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Abstract A spatially variant finite mixture model with Student’s t-distribution com-
ponent function is proposed for grayscale image segmentation. This model employs
a new weight function which contains the information along the different spatial
directions indicating the relationship of the pixels in the neighborhood. The label
probability proportions are explicitly represented as probability vectors in the model.
Gradient descend method is used to update the unknown parameters. The proposed
model contains fewer parameters and it is easy to be implemented compare with the
Markov random field (MRF) models. Comprehensive experiments on synthetic and
natural images are carried out to demonstrate that the proposed model outperforms
some other related ones.
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1 Introduction

Image segmentation is one of the most important steps for image analysis and image
understanding. Its key goal is to divide an image into segments according to the
features of the image, such as the intensity and texture, where each region has a
reasonably homogeneous visual appearance or corresponds to objects or parts of
objects [8].

In the field of image segmentation, the clustering method has become one of the
hot topics over the last few years. The finite mixture model (FMM) [2, 16, 25], a well
known clustering model, provides a flexible method to model many random phe-
nomena. The FMM can be used for image segmentation because its k components
can be used to denote k classes. In the FMM, the mixture density is used to
realize the data points. The probabilistic clustering is derived according to the
fitted posterior probabilities of component membership. However, it is difficult to
compute the parameters of the FMM by maximum likelihood (ML) estimation.
The FMM supposes the attribute of these pixels is generated by a specific finite
mixture distribution. The component function of the FMM can be various statistical
distributions. When the component function of the FMM is Gaussian distribution, it
is called Standard Gaussian mixture model (GMM). One drawback of the FMM in
image segmentation is that it supposes the pixels are independent and does not take
into account the spatial relationship among the pixels.

In order to overcome the aforementioned drawback in the FMM, a spatially
variant finite mixture model (SVFMM) was proposed by Sanjay et al. [20] for image
segmentation where the spatial information was considered in SVFMM. The spatial
information of the model was captured by MRF [9, 13]. Then the Expectation-
Maximization (EM) [7] algorithm was used through ML to compute the parameters
of the model. Subsequently, some models based on MRF have been proposed
and applied to medical imaging segmentation [27–29]. In order to estimate the
parameters of these models, EM algorithm, Markov Chain Monte Carlo (MCMC)
and Variational Bayes (VB) [2, 12] approximation inference algorithm are utilized in
these models, respectively.

However, the label probability proportions (the probabilities of each pixel be-
longing to some classes) in the SVFMM can not be obtained in closed form in the
M-step of the EM algorithm. The label probability proportions are formulated as a
constrained optimization problem. The results of the label probability proportions
require a projection onto the unit simplex (non-negative and summing up to one
components). A gradient projection algorithm is used in [20]. Convex quadratic
programming is proposed for the SVFMM in [1] and it is shown to produce both
better segmentations and values of the criterion function than [20]. One of the
shortcomings of SVFMM in [20] and [1] is that the MRF prior lacks flexibility and
it can not learn from the data. Nikou et al. [17] proposes a Gauss–Markov random
field prior probability which is imposed on the label probability proportions. The
parameters of the model can be estimated from the data adaptively. Concurrently, it
utilizes the information in different spatial directions of the neighborhood. However,
in the M-step, the label probability proportions still don’t satisfy the constraint of
probability vectors.

To preserve the region boundaries in image segmentation, two synthetical models
combining the class prior information with line processes [9] are proposed in [21].
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In the two models, MRF smoothness priors are imposed on the label probability
proportions of a spatially varying Gaussian mixture model. In the first model, the
local differences between the label probability proportions are supposed to follow
Gaussian distribution, at the same time the Bernoulli distribution is imposed on the
binary line processes (BLP). It is a discrete line process model and the VB algorithm
is used to estimate the unknown parameters of the BLP model. In the second model,
the local differences between the label probability proportions are supposed to
follow the continuous univariate Student’s t-distribution and the continuous line
process (CLP) random variables follow a Gamma distribution. EM algorithm is
used to estimate the parameters of the CLP model. But the results of the label
probability proportions of the two models can not satisfy the constraint that the label
probability proportions must be probability vectors. A new projection method based
on a quadratic approximation is proposed to solve this problem. In order to avoid
the reparatory computations in the M step of the EM, two models based on the
GMM are proposed in [24] and [23], respectively. The label probability proportions
in the two models are explicitly modelled as probability vectors. They both use the
gradient method to estimate the models’ parameters based on minimizing the higher
bound on the data negative log-likelihood. A new approach which incorporates
the spatial relationships between the neighboring pixels is proposed to model the
label probability proportions in [24]. We regard the model proposed in [24] as an
extension of the GMM (EGMM). Considering the information that the neighboring
pixels in an image are similar in some sense, the pixel value is represented by the
average of its neighborhood pixels in the weight function of the label probability
proportions of the model in [23]. The model in [23] is called spatial neighborhood
GMM (SNGMM). A novel model for image segmentation based on the maximum
likelihood estimator is proposed in [14] which is different from the pattern of
SVFMM in utilizing the spatial information. The model in [14] assumes that all
the pixels values are independent and identically distributed samples of generative
models. The neighborhood of a pixel is regarded as its multiple observations. The
likelihood of a pixel is assumed to be a weight sum of the neighborhood’s likelihood
where its coefficient depends on their spatial distances to the pixel. The model in
[14] based on the maximum of spatial likelihoods (MSL) is well applied to image
segmentation.

The component functions of the aforementioned SVFMMs are Gaussian distri-
bution. However, the tails of the Gaussian distribution are too short to satisfy the
needs for many applications. The Student’s t-distribution has heavier tails compared
with the Gaussian distribution. It is a robust alternative to the Gaussian distribution
[18, 22]. The Student’s t-distribution has been successfully used in many applications,
such as signal analysis [5], sequential data modelling setting [6] and speaker iden-
tification [4].

In this paper, combining the advantages of the SVFMM with robustness of the
Student’s t-distribution, a spatially varying Student’s t-distribution mixture model
is proposed. In the proposed model, a weight function is defined to denote the
spatial relationship between the pixels, which contains the directional information of
a pixel’s neighborhood. The label probability proportions of the pixels are explicitly
modelled as probability vectors, they automatically satisfy the conditions of the
probability vectors. Therefore the reparatory computations are not needed during
the process of inference. Based on the maximum of the log-likelihood function, the
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gradient method is used to estimate the parameters of the proposed model. Numer-
ical experiments have been conducted on synthetic and natural grayscale images to
compare our proposed algorithm with other image segmentation algorithms. The
segmentation accuracy is quantified in terms of the misclassification ratio (MCR)
[29] and the probabilistic rand (PR) index [26]. The experimental results demonstrate
the effectiveness and robustness of the proposed model compared with the other
models.

The remainder of this paper is organized as follows. A brief review of the SVFMM
and the Student’s t-distribution is given in Section 2. In Section 3, the proposed
model is described in detail. Section 4 describes a number of experiments conducted
to evaluate the efficiency of the proposed model. Finally, conclusions are given in
Section 5.

2 Preliminary

In this section, the SVFMM is introduced firstly, then the Student’s t-distribution is
reviewed briefly. In this paper xn denotes the pixel in the nth position of an image.

2.1 Spatially variant finite mixture model

The SVFMM [1, 17, 20] gives a modification of the FMM. It uses the parameter
of label probability proportion πnk to denote the probability that the nth pixel
belongs to the kth class. We assumes that there are K classes in the model. The
nth pixel’s label probability vector is denoted by πn. The parameter vector is πn =
(πn1, πn2, ..., πnK)T , where T indicates the transpose of the vector. The variable πnk

satisfies the constraints

0 ≤ πnk ≤ 1,

K∑

k=1

πnk = 1; n = 1, ..., N, k = 1, ..., K.

Let � = {(π1)T , (π2)T , ..., (π N)T
}

be the set of probability vectors, and � = {θ1,

θ2, ..., θK} be the set of component parameters. The density function of the nth pixel
is given by

f
(
xn|�, �

) =
K∑

k=1

πnk p
(
xn|θk

)
,

where p (xn|θk) is a Gaussian function with parameters θk = {μk, σ
2
k }, μk and σ 2

k are
the mean and the variance, respectively. A data set X comprises observations {xn},
where n = 1, ..., N. The observations are supposed to be statistically independent.
The X’s probability density function (pdf) [20] is given by

f
(
X|�, �

) =
N∏

n=1

f
(
xn|�,�

)
. (1)
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A prior density based on the Gibbs distribution for the parameter set � is introduced
in [1],

p(�) = 1
Z

exp(−U(�)), with U(�) = β

N∑

n=1

VNn(�),

where Z is a normalizing constant, β is regarded as regularization parameter and the
function VNn(�) denotes the clique potential function within the neighborhood Nn.
The drawback of this prior probability is that the parameter β can not be estimated
from the data in an easy way.

In order to overcome the aforementioned drawback, a Gauss–Markov random
field prior probability for parameter � is proposed in [17]

p(�)∞
K∏

k=1

β−N
k exp

⎡

⎢⎢⎢⎣−
1
2

N∑
n=1

∑
m∈Nn

(
πnk − πkm

)2

β2
k

⎤

⎥⎥⎥⎦ ,

where the parameter β of the function is used to capture the spatial smoothness of
cluster and it can be easily estimated from the data.

When the prior density is given, a posteriori pdf is given by

p
(
�|X;�) ∝

N∏

n=1

p(�) f
(
xn|�, �

)
.

Then the log-density function can be obtained as follows [1]:

log
(
�|X;�) =

N∑

n=1

log
K∑

k=1

πnk p
(
xn|μk, σ

2
k

)+ log p(�) (2)

In order to estimate the parameters � = {μk, σ
2
k , πnk} in (2), the EM algorithm is

in general used to maximize the log of the likelihood function of the given data
set. However, the result of the πnk obtained in the M-step of the EM algorithm

is usually not satisfied with the constraints: 0 ≤ πnk ≤ 1 and
K∑

k=1
πnk = 1. Therefore,

the computation of the algorithm becomes very complex to maximize the log of the
likelihood function in (2). A reparatory computation is introduced in the M-step to
enforce the label probability proportion πnk to satisfy these constraints. For example,
gradient projection algorithm is introduced in [20] and quadratic programming is
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used in [1]. After the optimization of the parameters, the label of every pixel can be
obtained according to the posterior probability p(θk|xn) in (3)

p(θk|xn) = πnk p (xn|θk)

K∑
j=1

πnj p
(
xn|θ j

) . (3)

2.2 The student’s t-distribution

A random variable x follows a univariate Student’s t-distribution x ∼ St(x | μ, λ, ν),
the univariate Student’s t-distribution takes the following form [2]

St(x|μ, λ, ν) = �(ν/2 + 1/2)

�(ν/2)

(
λ

πν

)1/2 [
1 + λ(x − μ)2

ν

]−ν/2−1/2

, (4)

where μ and λ are the mean and the precision of the t-distribution, respectively.
The value of λ is equal to the inverse of the variance. �(·) is the gamma function.
The parameter ν is called the t-distribution’s degrees of freedom. When ν = 1 the
t-distribution becomes the Cauchy distribution. The parameter ν is used to tune
the tail of t-distribution. if ν > 1, μ is the mean of x, As ν tends to infinity, the
t-distribution tends to a Gaussian distribution with mean μ and precision λ [2].
Moreover, the Student’s t-distribution can be regarded as an infinite mixture of
scaled Gaussian distribution, which can be rewritten in the form [2]

St
(
x|μ, λ, ν

) =
∞∫

0

G
(
x|μ, (uλ)−1)Gam

(
u|ν/2, ν/2

)
du,

where G(x|μ, (uλ)−1) denotes the Gaussian distribution, and Gam(u|ν/2, ν/2) is the
gamma distribution. Therefore, the t-distribution provides a heavy-tailed alternative
to the Gaussian distribution. The t-distribution has been successfully used as a robust
alternative to the Gaussian distribution in [18, 22].

3 The proposed model

In this section, we propose a spatially varying finite mixture model whose compo-
nent function is the Student’s t-distribution. A second-order neighborhood system
(8 neighbors for each interior pixel) is adopted in the proposed model. There are
four different adjacency types in the second-order neighborhood system. They are
horizontal, vertical and two diagonal directions, as shown in Fig. 1. Let the parameter
D stand for the number of adjacency types. Thus, the value of the parameter D is
equal to 4.
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Fig. 1 Second-order
neighborhood system.
The numbers indicate
the adjacency types

Firstly, we define a function that represents the weight of the nth pixel belonging
to the kth class

ξk (xn) =
D∑

d=1

∑

xi∈Nn

Jnd
(
xn, xi

)
exp

(
−
(
xi − ckd

)2

2b 2
kd

)
(5)

where Nn represents the neighborhood of the nth pixel. Jnd(xn, xi) is an identity
function, its definition is given by

Jnd(xn, xi) =
{

1, if xi ∈ Nn and xi is xn’s dth adjacency type

0, otherwise
(6)

Then the nth pixel’s label probability proportion πnk is defined as follows:

πnk = ξk (xn)

K∑
j=1

ξ j (xn)

=

D∑
d=1

∑
xi∈Nn

Jnd (xn, xi) exp
(
− (xi−ckd)2

2b 2
kd

)

K∑
j=1

D∑
d=1

∑
xi∈Nn

Jnd (xn, xi) exp
(
− (xi−cjd)

2

2b 2
jd

) . (7)

Obviously, the label probability proportion πnk in (7) is nonnegative and subject to
K∑

k=1
πnk = 1. The density function of the nth pixel is given by

f (xn) =
K∑

k=1

πnkSt
(
xn|θk

)
, (8)

where the pdf St (xn|θk) is the Student’s t-distribution defined in (4), whose parame-
ters are θk = {μk, λk}.

The log-likelihood function is given by

L(�) =
N∑

n=1

log f (xn) =
N∑

n=1

log

(
K∑

k=1

πnkSt
(
xn|θk

)
)

. (9)



174 Multimed Tools Appl (2014) 72:167–189

There are four unknown parameters in (9). They are μ j, λ j, cjd and b 2
jd. The

derivatives of the function L with respect to μ j, λ j, cjd, b 2
jd, respectively, can be

calculated by

∂L
∂μ j

=
N∑

n=1

πnj

K∑
k=1

πnkSt
(
xn|θ j

) ·
λ j (ν + 1)

(
xn − μ j

)

ν + λ j
(
xn − μ j

)2 · St
(
xn|θ j

)
. (10)

∂L
∂λ j

=
N∑

n=1

πnj

K∑
k=1

πnkSt
(
xn|θ j

) ·
ν − ν × λ j(xn − μ j)

2

2λ j
[
ν + λ j(xn − μ j)2

] · St
(
xn|θ j

)
. (11)

∂L
∂cjd

=
N∑

n=1

1
K∑

k=1
πnjSt

(
xn|θ j

) ·
1

[
K∑

p=1
ξp (xn)

]2

.

⎧
⎨

⎩

K∑

p=1,p�= j

ξp(xn) · St
(
xn|θ j

)−
K∑

p=1,p�= j

ξp(xn) · St
(
xn|θp

)
⎫
⎬

⎭

·
⎡

⎣
∑

xi∈Nn

Jid
(
xn, xi

) · exp

(
−
(
xi − cjd

)2

2b 2
jd

)
xi − cjd

b 2
jd

⎤

⎦ . (12)

∂L

∂b 2
jd

=
N∑

n=1

1
K∑

k=1
πnjSt

(
xn|θ j

) ·
1

[
K∑

p=1
ξp (xn)

]2

·
⎧
⎨

⎩

K∑

p=1,p�= j

ξp(xn) · St
(
xn|θ j

)−
K∑

p=1,p�= j

ξp(xn) · St(xn|θp)

⎫
⎬

⎭

·
⎡

⎣
∑

xi∈Nn

Jnd(xn, xi) exp

(
−
(
xi − cjd

)2

2b 2
jd

)((
xi − cjd

)2

2b 4
jd

)⎤

⎦ . (13)

After the optimization of the parameters, the posterior probability is derived as
follows:

St
(
θk|xn

) = πnkSt
(
xn|θk

)

K∑
j=1

πnjSt
(
xn|θ j

) . (14)

Then according to a maximum a posteriori, a kth class label is assigned to the nth
pixel by solution of

arg max
k

{
St
(
θk|xn

)}
. (15)
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We refer to the proposed model as the directional spatially varying Student’s
t-distribution mixture model (DSVStMM). The gradient descend method is used
to estimate the unknown parameters of the proposed model. Finally, in order to
mitigate the effects of the noise, we utilize a simple competitive selection method
[24] to optimize the result. The operation of the method is defined as follows: all the
neighbors of one pixel belong to the same class, then set the pixel to the neighbors’
class. The method can slightly mitigate the effects of the noise.

The proposed model DSVStMM is summarized as follows.

Algorithm 1 DSVStMM

Initialize:

Use K-means to obtain the mean u j and the variance σ 2
j . Then set μ j = u j, λ j =

1/σ 2
j , cjd = u j and b 2

jd = σ 2
j .

Step 1:
Compute the Student’s t-distribution St(xi|θ j) in (4).
Calculate the weight function ξ j (xi) in (5).
Update the label probability proportion πij using (7).
Compute the posterior probability St

(
θ j|xi

)
using (14).

Step 2:
Update the parameters � = (μ j, λ j, cjd, b 2

jd)
T using the gradient descend method

�(t+1) = �(t) − η∇L
(
�(t)) (16)

where η is the learning rate. We set η = 10−5. ∇L(�) is the derivative of the func-
tion L with respect to �, where ∇L(�) = [∂L/∂μ j, ∂L/∂λ j, ∂L/∂cjd, ∂L/∂b 2

jd

]T .
Step 3:
If the value of (9) changes significantly, set �(t) = �(t+1), and return to step 1.
Step 4:
Evaluate the posterior probability St

(
θ j|xi

)
given in (15) to get the class labels of

the pixels. Use the competitive selection method to alleviate the effects of noise.

4 Numerical experiments

We conduct some comprehensive experiments to evaluate the performance of our
proposed model, compared with some state-of-the-art image segmentation models.
These models are the standard GMM [2] which assumes that the relationships
between the pixels are independent; the MRF-based methods which are similar to
the proposed model, such as SVFMM [1], DCASV [17], CLP, BLP [21], EGMM [24]
and SNGMM [23]; MSL [14] which bases on the maximum likelihood estimator and
computes the likelihood of the given pixel’s neighborhood; the K-means which is
used to initialize GMM, DCASV, EGMM, SNGMM and the proposed model. These
models are divided into two types, one type considers that the pixels are independent
of each other, the other type considers the spatial relationships of the pixels which
are based on MRF and are similar to the proposed model. All of the models
are implemented in MATLAB. The source code of SVFMM can be downloaded
from http://www.cs.uoi.gr/kblekas/sw/MAPsegmentation.html. The source code of

http://www.cs.uoi.gr/kblekas/sw/MAPsegmentation.html
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standard GMM, DCASV, CLP and BLP is available at http://www .cs.uoi.gr/cnikou/.
We implement the algorithms for K-means, MSL, EGMM, SNGMM and the
proposed model (DSVStMM) in MATLAB. For the DSVStMM model, we have
selected ν = 0.001. According to (4), the value of λ must be nonnegative, so we
use the absolute value of λ in (16). The loop of DSVStMM is terminated when the
percentage changed of (9) between two consecutive iterations is less than 10−5, i.e,
|�L/L| < 10−5 . These models are tested on both synthetic and natural grayscale
images.

To quantify segmentation results, the misclassification ratio (MCR) [29] is
adopted to evaluate the segmentation accuracy of synthetic images, the probabilistic
rand (PR) index [26] is used to evaluate the image segmentation performance of the
natural images. The MCR is defined as follows:

MCR = number of mis-classified pixels
total number of pixels

.

The value of MCR is bounded by the interval [0, 1], where lower values indicate
better segmentation results.

The PR index measures consistency between two segmentation labels via an
overlapping fraction, its definition is given by

PR (Stest, {Sk}) = 2
N (N − 1)

∑

i< j

[
cij pij +

(
1 − cij

) (
1 − pij

)]
.

where cij = 1 when the pixels i and j belong to the same cluster in the test image
Stest, otherwise cij = 0. The value of the pij can be obtained by using sample mean
estimator defined as follows:

pij = 1
K

K∑

k=1

	
(

lSk

i = lSk

j

)
.

where K indicates the number of the ground-truth sets, 	(lSk

i = lSk

j

)
is an identity

function, whose value is equal to 1 when the pixels i and j are in the same class in
the ground-truth set k, otherwise is equal to 0. The value of PR is bounded by the
interval [0, 1], where the larger PR values indicate better segmentation results.

4.1 Piecewise synthetic images

To demonstrate the robustness of our model against noise, we first test the proposed
model on a synthetic image (128 × 128 image resolution) similar to the one used in
[29]. The three classes synthetic image shown in Fig. 2a is sampled from the MRF
model using a Gibbs sampler. The intensities for the image with three classes are 55,
115 and 225, respectively. Figure 2b shows the original image corrupted by the mixed
noise. Gaussian noise (μ = 0, σ 2 = 0.005) is added first, then the salt & pepper noise

http://www .cs.uoi.gr/cnikou/
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Fig. 2 First experiment (128 × 128 image resolution). a The original image. b Noise image with
Gaussian noise (0 mean, 0.005 variance) and salt & pepper (sp = 0.08). c K-means (MCR =
8.422 %). d GMM (8.136 %). e SVFMM (MCR = 6.769 %). f DCASV (MCR = 7.251 %).
g CLP (MCR = 6.323 %). h BLP (MCR = 6.158 %). i MSL (MCR = 8.441 %). j SNGMM (MCR =
6.586 %). k EGMM (MCR = 1.318 %). l DSVStMM (MCR = 0.842 %)

(sp = 0.08) is added to corrupt the synthetic image. The segmentation results are
shown in Fig. 2c–l, respectively. As can be seen, the SVFMM can get better results
than the standard GMM. However it requires K · (N + 2) parameters. That is 49158
in the first example [24]. The proposed model, DSVStMM only needs 2 × K · (D + 1)
parameters. In our implementation of the proposed model, D = 4, if K = 3, then the
number of parameters in our model is only 30. The number of the parameters is much
fewer than the SVFMM. As shown in Fig. 2k, the EGMM reduces the effect of noise
significantly and can get a better image segmentation result. However, DSVStMM
can reduce the effect of noise and obtain a better result than the EGMM. Its MCR is
lower 5.77 % than SNGMM’s and 0.476 % than EGMM’s. We can see that the noise
is reduced clearly and the edge information of the image is kept very well in Fig. 1l.
In order to further test the image segmentation effectiveness of the proposed model.
The experimental results obtained with various levels of mixed noise are given in
Table 1. In order to reduce the randomness of the added noise and the sensitivity of
the initialization, the tests are executed 10 times, then the average of the results is

Table 1 The comparison of the MCR for the first experiment

Methods Gaussian noise (0 mean,var 0.005) + salt & pepper (sp)

sp = 0.10 sp = 0.12 sp = 0.14 sp = 0.16 sp = 0.18 Mean

K-means 10.225 % 11.561 % 13.021 % 14.943 % 16.180 % 13.186 %
GMM 11.562 % 12.557 % 13.412 % 14.775 % 15.631 % 13.587 %
SVFMM 8.240 % 9.424 % 10.663 % 12.225 % 13.226 % 10.756 %
DCASV 8.909 % 10.106 % 11.320 % 12.958 % 13.999 % 11.458 %
CLP 7.915 % 9.174 % 10.465 % 12.133 % 13.181 % 10.574 %
BLP 7.767 % 9.044 % 10.322 % 12.001 % 13.063 % 10.439 %
MSL 9.733 % 11.157 % 12.482 % 13.964 % 15.267 % 12.521 %
SNGMM 7.877 % 9.570 % 11.214 % 12.888 % 14.678 % 11.245 %
EGMM 2.048 % 2.865 % 4.024 % 6.055 % 7.324 % 4.463 %
DSVStMM 1.021 % 1.436 % 1.870 % 2.673 % 3.489 % 2.098 %
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

reported in Table 1. The results in Table 1 indicate that our proposed model has a
lower MCR compared with the other models on each noise level. Its average MCR is
lower 2.365 % than the EGMM’s. It shows that the proposed model is more robust
against noise than EGMM. The experiments prove that the proposed model gets
better segmentation results than any other model, the student’s t-distribution is more
robust against noise because it owns heavy-tailed than Gaussian distribution.

In the second experiment, we use a synthetic four classes (K = 4) image (128 ×
128 image resolution) as shown in Fig. 3a. The intensities of the image are 0, 85,
170 and 255, respectively. The corrupted image is shown in Fig. 3b. Mixed noise
is added to corrupt the image which is Gaussian noise (μ = 0, σ 2 = 0.003) and
salt & pepper (sp = 0.15). The segmentation results obtained by K-means, GMM,
SVFMM, DCASV, CLP, BLP, MSL, SNGMM, EGMM and DSVStMM are shown
in Fig. 3c–l, respectively. Amongst these models, the EGMM and DSVStMM get
the lowest MCR, but the DSVStMM does better than the EGMM. It can be seen
from the Fig. 3l that the edges and contours of the image are kept very clearer than
other segmentation results. In the segmentation result of EGMM shown in Fig. 4k,
the edge information is lost. The MCR of the proposed model is lower 1.190 % than
EGMM. In Table 2, the results obtained (executing the test 10 times and the average
of the results) for these models are presented with various mixed noise. Our proposed
model gets the lowest MCR in every noise level. The MCR of the proposed model is
lower 2 % or so on each noise level than EGMM. From these synthetic image tests,
we can inference that the proposed model is more robust than other models against
noise.

Filtering can effectively reduce the noise. In order to test the impact of filtering
before applying segmentation, a synthetic image is first corrupted by salt & pepper
noise and Gaussian noise, then median filtering is used to reduce the noise, at last,
all models are used to segment the image obtained by median filtering. Salt &
pepper noise represents itself as randomly occurring white and black pixels. Median
filtering is very effective to reduce the salt & pepper noise. Figure 4a shows the

Fig. 3 Second experiment (128 × 128 image resolution). a The original image. b Noise image
with Gaussian noise (0 mean, 0.003 variance) and salt & pepper (sp = 0.15). c K-means (MCR =
11.029 %). d GMM (11.664 %). e SVFMM (MCR = 11.420 %). f DCASV (MCR = 11.401 %).
g CLP (MCR = 11.078 %). h BLP (MCR = 11.151 %). i MSL (MCR = 11.169). j SNGMM (MCR =
8.490). k EGMM (MCR = 6.561 %). l DSVStMM (MCR = 5.371 %)
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m)

Fig. 4 Third experiment (128 × 128 image resolution). a The original image. b Noise image with
Gaussian noise (0 mean, 0.001 variance) and salt & pepper (sp = 0.25). c image obtained by median
filtering. d K-means (MCR = 1.959 %). e GMM (1.959 %). f SVFMM (MCR = 1.959 %). g DCASV
(MCR = 1.959 %). h CLP (MCR = 1.959 %). i BLP (MCR = 1.990 %). j MSL (MCR = 2.057).
k SNGMM (MCR = 1.984). l EGMM (MCR = 1.825 %). m DSVStMM (MCR = 1.752 %)

synthetic image (128 × 128 image resolution) which consists of four classes (K = 4)
with luminance values [0, 85, 170, 255], used in the third experiment. The image
shown in Fig. 4b is obtained by corrupting the original image with the salt & pepper
noise (sp = 0.25) and Gaussian noise (0 mean, 0.001 variance). The image shown
in Fig. 4c is obtained by median filtering acting on the image shown in Fig. 4b. It
can be seen that the median filtering reduces the noise dramatically. All models

Table 2 The comparison of the MCR for the second experiment

Methods Gaussian noise (0 mean, var) + salt & pepper (sp)

var = 0.004 var = 0.005 var = 0.006 var = 0.007 var = 0.008 Mean
sp = 0.16 sp = 0.17 sp = 0.18 sp = 0.19 sp = 0.20

K-means 11.934 % 13.406 % 14.735 % 16.290 % 17.902 % 14.853 %
GMM 26.593 % 35.907 % 36.705 % 37.596 % 38.299 % 35.020 %
SVFMM 12.750 % 14.303 % 15.702 % 17.544 % 18.816 % 15.823 %
DCASV 13.214 % 17.322 % 21.798 % 26.757 % 29.903 % 21.799 %
CLP 11.931 % 13.265 % 14.359 % 15.842 % 17.430 % 14.565 %
BLP 11.882 % 12.955 % 13.821 % 14.899 % 16.174 % 13.946 %
MSL 12.422 % 13.769 % 15.147 % 16.821 % 18.416 % 15.315 %
SNGMM 9.550 % 10.747 % 11.679 % 13.117 % 14.394 % 11.897 %
EGMM 7.459 % 8.969 % 9.540 % 10.529 % 10.892 % 9.478 %
DStMM 5.862 % 6.678 % 7.287 % 8.219 % 8.914 % 7.392 %
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Table 3 The comparison of the MCR for the third experiment

Methods Gaussian noise (0 mean, var 0.001) + salt & pepper (sp)

sp = 0.30 sp = 0.35 sp = 0.40 sp = 0.45 sp = 0.50 Mean

K-means 2.545 % 3.827 % 5.676 % 7.672 % 9.735 % 5.891 %
GMM 2.545 % 3.827 % 5.676 % 7.672 % 9.735 % 5.891 %
SVFMM 2.545 % 3.827 % 5.676 % 7.672 % 9.735 % 5.891 %
DCASV 2.545 % 3.827 % 5.676 % 7.672 % 9.735 % 5.891 %
CLP 2.545 % 3.827 % 5.676 % 7.672 % 9.735 % 5.891 %
BLP 2.557 % 3.845 % 5.676 % 7.660 % 9.729 % 5.893 %
MSL 2.747 % 4.010 % 5.963 % 7.715 % 9.918 % 6.071 %
SNGMM 2.429 % 3.589 % 5.310 % 7.428 % 9.283 % 5.608 %
EGMM 2.368 % 3.510 % 5.408 % 7.379 % 9.723 % 5.678 %
DSVStMM 2.252 % 3.388 % 5.078 % 7.086 % 8.911 % 5.343 %

are then used to segment the image obtained by median filtering. In Fig. 4d–m,
we present the segmentation results of K-means, GMM, SVFMM, DCASV, CLP,
BLP, MSL, SNGMM, EGMM and DSVStMM, respectively. It can be seen that the
filtering affects the segmentation results obviously. The segmentation results show
that most models get the same MCR. The MCR obtained by the EGMM model is
lower than other models except the DSVStMM model. DSVStMM model get lower
MCR than any other model. The image in Fig. 4a is corrupted by Gaussian noise
(0 mean, 0.001 variance) and various levels of the salt & pepper noise, then median
filtering is used to reduce the noise. The segmentation results obtained by all methods
after application of the median filtering are given in Table 3. It can be seen that most
models get the same MCR, while the DSVStMM gets lower MCR than any other
model. It shows that the DSVStMM can effectively reduce the effects of the noise
than any other model.

4.2 Natural images

Segmenting natural images is very difficult and challenging. It is hard to provide a
good model to segment objects such as humans, animals, trees, buildings, etc. In this
series of experiments, we test the proposed model on the large standard databases
Amsterdam Library of Object Images(ALOI) [10] visually and the Berkeley image
segmentation database [15] visually and quantitatively. In these natural images seg-
mentation experiments, a set of natural grayscale images with and without artificial
noise are used to evaluate the performance of the proposed model (DSVStMM),
compared with GMM, SVFMM, DCASV, CLP, BLP, MSL, EGMM and SNGMM.

The ALOI database consists of 1000 categories, each of which contains dozens of
pictures of a specific object. The ALOI database can be used to object recognition,
color constancy, invariant feature extraction and image retrieval, it also offer visual
evaluation of image segmentation [11]. The images shown in Fig. 5 are taken from
ALOI database. In Fig. 5, the first to the third column of the first row are the original
images, the forth to the seventh column of the first row are the images corrupted
by mixture noise. These images are first corrupted by Gaussian noise (0 mean, 0.005
variance) and then added salt & pepper noise (sp = 0.10). The typical segmentation
results are shown from the second row to the tenth row in Fig. 5 for the different
models. For the segmentation results of images which are not corrupted by noise,
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Fig. 5 Segmentation examples of different methods based on the ALOI database. The f irst row,
from the f irst column to the third column: the original images, from the fourth column to the seventh
column, the original images corrupted by Gaussian noise (μ = 0, σ 2 = 0.005) and salt & pepper
(sp = 0.10). From the second row to the tenth row, each row shows: GMM, SVMM, DCASV, CLP,
BLP, MSL, EGMM, SNGMM, DSVStMM

we can see that DSVStMM yields better segmentation results than other models.
The results obtained by DSVStMM own more homogeneous segmentation regions
and sharper segment boundaries than other models. For the segmentation results
of the corrupting images, the effect of reducing the noise by GMM model is not
clear. The contours are obviously blurring of the last segmentation result of GMM.
The EGMM and DSVStMM reduce the noise clearly, but EGMM is sensitive to the
texture appearance. For the segmentation results of noise image, the EGMM reduce
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the noise effectively, but the edge and contour information of its segmentation results
is blurred. However, DSVStMM yields better segmentation results than any other
model. The DSVStMM not only degrades side effect of the noise for noise images
but also its segmentation results keep better edge and contour information than any
other model. The segmentation results obtained by DSVStMM provide the detailed
information of the contours and edges. Since the component function of DSVStMM
is Student’s t-distribution which has heavier tails than Gaussian distribution, the
results obtained by DSVStMM show that DSVStMM can effectively process complex
texture images and is more robust against noise than other models.

The Berkeley image segmentation database is considered to be used for image
segmentation which consists of 300 natural color and grayscale images. Each image
of the image database has 481 × 321 pixels. Several manual segmentation ground-
truth images are provided for each image. Some natural grayscale images taken
from the Berkeley image segmentation database with and without artificial noise
are used to evaluate the segmentation performance visually and quantitatively. For
the natural image segmentation, the proposed model is compared with the GMM,
SVFMM DCASV, CLP, BLP, MSL, EGMM and SNGMM. The visual segmentation
results are shown in Fig. 6. Three representative example images without noise are
shown in the first column to the third column of the first row in Fig. 6; another
three images are corrupted by mixture noise are shown in the forth column to the
sixth column of the first row in Fig. 6. The last three images are first corrupted
by Gaussian noise (0 mean, 0.003 variance) and then added salt & pepper noise
(sp = 0.05). The typical segmentation results are shown from the second row to the
tenth row of Fig. 6 for the different models. According to the segmentation results of
these images without noise, the differences of the segmentation results of different
models are not very clear. The EGMM produces very smooth segmentations, while
certain texture regions may be merged into one piece. The DSVStMM favors a more
contiguous segmentation for the texture region, and the information of the edges
is preserved very well compared with the other models. From the segmentation
results of the images with noise, we can see that the EGMM and DSVStMM both
reduce the noise significantly. About the forth image, there is a plane in the sky.
The segmentation results of the GMM and DCASV show that the noise is reduced
poorly and the details of the plane are lost. The EGMM model can reduce noise
dramatically, but the contours and edges of the segmentation results are not kept
clearly. For the EGMM, much region of the sky is wrongly segmented into the
plane. The segmentation result obtained by DSVStMM shows that the noise is
reduced dramatically and the details of the plane are preserved very well. For the
segmentation results of the fifth image, the DSVStMM not only reduces the effect
of noise significantly, but also preserves the details of the balcony better than the
other models. However, the information of the window and balcony is lost in the
segmentation result of the EGMM for the fifth image. For the last noise image,
the EGMM and DSVStMM reduce the effect of noise obviously compared with
the other models, however, the tree can not be segmented correctly by the EGMM
model. The tree, background and the mountain can be distinguished obviously for
the segmentation results of the DSVStMM.

Next, we evaluate the performance of the DSVStMM from the objective view,
as well as those of the GMM, SVFMM, DCASV, CLP, BLP, MSL, EGMM and
SNGMM. In this experiment, 50 grayscale images with and without artificial noise are
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(a)

Fig. 6 Segmentation examples of different methods based on the Berkeley segmentation grayscale
database. The f irst row, from f irst column to the third column: the original images, from the fourth
column to the sixth column, the original images corrupted by Gaussian noise (μ = 0, σ 2 = 0.003) and
salt & pepper (sp = 0.05). From the second row to the tenth row, each row shows: GMM, SVMM,
DCASV, CLP, BLP, MSL, EGMM, SNGMM, DSVStMM

chosen from the Berkeley image segmentation database. The images are corrupted
by mixture noise (mn) which is Gaussian noise (0 mean, 0.005 variance) and salt &
pepper noise (sp = 0.10). The PR value is used to quantify segmentation results.
The PR values of image segmentation results are given in Table 4. It can be seen from
the Table 4 that the differences of the segmentation results of the different models
are relatively little for the images without noise. But under the noise conditions, the
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differences of the DSVStMM between any other model are obviously larger. At the
same time the average PR of the DSVStMM is also larger than any other model. It
can be seen from Table 4, the MRF-based models obtain better segmentation results
than non MRF-based model under the noise conditions. The average PR of the
proposed model is larger 0.04 or so than the other models. The experimental results
indicate that the DSVStMM is robust against noise and produces better segmentation
results. There may be two reasons for the DSVStMM producing better segmentation
results. One is that the component function of DSVStMM is Student’s t-distribution
which owns heavier tails than Gaussian distribution and can meet the needs of image
segmentation, the other is that the models of the DSVStMM’s label probability
proportions effectively represent the neighborhood relationships of the pixels.

The execution time of the program is affected by many factors, such as the
dimensions of the image and the number of segments. The dimension of the image is
the most important factor. The tests given in Table 4 are performed on 481 × 321
images with a PC with a 2.20 GHz dual core processor and 2 GB RAM. The
DSVStMM model converges after iterating averagely 84.0 times and the execution
time is 4.7 s per iteration on the images in Table 4.

5 Conclusions

In this paper, we introduce an image segmentation algorithm which takes into
account the spatial relationships among pixels. At the same time the directional
information of the neighborhood is incorporated in the model. The number of
parameters needed in the proposed model is fewer than that in other MRF-based
models, so it is easier to be implemented. Furthermore, the pixels’ label probability
proportions are explicitly modelled as probability vectors, thus a reparatory project
step is avoided. The gradient descend method is used to estimate the parameters
of the proposed model instead of the EM algorithm which is widely applied in
most models. The experiments on both the synthetic and natural images show that
the proposed model obtains better results than the other models. To extend the
applications of the proposed model, we plan to apply the proposed model to medical
imaging and bioinformatics in the future.

However, there are several improved aspects in our model. One limitation of our
model is that it can be only used for grayscale images, not for color images. Another
limitation is the choice of the parameter K. The number of model components K is
currently set by user based on prior knowledge. This is an open question in mixture
models. How to extend our model to apply in color images and adaptively choose
K from the image data are our future works. In the context of image segmentation,
we only use a 1-dimensional (grayscale color) feature to describe the grayscale image
data. To improve the quality of image segmentation, more sophisticate features for
natural images such as the Blobworld features [3] and the MRF texture features [19]
will be considered to integrate into our model in the future researches.
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