered.

Another consideration is the attempt of generating content for a better visual-
ization in distances from the screen that are not the recommended ones by the
manufacturers. In Fig. 5, it can be observed that in position A the viewer receives
two consecutive views. However, if the position of the viewer is closer to the screen
(positions B and C), the eyes receive information of not consecutive views. In this
case, if D (distance between cameras) is reduced, views received from the eyes (that
are not consecutive views) will produce better visualizations for the location of the
viewer, minimizing the double image effect.

3.1.2 Cylindrical setup

In the cylindrical setup, the n cameras are located in the circumference of the base
circle of a cylinder looking at its axis (center of the circle) with the desired focus
distance and a homogeneous angle distribution between them (see Fig. 2b).

Fig. 4 Near and far planes

Camera

@ Springer

Multimed Tools Appl (2014) 72:385-415 393

Fig. 5 Eyes at different

distances from the screen \ | /
| ® ®| Position A

' Pogsition B
l\‘ /

Position C

Screen

The main difference with the planar setup is the sensation of rotation around the
center of the scene. That is, when the viewer moves around the screen a feeling of
rotating around it is caused. The parameters considered in this setup are the angle
separation between the cameras relative to the virtual axis of the cylinder (0), the
size of the radius of the cylinder (R), the angle of the field of view of the cameras
(FOV) and the near and far clipping planes of the cameras (/N and F).

Similar to the planar configuration, if we increase too much the angle 8 a double
image sensation can be obtained. Thus, the bigger is the angle 8, the bigger is the
parallax obtained in the objects located far from the axis (in front and back of it).
Another difference between the cylindrical setup and the planar one is that the fields
of view of the cameras differ more when the distance from the virtual axis to the
objects augments.

The effect of varying the value of the radius R is similar to changing the angle 6.
That is, if R is increased there will be more objects in front of the cameras with
more parallax, because the distance between the cameras are bigger than before
making larger R. Thus, both parameters have to be considered together in order
to not produce great double image sensation.

The variation of FOV will cause a zoom effect, like in the planar configuration.
Contrarily, in this case this parameter can be used to control that the renders do not
vary too much in determined distances, due to the fact that with the cylinder setup
the fields of view differ a lot when far distances from the axis are employed. Thus,
if FOV is augmented consecutive views will show more space of the same content,
matching up their renders.

The effect of changing the planes N and F is the same that in a planar setup.
Nevertheless, in this case N and F can be useful to fix a viewing range where an
acceptable parallax for the viewer is produced, without render the depths that will
cause an excessive parallax.

3.1.3 Hyperbolic setup

The hyperbolic setup locates the n cameras around the scene maintaining a fixed
angle between them. The axis is now located back to the projected part of the virtual
world, where the cameras look at (this is shown in Fig. 2c).

@ Springer

394 Multimed Tools Appl (2014) 72:385-415

With this configuration we can imitate the sensation of viewing the scene turning
horizontally our head. But we have to keep in mind that the common viewing zone
between all the cameras will be reduced if a big horizontal parallax (a big angle
between the cameras) is required.

The difference between this option and the cylindrical one is that the cameras do
not center their fields of view at a same point (the axis of the cylinder). Their renders
differ more with the same angle between the cameras than in a cylindrical setup.
Therefore, if we increase the angle 8 too much, very different images can be seen. In
this case, the angle 6 used here should be smaller than in the cylindrical setup.

By increasing the value of the radius R, more different renders will be obtained.
This is because if the value of R is increased, the distance between the cameras will
also augment. Thus, in this configuration, like in the cylindrical one, both parameters
R and 6 should be carefully chosen in order to not generate an excessive parallax.
The variation of FOV will cause a zoom effect and it can be used to control the
similarity of the different renders, such as in the cylindrical case. N and F planes can
also be used for establishing a viewing range with an acceptable parallax.

3.2 Interlaced generation

Once the cameras are located and configured, the resulting renders are stored in a
single texture. This is directly performed by applying a render-to-texture off-screen
operation. To keep the render information the texture space is divided into the
number of cameras used and the information of each camera is stored into the
corresponding texels. The bigger is the size of the textures, the better is the final
result resolution.

After storing all the renders in a single texture, the information is distributed into
the corresponding location in the display. That is, each direction of each lens should
show the corresponding information according to the characteristics of the display.
For this purpose, we make use of a fragment shader, i.e., a set of operations directly
performed on the GPU. These operations allow us to perform this image composition
with an acceptable frame rate for an interactive rendering and visualization.

The cameras information will be distributed in a different way depending on the
display. Thus, we first explain the behavior of our system in general terms and in
Section 4 we give more specific details relative to the display used.

The fragment shader will generate an interlaced texture from the previous views
composition. This fragment shader will modify the standard behavior of the tradi-
tional graphics pipeline by assigning the required information to each sub-pixel of
the device. The hardware requires showing at each position a color of a pixel from
a corresponding view. Thus, the fragment shader will perform this distribution on
the GPU, accessing to the information stored in the texture composed of n views
and distributing its information to the corresponding sub-pixels. This is performed
at each frame, but this content creation produces visualizations with an interactive
frame rate.

3.3 Integration in unity

We have integrated our system in a powerful game engine, Unity 3D. This allows
us to make use of all the capabilities of this potential and multi-platform tool, which

@ Springer

Multimed Tools Appl (2014) 72:385-415 395

has integrated some of the latest graphics hardware advances for the generation of
three-dimensional interactive content, such as GPU shaders. The main steps of this
integration are:

— Step 1. Create the different cameras to be used in the scene. They are created as
First Person Controller Prefab in the Hierarchy Menu in Unity 3D. The cameras
are distributed following one of the setups explained before (Section 3.1), that is,
we alter their location depending on which setup is used. This can be seen in Fig.
6, where different slightly separated cameras have been created (see Hierarchy
Menu).

— Step 2. Perform a render-to-texture associated to each one of these cameras. To
do this, we create a texture in the Project Menu. This texture will be assigned to
each Target Texture in the properties menu of each camera (see Fig. 7).

— Step 3. The target texture is the same for all renders, thus we have to modify the
viewport of each camera in the Normalized View Port Rect property. We assign
the relative normalized dimensions of the viewports that will fill up the whole
texture. The viewports must be consecutive, that is, the renders to texture must
be stored starting with the first camera in the left up corner of the target texture
and filling it up storing the renders by rows. This can be observed in Fig. 8 (see
Inspector menu).

— Step 4. Assign a script to the main camera in its properties in order to call the
shader used for generating the interlaced images. This script can be as the one
shown in Algorithm 1. The script is created in the Project Menu and it is assigned
in the Inspector Menu of the editor. This is shown in Fig. 9.

Center3Camera

CenterCamera

LeftzCamera
Left3Camera
LeftCamera
Right2Camera
Right3Camera

RightCamera

Fig. 6 Step 1. Generation of the cameras as first person controller prefab

@ Springer

396 Multimed Tools Appl (2014) 72:385-415

Preview

Texture
2048x2048 Color 32bit 32:0 MB

Fig.7 Step 2. Preview of the renders to texture

— Step 5. The fragment shader is used from the script assigned to the main camera
in the scene, that is, the one that will show the content for the users. The shader
is also created in the Project Menu and it is assigned in the Inspector Menu (see
Fig. 9). This shader is shown in Algorithm 2.

*% ¥V Camera

layer Settings

Fig. 8 Step 3. Configuration of the Normalized view port rect of the cameras

@ Springer

Multimed Tools Appl (2014) 72:385-415 397

Algorithm 1 Script
[ExecuteInEditMode]
[AddComponentMenu(‘ASEffect’)]
public class ASEffect: ImageEffectBase {
public Texture texture;

//Called by camera to apply image effect

function voip(OnRenderImage)(RenderTexture source, RenderTexture destination)
material.SetTexture (‘texture’, texture);
Graphics.Blit (source, destination, material);

end function

}

Layer |Default

Transform

o2 ¥V Camera

* ¥ Flare Layer

¥ ¥ GUILayer
: Audio Listener

v ASEffect (Script)
t

Fig.9 Steps 4 and 5. Assignment of the script and fragment to each camera

Algorithm 2 Shader

function GETCOLOR(X, y)
sNorm = x*texWidth/windowWidth
tNorm = y*texHeight/windowHeight

R = getColorComponent(0, x, y, (sNorm,tNorm))
G = getColorComponent(1, x, y, (sNorm,tNorm))
B = getColorComponent(2, x, y, (sNorm,tNorm))
textureColor = (R.x,G.x,B.x)

return textureColor;
end function

function MAIN
FragColor = getColor(FragCoord.x, FragCoord.y)
end function

@ Springer

398 Multimed Tools Appl (2014) 72:385-415

In Algorithm 1 ExecutelnEditMode makes a script to be executed in edit mode
to have all these functions executed every frame while the editor is running, and
not only in play mode. The AddComponentMenu attribute allows to place a script
anywhere in the Component Menu. These two instructions are optional, but they help
to manage better the scene in the editor. OnRenderImage is called after all rendering
is complete and allows to modify the final content by processing it with shaders.
Material. SetTexture function sets a named texture and Graphics.Blit copies source
texture into destination render texture, enabling this destination render texture as
active and drawing a full-screen quad.

The shader used for generating the interlaced content (Algorithm 2) works by
assigning to the color components of all the sub-pixels of the device their correspond-
ing color, computed from the information stored in the different renders (function
getColor). This distribution will depend on the device used, involving different
implementations of function getColorComponent. In Section 4 more details with the
device that we have employed are given.

4 Experimental results

We have tested the different setups and configurations proposed in a 8-view 46-in.
xyZ 3D LCD-display with lenticular lenses [36]. This device has horizontal parallax
and its resolution is 1920 x 1080 Full HD. All the results have been tested in an Intel
Core i7/ CPU 930 @ 2.80 GHz with an nVidia GeForce GTX 480 graphics card.

To store the renders using an eight-camera configuration, two distributions are
recommended: a 3 x 3 mosaic (Fig. 10a) or a 4 x 2 mosaic (Fig. 10b). With the 4 x 2
mosaic the whole image is computed. With the 3 x 3 mosaic a part of the image is not
used, but the aspect ratio is maintained in the stored renders. We can see an example
of each disposition in Fig. 10a and b. In the 3 x 3 mosaic we repeat the ninth image,
but it is discarded in the final interlaced composition.

(b)

Fig. 10 a 3 x 3 mosaic and b 4 x 2 mosaic for a composition with eight cameras generated with a
planar setup

@ Springer

Multimed Tools Appl (2014) 72:385-415 399

Table 1 Sub-pixel distribution
of the display

Y N N)
ENIE N - NG
T N Y Y N I
NN WA RV g
L SRS I R SV G
0 0= NN WA
\]\]OOP—‘P—*[\.)UJW
e N e N)
S I I R -
AR U N® g

Our implementation is based on the properties of the display used in this work.
This device presents a sub-pixel distribution as shown in Table 1, following a slanted
parallax barrier distribution. The slanted parallax barrier covers the display and
defines particular light direction of each sub-pixel. Depending on the viewing angle
and the distance of the observer from the display, most of the sub-pixels are masked.
The structure of the optical filter defines certain correspondence map between sub-
pixels and views.

The implementation of the shader used to access to the corresponding information
in the composed image with the eight views in order to show the scene through the
display is shown in Algorithm 3. In this shader the corresponding information for
each sub-pixel is taken from the different renders, basing on the distribution shown
in Table 1, which give us the view and color for each sub-pixel. getColorComponent

Algorithm 1 ShaderDisplay

function GETSUBPIXEL(textureID, comp, st)
mx = module(textureID,numCols)
my = floor((textureID-mx)/numCols)

position.s = (st.s + mx*texWidth)
position.t = (st.t + ((numRows-1)-my)*texHeight)

if(flip) position.t = screenHeight - position.t
color= tex2D(texture, position);

if(comp==0) return color.ra;
else if(comp==1) return color.ga;
else if(comp==2) return color.ba;
else if(comp==3) return color.aa;
return (0.0,0.0);

end function

function GETCoLORCOMPONENT(comp, X, y, St)
fy = screenHeight-y;
textureID = module((x*3 + comp + numCameras-fy + flooramano(fy/3.0)),
numCameras);
return getSubPixel(textureID,comp,st)
end function

@ Springer

400 Multimed Tools Appl (2014) 72:385-415

(a) (b)

Fig. 11 a Final interlaced image for the auto-stereoscopic display and b the same scene with an
anaglyph system for any conventional display

function returns the information for the corresponding sub-pixel. The texture from
which this information is extracted is computed.

Figure 11a shows the scene of the Fig. 10 interlaced with this shader. Figure 11b
shows the same virtual world with an anaglyph system integrated in Unity, using the
two central views. This enables the users to simulate the effect of these configurable
parameters in a conventional display.

Next, we explain the results achieved with the proposed setups (planar, cylindrical
and hyperbolic) and their different configurations. In these experiments we have
considered as initial values: D = 0.04, N = 0.8, F = 2000, R = 4 units, and FOV =
60,6 = 0.6°.

(@ (b)

©

Fig. 12 Interlaced image with a D = 0.02 units, b D = 0.04 units and ¢ D = 0.06 units

@ Springer

Multimed Tools Appl (2014) 72:385-415 401

(b)

Fig. 13 a Interlaced image with a planar setup and the near of the camera to 8 units and b interlaced
image with a planar setup and the far of the camera to 20 units

4.1 Planar setup

The planar setup imitates a planar distribution of a real rack of cameras. Therefore,
the results obtained will be similar that the ones produced in a real world with
cameras located in parallel. Next, we explain the effects of changing the parameters
of this setup.

First, we can observe the influence of altering D (distance between cameras). As
it can be appreciated in Fig. 12a, b and c, if this distance is increased, more separated
images are obtained, producing a bigger three-dimensional sensation. Nevertheless,
if the distance is augmented a lot, too much separated images are seen, and a double
image sensation is caused.

In any of the proposed setups we can change N and F (near/far clipping planes)
and FOV (angle of the field of view of the cameras). We can see the effect of
modifying N and F in Fig. 13a and b. Figure 13a shows the scene after moving N
from 0.8 to 8 units. In Fig. 13b we have put closer the parameter F from 2000 to
20 units. We can appreciate that different regions of the virtual world are rendered
when these planes are modified. This can help to avoid rendering regions with an
excessive parallax.

Varying FOV a zoom effect is generated, producing a zoom-in when the value of
FOV is reduced. This can be appreciated in Fig. 14, where the parameter FOV has
been changed from 60 to 30°.

Fig. 14 Interlaced image with
a planar setup and the field of
view of the camera to 30°

@ Springer

402 Multimed Tools Appl (2014) 72:385-415

Fig. 15 Interlaced image with
a cylindrical setup with
R =4 units and 6 = 0.6°

4.2 Cylindrical setup

In the cylindrical setup the cameras look to the same point (the center of the
cylinder), imitating the effect generated when we are focusing our vision in a specific
object.

In this configuration we have put a white object in the center of the cylinder.
We have changed the parameters 6 (angle between cameras) and R (distance to
the center of the cylinder). Figure 15 shows the image resulting of increasing the
value of 8 from 0.4 to 0.6°. The bigger are the values of 8, the more parallax is
produced. However, if an excessive value is selected, it can be perceived a double
image sensation in points far from the axis. If R is made larger the effect is similar
than reducing the value of 6.

Increasing the value of § causes a similar effect than modifying the parameter D in
a planar setup. The difference is that when the offset increases, the distance between
the cameras also augments, making larger the difference between the images. In

Fig. 16 Interlaced image with a cylindrical setup with a R=4 units, b R =28 units and
¢ R = 10 units. 0 has been set to 0.4°

@ Springer

Multimed Tools Appl (2014) 72:385-415 403

Fig. 17 Interlaced image with
a cylindrical setup with a
R=4,0=0.6and F = 150

order to establish a depth range with an acceptable parallax, it will help to modify
the parameters N and F (such as shown in the previous examples).

If R is made larger the effect is similar than reducing the value of 4. In Fig. 16a,
b and c the parameter R is modified. It can be observed that the region where the
parallax is neutralized moves with the axis. Note that a change of parallax is produced
where the objects are seen clearly. In these figures we have marked this region with
ared circle.

The parallax perceived in an object depends on its depth in the scene, being the
parallax in this configuration bigger in objects far from the axis. Thus, the content
in far depths can vary a lot and more parallax than in a planar configuration can be
produced. This can be solved by adapting FOV, N and F in order to fix a range with
an acceptable parallax. The effect of each of these parameters is the same than the
one obtained in the planar configuration. With the initial values of the parameters,
F has to be set in a range of [100, 180] units. In Fig. 17 the parameter F has been set
to 150 units. It can be appreciated that the objects far from the axis are not rendered,
avoiding a double image effect. Thus, differing from the planar configuration, F
cannot be considered as infinite, because a significant parallax is produced in objects
far from the axis.

4.3 Hyperbolic setup

The hyperbolic setup can simulate the effect of rotating our head in a scenario. The
main parameter that allows to generate different results of the scenario is the angle
6. In Fig. 18a and b we show the scene with § = 0.6° and 6 = 0.1°, respectively.

(b)

Fig. 18 Interlaced image with a hyperbolic setup usinga § = 0.6 and b § = 0.1°

@ Springer

404 Multimed Tools Appl (2014) 72:385-415

Fig. 19 Interlaced image with
a hyperbolic setup with
FOV =150

Increasing R produces a similar effect than making the parameter 6 bigger. Thus,
we have fixed the value of R to 10 and changed the angle 6.

We can appreciate that in this case small values of should be used in order to
have reasonable visual results in the device (see Fig. 18b). Otherwise, assigning high
values to the parameter 6 (see Fig. 18a), an excessive horizontal parallax is obtained.
This effect can be minimized by changing the values of N, F and FOV. The values
of N and F help to fix a depth range with a reasonable parallax, as in the cylindrical
setup. In the scene shown in the experimental results, setting ¢ to 0.3 degrees, F
should be set around 150 units in order to avoid an excessive parallax in objects
located at the background.

The variation of FOV can also help to avoid an excessive parallax when it is
increased, because it makes the different renders to be more similar. However, if
it is fixed to a high value, distortion in the final image can be produced. An example
of this is shown un Fig. 19, where FOV = 150 units. This is because when FOV is
increased the sides of the images are stretched more than the center.

5 Validation

We made a study with thirty participants (19 males, 11 females) from the Jaume I
University of Castellén (Spain). The average age was 31.14 years (standard deviation
of 7.15). The test shown in Appendix B was filled out with their answers. The goal of
this test is the study of the visual perceptions, based on the values of the parameters
chosen by the participants.

All the users first sat down at 4 m from the display. The experimental protocol
was as follows: for all the proposed setups, we interactively changed each one of
the parameters shown in the test (see Appendix B) and the participants were asked
about the best visualization. These parameters were altered with keyboard events,
which increased or decreased their values, following the order of the test. Participants
could also change these values with the keyboard and navigate through the virtual
world using the keyboard and mouse. Thus, we wrote in the test the values of the
parameters for their optimal visualization of the scene. Later, they were asked with
the questions shown in the test. They ordered in a ranking (with a score from 1 to 3)
the three proposed setups for each question. Finally, they sat down at 2 m from the
display and we changed again the parameters shown in the test for this distance. They
were also asked about their perception feelings using the designed questionnaire.

Participants could move through the virtual world and watch at different parts of
the scenario with a Full HD resolution (1920 x 1080). These zones of the scenario

@ Springer

Multimed Tools Appl (2014) 72:385-415 405

seen by the users had a range of [384,900, 1,300,000] polygons. The rendering
performance was in range of [89, 138] frames per second, depending on which
zones were watched. Thus, users were navigating through a high detailed scene in
a interactive frame rate. We used the 8-view display commented at the beginning of
this section in order to do the test. Thus, we employed an 8-camera configuration
in the study. We also tested in Unity the setups increasing the number of cameras
until 32. Interactive frame rates were also obtained. For a bigger number of cameras,
multi-view acceleration techniques could be applied [19-31].

Figure 20 shows the results of the answers of the participants. In its subfigures,
it can be seen the median (the line inside the boxes), the 25th percentile (the
lowest value of the boxes) and the 75th percentile (the highest value of the boxes).
Moreover, the outliers are marked with crosses. Parameters were changed with the
following precision steps: D: 0.001 units, §: 0.01°, FOV: 0.5° and R: 0.1 units. N and
F had initial values of N = 0.8 and F = 2000 units and were not varied in the tests,
because they are useful to eliminate the double zones and we also wanted to know
when the participants began to see a double image effect.

Figure 20a shows the values of FOV (y-axis) for each setup (x-axis). We can
see that this parameter is similarly selected in any setup. The optimal value for
the participants is not the same value, being a value near to the 25th percentile
in the planar and hyperbolic cases. Figure 20b shows the values of the distance
between cameras (y-axis) in the planar setup for both distances form the user to
the display (2 and 4 m) (x-axis). It can be seen that distances between cameras

133 0,09505 4

0,08505 -

13 0,07505

Parameter FOV
N
by

0,01505
0,00505

13 T T 1 -0,00495
Planar Cylindrical Hyperbolic 4 meters 2 meters
Setups Distance

(@) (b)

0,1566 0,155

0,1366 0,135
0,1166 0,115
0,0966 x x 0,095

0,0766 - 0,075

Parameter 0
Parameter 0

0,0566 0,055 1

0,0366 0,035

0,0166 - 0,015 - %

-0,0034 -0,005 4

-0,0234 . , -0,025
4 meters 2 meters 4 meters 2 meters
Distance Distance

(© (@

Fig. 20 a Parameter FOV for each setup at 4 m, b parameter D for the planar setup at 4 and 2 m,
¢ parameter € for the cylindrical setup at 4 and 2 m and d parameter 6 for the hyperbolic setup at 4
and 2 m

@ Springer

406 Multimed Tools Appl (2014) 72:385-415

when the user is located at 2 m should be smaller than distances between cameras
at 4 m from the display. This is because the distance for the viewer recommended by
the manufacturer is around 4 m. Thus, at smaller distances the separation between
cameras should be decreased in order to not perceive double image sensation. Figure
20c and d show the angles between cameras (y-axis) at 2 and 4 m for the display
(x-axis) in the cylindrical and hyperbolic setups, respectively. It can be seen that,
similarly than in the planar case, participants chose smaller values for the angles
when they were located near the display. With the cylindrical setup the optimal value
is almost the 25th percentile value for the majority of users. With the hyperbolic setup
the vast majority of participants chose values for the angle between cameras near to
0 when they located at 2 m from the screen.

Table 2 shows the means and standard deviations for each parameter in the three
proposed setups. In the planar setup, we can note that the standard deviation value
is similar than the mean value, that is, the values selected are in a wide range. FOV
values were the expected, being near to 60 or 80.

In the cylindrical setup, the values of the angles are not so scattered (see Fig. 20c)
than the values D in the planar case (see Fig. 20b). The values of an optimal R vary in
a wide range. FOV values were also the expected in this case, as in the planar setup.

In the hyperbolic setup, € values are smaller than in the cylindrical case. FOV
values are similar than in the previous setups. The values of R differ more than in
the cylindrical case, because the best visualization for the users usually tends to have
high values of R. In this range of values the visualization was not almost affected, but
the users tended to prove higher values looking for a visual change.

Table 3 shows the means and standard deviations for the parameters D in the
planar setup and @ in the cylindrical and hyperbolic cases when the viewer is located
at 2 m from the screen. This is due to the fact that depending on the distance of
the viewer to the screen a different distance between cameras is required to avoid a
double image sensation. From all the parameters considered previously in the camera
setups only the parameters that affect to the distance between cameras should be
varied in order to re-adjust the accommodation of the viewer. We can observe in
this table that the values for these parameters used by the participants at 2 m to the
screen are smaller than the values at 4 m for these parameters.

This study is related to visual aspects, such as, stereoscopic comfort zone, Panum’s
fusion area, change of depth reproduction when changing viewing distance and
excessive binocular disparity. Stereoscopic comfort zone is related to the values for
the parameters selected depending on the location of the viewer. These parameters
can also be altered in order to re-adjust the Panum’s fusion area depending on
the location of the viewer. We can observe that the users needed to re-adjust the

Table 2 Mean, standard deviation, minimum and maximum values for each parameter of the
different setups at 4 m from the display

Setup Planar Cylindrical Hyperbolic

parameter D Fov 0 R Fov % R Fov
Mean 0.0327 74.4 0.052 12.23 78.1 0.044 32.9 76.0
Std dev 0.0298 17.7 0.026 8.08 15.1 0.028 30.7 15.0
Min 0.0040 37.0 0.012 4.58 54.0 0.001 5.2 51.0
Max 0.0900 108.0 0.130 39.00 103.0 0.137 134.0 110.0

@ Springer

Multimed Tools Appl (2014) 72:385-415 407

Table 3 Mean, standard

o - Setup Planar Cylindrical Hyperbolic
deviation, minimum and
. parameter D % 4
maximum values for each
parameter of the different Mean 0.0190 0.031 0.019
setups at 2 m from the display ~ Std dev 0.0197 0.024 0.010
Min 0.0003 0.0042 0.005
Max 0.0690 0.0970 0.040

parameters D and 6, decreasing their values, because they were perceiving double
image sensation. In a case where the same scene could be seen sharp at both distances
with the same values of the parameters, more 3D sensation would be produced
changing the viewing distance from 4 to 2 m. Finally, the binocular disparity is also
related to the distances between cameras in a planar setup or angles and radius in the
cylindrical and hyperbolic setups. We can observe in Fig. 20 that the biggest binocular
disparity is caused with the hyperbolic setup when the participants were located at
2 m, because the images perceived by the users differ a lot when these angles are
highly augmented. Thus, they selected the lowest values for the angles between the
cameras in this case.

Finally, we have applied a Friedmann test [6], which follows a Fisher distribution,
for analyzing significance of the answers of the participants to the questions of our
test. This is a non-parametric technique to measure the significance of the statistical
difference of the three setups that provide results on the same questions. We use
a confidence level o = 0.05, 95 % confidence, to set up the critical value of the
Fisher distribution for the three setups Ng = 3 that appear in the comparative and
30 participants Np = 30, with degrees of freedom Ng— 1 =2and (Ns— 1) x (Np —
1) = 58, obtaining a critical value of Fisher distribution F(2, 58) = 3.15.

Table 4 shows the results of the Friedmann test. This table also shows the average
values of the score in the ranking for each question. They ordered in a ranking (with
a score from 1 to 3) the more adequate setups for each question.

The order of the setups selected by the participants for the first question (best 3D
sensation) was: cylindrical, planar and hyperbolic. In the second question (sharpest
background) the order was: planar, cylindrical and hyperbolic. In the third question
(most blurred sensation) the results were: hyperbolic, cylindrical and planar. In
the fourth question (best sensation of rotation moving sideways) the results were:
cylindrical, hyperbolic and planar. Finally, in the fifth question (favorite setup)
the order was: planar, cylindrical and hyperbolic. In all the questions the result is
conclusive because they have a positive Friedman test, which means that statistical
differences are considered significant.

Table 4 Average score ranking values of the questions and Friedmann test when the viewer is
located at 4 m to the screen

Question Planar Cylindrical Hyperbolic Friedmann test
1 2.2 1.2 25 Positive (29.9)
2 1.0 2.0 3.0 Positive (413.4)
3 29 2.0 1.1 Positive (123.6)
4 2.5 1.2 22 Positive (13.3)
5 1.3 2.3 2.4 Positive (19.7)

@ Springer

408 Multimed Tools Appl (2014) 72:385-415

As we can see in the results, the majority of participants selected the planar setup
as favorite. The biggest 3D sensation is not perceived by the planar setup, but the
cylindrical one. Thus, producing the cylindrical setup the biggest 3D sensation, it is
not the favorite for the users. This is due to the fact that in the cylindrical setup,
objects far from the viewer can be seen more blurred than in the planar case. It
can also be observed in the results that the planar setup is the one with less rotation
sensation for the users. Rotating around the objects can help to have more immersion
sensation in the scenario. The hyperbolic setup is the last one selected by the users,
because it is the setup that produces the biggest astonishment feeling to the users.
Note that the design of the display employed for the results was focused on a planar
rack of cameras. For a better visualization of the cylindrical and hyperbolic setups,
the used display should be designed thinking of these camera distributions.

6 Conclusions

In this paper we have presented a study about creating a multi-view system in
a virtual world. To do this, we have developed a graphical system with several
cameras, which post-process the renders generating interlaced content valid for
auto-stereoscopic displays. Different camera setups have been proposed: planar,
cylindrical and hyperbolic.

For each of the proposed setups, we can find an adequate configuration for specific
auto-stereoscopic screen, an 8-view 46-inches xyZ 3D LCD-display. In this work
we have explained general configurations that can be used in any kind of auto-
stereoscopic devices, varying the number of cameras and the shader that interlaces
the renders. Moreover, several configurable parameters for these setups have been
considered and analyzed looking for a correct visualization.

The planar setup produces realistic and natural 3D sensations with an adequate
distance between the cameras, simulating the result of a real rack of cameras
distributed in parallel. In the cylindrical case, a bigger effect of rotation of the objects
is perceived. The problem is that the higher is the distance from an object to the
virtual cylinder, the bigger is the parallax. To minimize this effect, the near and the far
clipping planes are employed to reduce the viewing depth range. With the hyperbolic
setup, the sensation of viewing the scene turning horizontally our head is imitated.
The main consideration in this setup is that the angle separation between the cameras
has to be small, because the cameras see to different directions and the renders can
significantly differ.

We have integrated this system in a powerful engine game, Unity 3D. A demo
of this integration has been developed, in which all the described parameters can be
modified. Thus, the effects commented in this work can easily be observed on it. It
also demonstrates that the content is generated with an interactive frame rate.

Differing from previous works, a study with several participants about the pa-
rameterization of content generation for a correct 3D navigation in virtual worlds
with different camera setups has been made. The goal of this study was the analysis
of visual perceptions, based on the optimal values of the parameters chosen by the
participants. The most chosen setup as favorite was the planar one. However, the
biggest 3D sensation was produced in the cylindrical setup. The hyperbolic setup was
the one that caused the most strange visual perception effects to the users.

@ Springer

Multimed Tools Appl (2014) 72:385-415 409

As future work, due to the parallel nature of a multi-view system like the
one developed here, we will consider the possibility of the parallelization and re-
utilization of information with the latest advances appeared in the programming of
the graphics hardware, like shaders or CUDA.

Acknowledgements This work has been supported by the Spanish Ministry of Education and
Science (TIN2009-14103-C03-01), Caja Castellén-Bancaja Foundation (P1.1B2009-45), Generalitat
Valenciana (Project PROMETEO/2010/028, BEST/2011) and Consolider Ingenio 2010 (CSD2007-
00018).

Appendix A: Demos and videos

In this appendix we present a tutorial to manage the demos attached with this paper,
which present a virtual world in Unity3D with the planar, cylindrical and hyperbolic
setups. Each one of these setups is presented in both auto-stereoscopic and stereo
anaglyph representations.

Note that, as it is specified in the Unity documentation, the system and hardware
requirements are Windows XP SP2 or later, Mac OS X Intel CPU & Leopard 10.5 or
later and a graphics card with 64 MB of VRAM and pixel shaders.

The user can move through the scene using the cursor keys and turn around the
scene with the mouse. All the studied parameters for each setup can be changed in
the demos. The links where all the demos (both auto-stereoscopic and anaglyph of
each setup) are located are the following:

— Planar setup

— http://www4.uji.es/~sal80047/WebPl/WebPlayer.html
— http://www4.uji.es/~sal80047/WebPlA/WebPlayer.html

— Cylindrical setup

— http://www4.uji.es/~sal1l80047/WebCyl/WebPlayer.html
— http://www4.uji.es/~sal80047/WebCylA/WebPlayer.html

— Hyperbolic setup

— http://www4.uji.es/~sal80047/WebHyp/WebPlayer.html
— http//www4.uji.es/~sal80047/WebHypA/WebPlayer.html

Additionally, we attach three different videos, showing the effect of varying all
these parameters. In order to see better the behavior of each parameter, additional
to the generated content we show the changes of the elements in the editor. These
videos are located in:

http://www4.uji.es/~sal80047/Videos/VideoPlanar.wmv
http://www4.uji.es/~sal80047/Videos/VideoCylindrical. wmv
http://www4.uji.es/~sal80047/Videos/VideoHyperbolic.wmv

Finally, the code of both the script and shader for Unity are also located in:

— http://www4.uji.es/~sa180047/Code/AS.cs
— http://www4.uji.es/~sa1l80047/Code/AS.shader

@ Springer

http://www4.uji.es/~sa180047/WebPl/WebPlayer.html
http://www4.uji.es/~sa180047/WebPlA/WebPlayer.html
http://www4.uji.es/~sa180047/WebCyl/WebPlayer.html
http://www4.uji.es/~sa180047/WebCylA/WebPlayer.html
http://www4.uji.es/~sa180047/WebHyp/WebPlayer.html
http://www4.uji.es/~sa180047/WebHypA/WebPlayer.html
http://www4.uji.es/~sa180047/Videos/VideoPlanar.wmv
http://www4.uji.es/~sa180047/Videos/VideoCylindrical.wmv
http://www4.uji.es/~sa180047/Videos/VideoHyperbolic.wmv
http://www4.uji.es/~sa180047/Code/AS.cs
http://www4.uji.es/~sa180047/Code/AS.shader

410

Multimed Tools Appl (2014) 72:385-415

Appendix B: Test

Sex:

Please, follow the instructions of the researcher and say him/her when you can correctly look

3D TEST

Age: Visual gradation: left eye

at the virtual world. This part will be fulfilled by the researcher.

4 METERS

@ Springer

PLANAR SETUP
Distance between cameras
Best value:
Degrees of field of view
Best value:

CYLINDRICAL SETUP
Angle between cameras (with fixed radius)
Best value:
Radius (with fixed angle between cameras)
Best value:
Degrees of field of view
Best value:
HYPERBOLIC SETUP
Angle between cameras (with fixed radius)
Best value:
Radius (with fixed angle between cameras)
Best value:
Degrees of field of view

Best value:

Multimed Tools Appl (2014) 72:385-415

2 METERS

Now, navigating through the virtual world, please answer the following questions:

PLANAR SETUP

Distance between cameras

Best value:

CYLINDRICAL SETUP

Angle between cameras (with fixed radius) Best value:
HYPERBOLIC SETUP
Angle between cameras (with fixed radius) Best value:

Order the setups by the 3D sensation of
the virtual world (the objects are in and
out of the screen)? (Being in front of the
screen and navigating through the world)

Order the setups by the sensation of
having a sharp (not blurred) background?

Order the setups by the sensation of
seeing blurred/double objects (1: biggest;
2: medium; 3: smallest)

Move yourself sideways and order the
setups by the sensation of rotation (1:
biggest; 2: medium; 3: smallest)

Which setup would you choose to
navigate through a virtual world?

1-

2-

3-

1-

2-

3-

1-

411

@ Springer

412 Multimed Tools Appl (2014) 72:385-415

References

1. Cheng X (2007) Generation of layered depth images from multi-view video. In: IEEE interna-
tional conference on image processing (ICIP *07), pp 225-228
2. Chen H-J, Lo, F-H, Jan F-C, Wu S-D (2010) Real-time multi-view rendering architecture for au-
tostereoscopic displays. In: Proc. of 2010 IEEE international symposium on circuits and systems
(ISCAS), pp 1165-1168
3. DeCoro C, Tatarchuk N (2007) Real-time mesh simplification using the GPU. In: Proceedings
of the 2007 symposium on interactive 3D graphics and games (I3D ’07), pp 161-166
4. Dogson N A (2002) Analysis of the viewing zone of multi-view autostereoscopic displays. In:
Proc. of SPIE symposium on stereoscopic displays and applications XIII, pp 254-265
5. Fehn C (2003) A 3D-TV approach using depth-image-based rendering (DIBR). In: Proc. VIIP
03. Benalmadena, Spain (2003)
6. Friedmann M (1937) The use of ranks to avoid the assumption of normality implicit in the
analysis of variance. J Am Stat Assoc 32(200):675-701
7. FuH, Yao S-J, Li D-X, Wang L-H, Zhang M (2012) A real-time multi-view interlacing architec-
ture for auto-stereoscopic 3DTV display based on FPGA. In: 2nd international conference on
consumer electronics, communications and networks, pp 1569-1572
8. Gortler S J, Grzeszczuk R, Szeliski R, Cohen M F (1996) The lumigraph. In: SIGGRAPH’96,
pp 43-54
9. Gumbau J, Gonzélez C, Chover M (2008) GPU-based normal map generation. In: International
conference on computer graphics theory and applications (GRAPP *08), pp 62-67
10. Gumbau J, Chover M, Sbert M (2010) Screen space soft shadows. In: GPU pro, chapter 4, part
VII
11. Hubner T, Pajarola R (2007) Single-pass multi-view volume rendering. In: IADIS, pp 50-58
12. Jarvenpaa T, Salmimaa M (2008) Optical characterization of autostereoscopic 3-D displays. J
Soc Inf Displ 16(8):825-833
13. Jin Z X, Zhang Y J, Wang X, Plocher T (2007) Evaluating the usability of an auto-stereoscopic
display. In: Proceedings of the 12th international conference on Human-computer interaction:
interaction platforms and techniques (HCI *07), pp 605-614
14. Juan M C, Pérez D (2010) Using augmented and virtual reality for the development of acro-
phobic scenarios. Comparison of the levels of presence and anxiety. Comput Graph 34(6):
756-766
15. Lambooij M, Ijsselsteijn W, Fourtin M, Heynderickx I (2009) Visual discomfort and visual fatigue
of stereoscopic displays: a review. J Imag Sci Tech 53(3):030201-1-030201-14
16. Levoy M, Hanrahan P (1996) Light field rendering. In: SIGGRAPH ’96 Proceedings of the 23rd
annual conference on computer graphics and interactive techniques, pp 31-42
17. Luo J, Qin K, Zhou Y, Mao M, Li R (2010) GPU-based multi-view rendering for spatial-
multiplex autostereoscopic displays. In: 3rd IEEE international conference, pp 28-32
18. Luo J, Qin K, Zhou Y, Mao M (2010) GPU rendering for tiled multi-projector autostereoscopic
display based on chromium. Vis Comput 26:457-465
19. Marbach J (2009) GPU acceleration of stereoscopic and multi-view rendering for virtual reality
applications. In: 16th ACM symposium on virtual reality software and technology, pp 103-110
20. Matusik W, Pfister H (2004) 3D tv: a scalable system for real-time acquisition, transmission, and
autostereoscopic display of dynamic scenes. ACM Trans Graph 23(3):814-824
21. Mendiburu B (2009) 3D movie making: stereoscopic digital camera from script to screen. Else-
vier, New York
22. Miksicek F (2006) Causes of visual fatigue and its improvements in stereoscopy. University of
West Bohemia in Pilsen. Technical Report No. DCSE/TR-2006-04
23. Okoshi T (2010) Three dimensional imaging techniques, 2nd edn. Atara Press
24. Park J, Lee B, Hong H, Shin H (2006) Autostereoscopic multi-view 3D system using square
subpixel structure. In: International display workshop, pp 1365-1366
25. Reiter D, Chen B (2007) LightShop: interactive light field manipulation and rendering. In:
Proceedings of SI3D ’07, pp 121-128
26. Salmimaa M, Jarvenpid (2008) Objective evaluation of multi-view autostereoscopic 3D displays.
SID Symp Dig Tech Pap 39(1):267-270
27. Saygili G, Gurler G, Tekalp A M (2009) 3D display-dependent quality evaluation and rate
allocation using scalable video coding. In: IEEE international conference on image processing
(ICIP), pp 717-720
28. Shum H-Y, Chan S-C, Kang S B (2007) Image-based rendering. Springer, New York

@ Springer

Multimed Tools Appl (2014) 72:385-415 413

29. Son J Y, Saveljev V, Kim J-S, Kim S-S, Javidi B (2004) Viewing zones in three-dimensional
imaging systems based on lenticular. Appl Opt 43(26):4985-4992

30. Sorbier F, Nozick V, Biri V (2008) GPU rendering for autostereoscopic displays. In: 4th interna-
tional symposium on 3D data processing, visualization and transmission (3DPVT’08)

31. Sorbier F, Nozick V, Biri V (2008) Accelerated stereoscopic rendering using GPU. In: The 16th
international conference in central europe on computer graphics, visualization and computer
vision (WSCG2008)

32. Stendel D (2009) Autostereoscopic visualization of landscape—a research project. In: Screnk
M, Popovich V V, Engelke D, Elisei P (eds) Coorp 2009—Competence Center for Urban and
Regional Development. Sitges. TU Wien

33. Strecha C, Von Hansen C, Gool L V, Fua P, Thoennessen U (2008) On benchmarking camera
calibration and multi-view stereo for high resolution imagery. In: IEEE conference on computer
vision and pattern recognition, pp 1-8

34. Van Berkel C (1999) Image preparation for 3D-LCD. In: Proceedings of SPIE, vol 3639, pp 84-91

35. UNITY Game development tool (2012). http://unity3d.com

36. xyZ 3D Displays. Autostereoscopic 3D TV (2012). http://www.xyz3d.tv/

37. Zhang L, Tam W J (2005) Stereoscopic image generation based on depth images for 3D TV.
IEEE Trans Broadcast 51(2):191-199

Carlos Gonzalez received his Ph.D. in computer science in 2010, from the University Jaume I of
Castellon (Spain) in the Department of Computer Languages and Systems at the University Jaume I
of Castellon. He got his bachelor’s and master’s degrees in computer science from this University. He
is a member of the Institute of New Imaging Technologies in this University. His research interests
are in the areas of computer graphics, geometric modeling and interactive and auto-stereoscopic
visualization.

@ Springer

http://unity3d.com
http://www.xyz3d.tv/

414 Multimed Tools Appl (2014) 72:385-415

José Martinez Sotoca received the B.Sc. degree in physics from the Universidad Nacional de
Educacion a Distancia, Madrid, Spain, in 1996 and the M.Sc. and Ph.D. degrees in physics from
the University of Valencia (Spain) in 1999 and 2001, respectively. His Ph.D. work was on surface
reconstructions with structured light. He is currently an assistant lecturer in the Department
of Computer Languages and Systems at the University Jaume I of Castellén (Spain). He has
collaborated in different projects, most of which are in the medical application of computer
science. He has published more than 70 scientific papers in national and international conference
proceedings, books and journals. His research interests include pattern recognition and biomedical
applications, including image pattern recognition, computer graphics, hyperspectral data and feature
extraction and selection. Dr. José Martinez is a member of the International Association for Pattern
Recognition.

Filiberto Pla is a full professor at the Departament de Llenguatges i Sistemes Informatics of
the University Jaume I, Castellon, Spain. He received a degree and a Ph.D. in physics from the
University of Valencia in 1989 and 1993. At present, he is the director of the Institute of New Imaging
Technologies, at the University Jaume I. His current research interests are colour and spectral
image analysis, visual motion analysis, active vision and pattern recognition techniques applied to
image processing. He is the chairman and an active member of the Spanish Association for Pattern
Recognition and Image Analysis, AERFAI, which is a member of the International Association for
Pattern Recognition.

@ Springer

Multimed Tools Appl (2014) 72:385-415 415

Miguel Chover received his Ph.D. in computer science in 1996, from the Universidad Politécnica de
Valencia (Spain). He is assistant professor of computer science at the University Jaume I of Castellén
(Spain). He is member of the executive committee of Eurographics (Spanish Chapter). His research
areas include multiresolution modeling, real-time visualization and virtual worlds.

@ Springer

	Synthetic content generation for auto-stereoscopic displays
	Abstract
	Introduction
	Background
	Multi-view content generation
	Camera setups
	Planar setup
	Cylindrical setup
	Hyperbolic setup

	Interlaced generation
	Integration in unity

	Experimental results
	Planar setup
	Cylindrical setup
	Hyperbolic setup

	Validation
	Conclusions
	Demos and videos
	Test
	References

