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Abstract Retrieving similar images from large image databases is a challenging task
for today’s content-based retrieval systems. Aiming at high retrieval performance,
these systems frequently capture the user’s notion of similarity through expressive
image models and adaptive similarity measures. On the query side, image models
can significantly differ in quality compared to those stored on the database side.
Thus, similarity measures have to be robust against these individual quality changes
in order to maintain high retrieval performance. In this paper, we investigate the
robustness of the family of signature-based similarity measures in the context of
content-based image retrieval. To this end, we introduce the generic concept of
average precision stability, which measures the stability of a similarity measure with
respect to changes in quality between the query and database side. In addition to
the mathematical definition of average precision stability, we include a performance
evaluation of the major signature-based similarity measures focusing on their sta-
bility with respect to querying image databases by examples of varying quality.
Our performance evaluation on recent benchmark image databases reveals that
the highest retrieval performance does not necessarily coincide with the highest
stability.
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1 Introduction

Modeling image contents for the purpose of content-based image retrieval [5, 22] is a
challenging task. While the computational effort spent for extracting and generating
expressive image models is nearly unrestricted on the database side, the effort
spent on the query side is often restricted since users usually demand the retrieval
system to answer their queries in real-time. As a consequence, the time for the
extraction of complex local feature descriptors and for the generation of complex
image models has to be kept short, in particular for query images that have not been
processed by the retrieval system. This inevitably leads to a quality gap between the
query side and the database side. Image models that appear on the query side can
significantly differ in quality compared to those stored in the multimedia database.
Thus, the similarity measures of the retrieval systems have to be robust against
image models of varying qualities as well as capable of processing such models
efficiently.

A prominent family of similarity measures that is inherently able to cope with
different qualities of image models is that of distance-based similarity measures.
Based on a solid mathematical definition, distance-based similarity measures allow
domain experts to model their notion of similarity even if the similarity model
has to be subjected to different quality restrictions. At the same time, they allow
database experts to design efficient query processing approaches including index
structures, such as metric access methods [4, 26]. Although the performance of
similarity measures for different types of image models is investigated in various
studies [1, 7, 20], none of them addresses the issue of query-side-dependent quality
restrictions. They all assume the quality of the image model on the query side to
be the same as on the database side. For this reason, we study the stability of the
most generic class of distance-based similarity measures, namely the signature-based
similarity measures, in the context of content-based image retrieval. We investigate
the retrieval performance with respect to stability against varying image model
quality of the Perceptually Modif ied Hausdorf f Distance [18], the Earth Mover’s
Distance [19], the Weighted Correlation Distance [13], and the Signature Quadratic
Form Distance [2]. To this end, we first introduce the generic concept of average
precision stability, which measures the stability of a similarity measure with respect
to changes in quality between the query and the database side. We then provide a
performance evaluation of the aforementioned signature-based similarity measures
focusing on their stability with respect to querying image databases by examples
of varying quality. Without loss of generality, the proposed average precision sta-
bility is generic enough to be used in conjunction with other applicable evaluation
measures.

This paper is structured as follows. We describe the feature signature model
in Section 2, which comprises feature signatures and signature-based similarity
measures. Then, in Section 3, we outline existing evaluation measures, which
can be used within the average precision stability measure we propose in
Section 4. We evaluate the stability of signature-based similarity measures on
different benchmark image databases in Section 5, before we conclude our paper in
Section 6.
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2 Feature signature model

A common way to make images accessible consists in describing their contents by
feature distributions over a feature space. While many similarity models that are
designed against the background of visual object recognition tasks rely on complex
unaggregated local features, similarity models for the purpose of content-based
image retrieval frequently aggregate individual feature distributions in order to
obtain more compact and robust content representations.

In general, the modeling of image contents follows a two-stage approach. First,
local features are extracted, for instance SIFT [14] descriptors at some salient
points [16, 24]. Second, these features are aggregated into a more compact represen-
tation. One prominent way of aggregating and comparing the extracted local features
is by means of the bag-of-visual-words [21] approach. Based on a predetermined
visual vocabulary, the extracted local features are assigned to visual words. The
frequency of these visual words is then used in order to define similarity between
images. Although this approach provides high retrieval performance, it is limited
in flexibility due to the static visual vocabulary. In fact, all images have to be
represented by the same visual words. Moreover, the presence of the visual words
of the database side has to be ensured on the query side in order to compute an
image content representation that is compatible with the database.

An alternative approach to model image contents is epitomized by the feature sig-
nature model. Local features are extracted and quantized for each image individually
by means of an image-specific visual vocabulary, namely the feature signature [19]. A
feature signature X quantizes a feature space F by a finite set of representatives
RX ⊂ F, where each representative is additionally assigned to a certain positive
weight by a weighting function wX : RX → R

≥0. Mathematically, a feature signature
X can be defined as the graph of its weighting function wX :

X = {(x, wX(x))|x ∈ RX}.

Furthermore, the set of all feature signatures S can be defined via the set of
all weighting functions w : R→R with a finite set of representatives R, i.e.: S=⋃

R⊂F,|R|<∞ R
R. Given an image, its feature signature X can be computed by clus-

tering its local features and defining the representatives RX of the feature signature
by the centroids of the clusters. The weighting function can be defined through the
corresponding cluster sizes. In this way, the representatives and weights of a feature
signature correspond to visual words and their frequencies of an image-specific visual
vocabulary.

In Fig. 1, we depict three example images from the MIR Flickr database [8]
together with their feature signatures. These feature signatures were generated by
mapping randomly selected image pixels into a seven-dimensional feature space
(L, a, b , x, y, χ, η) ∈ F = R

7 that comprises color (L, a, b), position (x, y), contrast
χ , and coarseness η. The extracted seven-dimensional features are clustered by the
k-means clustering algorithm in order to obtain the feature signatures. As can be
seen in the figure, the higher the number of centroids, which are depicted as circles
in the corresponding color, the better the visual content approximation, and vice
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(a) original (b) 10 (c) 50 (d) 100

(e) original (f) 10 (g) 50 (h) 100

(i) original (j) 10 (k) 50 (l) 100

Fig. 1 Three example images from the MIR Flickr database [8] and their corresponding feature
signatures over a feature space comprising position, color, and texture information. The number of
representatives, i.e., the centroids, is depicted accordingly

versa. While a small number of centroids only provides a coarse approximation of the
original image, a large number of centroids may help to assign individual centroids
to the corresponding parts in the images.

Based on the feature signature representations, a distance function is applied in
order to determine a similarity value between the corresponding images. For this
purpose, the distances between feature signatures utilize a so-called ground distance
δ : F × F → R to measure the distance between two representatives of the feature
signatures. An overview of applicable distances to feature signatures can be found,
for instance, in the work of Beecks et al. [1]. We summarize the major distances in
the remainder of this section.

2.1 Earth Mover’s Distance

The Earth Mover’s Distance (EMD) [19] is a transformation-based approach mea-
suring the costs of transforming two feature signatures into another. Given two
feature signatures X, Y ∈ S and a ground distance δ, the Earth Mover’s Distance
EMDδ between X and Y is defined as a minimum cost flow over all possible flows
[F ∈ R

|RX |×|RY |] between two elements x, y ∈ RX ∪ RY as:

EMDδ(X, Y) = min
F

⎧
⎨

⎩

∑
x∈RX

∑
y∈RY

fxy · δ(x, y)

min
{∑

x∈RX
wX(x),

∑
y∈RY

wY(y)
}

⎫
⎬

⎭
,

subject to the constraints ∀x, y : fxy ≥ 0, ∀x ∈ RX : ∑
y∈RY

fxy ≤ wX(x), ∀y ∈ RY :∑
x∈RX

fxy ≤ wY(y), and
∑

x∈RX

∑
y∈RY

fxy = min{∑x∈RX
wX(x),

∑
y∈RY

wY(y)}.
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2.2 Perceptually Modified Hausdorff Distance

The Perceptually Modif ied Hausdorf f Distance (PMHD) [18] is a matching-based
approach. In general, a matching between two feature signatures X, Y ∈ S can be
defined as mX→Y = {(x, πX→Y(x))|∀x ∈ RX}, where the matching function πX→Y :
RX → RY maps each representative x ∈ RX to one representative y ∈ RY . Addi-
tionally, a matching can be evaluated by a cost function c : 2RX×RY → R

≥0. Based
on a matching, a cost function and a ground distance δ, the Perceptually Modified
Hausdorff Distance PMHDδ between X and Y is defined as:

PMHDδ(X, Y) = max{c(mX→Y), c(mY→X)},
where the matching mX→Y is defined by the graph of the matching function

πX→Y(x)=argminy∈RY

{
δ(x,y)

min{wX (x),wY (y)}
}
, and the costs c of the matching are given by

c(mX→Y)= ∑

(x,y)∈mX→Y

wX (x)∑

(x,y)∈mX→Y

wX (x)
· δ(x,y)

min{wX (x),wY (y)} . The matching mY→X is defined

analogously.

2.3 Signature Quadratic Form Distance

The Signature Quadratic Form Distance (SQFD) [2] is a correlation-based approach.
In contrast to the two approaches described above, it uses a symmetric similar-
ity function s : F × F → R in order to express how similar two representatives
of the feature signatures are. Further, given a similarity function s, the weighted
similarity correlation between two feature signatures X and Y is defined as X ·s
Y = ∑

x∈RX

∑
y∈RY

wX(x) · wY(y) · s(x, y). The Signature Quadratic Form Distance
SQFDs between X and Y is defined as:

SQFDs(X, Y) = √
X ·s X − X ·s Y − Y ·s X + Y ·s Y.

2.4 Weighted Correlation Distance

Another correlation-based approach is the Weighted Correlation Distance
(WCD) [13]. It utilizes the weighted similarity correlation that is defined by
the specific weighting function w : F × F → R with maximum cluster radius R ∈
R as w(x, y) = 1 − 3·δ(x,y)

4·R + δ(x,y)3

16·R3 if 0 ≤ δ(x,y)

R ≤ 2 and w(x, y) = 0 otherwise. The
Weighted Correlation Distance WCD between X and Y is then defined as:

WCD(X, Y) = 1 − X ·w Y√
X ·w X · √Y ·w Y

.

Given the combination of feature signatures and signature-based similarity mea-
sures, several studies [1, 7, 20] have considered the fundamental question of the
highest retrieval performance of different similarity models. These studies followed
the assumption that the quality of the image model is the same on both query
and database side. Since the quality of the feature signatures on the query side
is in general unpredictable, the focus of this paper lies in the following additional
question: which signature-based similarity measure is the most robust one provided
that the quality on the query side differs from that on the database side. The answer
of this question leads to the generic concept of average precision stability, which we
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introduce in Section 4. Prior to this, we first describe existing evaluation measures
that are commonly used within the content-based retrieval community.

3 Evaluation measures

In general, evaluating a similarity measure is done by querying an image collection
and analyzing the results. For this purpose, the image collection is sorted in descend-
ing order according to their similarity regarding the query image, i.e., the retrieval
system computes a ranking of the database, and each image is assigned a class label.
The class labels are provided by the ground truth of the image collection and define
the relevancy of each image with respect to the query image. A good overview of
measuring the effectiveness of a retrieval system and a broad introduction to several
evaluation measures can be found, for instance, in the book of Manning et al. [15].

In fact, many evaluation measures are based on precision and recall values—first
used by Kent et al. [12]—which reflect the fraction of retrieved images that are
relevant and the fraction of relevant images that are retrieved [15], respectively.
Thus, a high precision value indicates that most of the retrieved images are relevant
while a high recall value indicates that most of the relevant images are retrieved.
These values can be computed for each retrieved image within the ranking and
can then be visualized by the so-called precision and recall curve. A frequently
encountered aggregation of multiple precision and recall curves is the Mean Average
Precision value, which approximates the average area under the curves [15]. Other
evaluation measures are the F-Measure [25], which is the weighted harmonic mean of
precision and recall [15], or the Normalized Discounted Cumulative Gain [10], which
measures the usefulness of multiple rankings.

Summarizing, the aforementioned evaluation measures judge the retrieval per-
formance according to a single ranking or multiple rankings. Although they are
frequently used throughout the research area of content-based retrieval, see for
instance the performance evaluations for content-based image retrieval [1, 7, 20],
they miss the ability to express the variance of a measured quantity. For instance,
measuring the same Mean Average Precision values for two different similarity
measures does not necessarily mean that both similarity measures show the same
retrieval performance. One similarity measure can show a higher variance than the
other one, which is, in this example, not reflected within the Mean Average Precision
values.

In order to counteract this issue, we propose to include the stability of a similarity
measure into the evaluation of the retrieval performance. Our approach that takes
into account the stability is described in the next section.

4 Stability of a similarity measure

As mentioned above, our interests lie in evaluating the stability of signature-based
similarity measures in the context of content-based image retrieval. In particular, the
stability of a signature-based similarity measure with respect to the changes in quality
between the query side and the database side offers further insight into the behavior
of those measures and will thus help to guide further research and developments.
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A general concept to model these quality changes between the query and the
database side is that of query modifying transformations. They provide a solid
mathematical means of reflecting the general discrepancy between the image models
generated on the query side and those stored in the image database. Without loss
of generality, we assume that the modifications of the image models are only done
on the query side. Further, we focus on the evaluation measure of Mean Average
Precision in the remainder of this paper, as this is the de facto standard in content-
based image retrieval. Note that Mean Average Precision can be replaced by any
other evaluation measure when desired. However, by using Mean Average Precision
(MAP) as evaluation measure, we denote our resulting stability measure as Average
Precision Stability (APS). It is generally defined for a similarity measure δ over an
image database DB, a set of queries Q, and a set of query modifying transformations
� as follows.

Definition 1 Average Precision Stability (APS). Given a similarity measure δ, a
database DB, a set of queries Q = {q1, . . . , ql}, and a set of query modifying trans-
formations � = {φ1, . . . , φm}, the Average Precision Stability (APS) is then defined
as:

APS�(Q, δ,DB) = E[M]
1 + σM

,

where M denotes the distribution of Mean Average Precision values with respect
to the query modifying transformations � = {φ1, . . . , φm} applied to each query
contained in the set of queries Q, i.e. M = ⋃m

i=1{MAP({φi(q1), . . . , φi(ql)}, δ,DB)}.
E[M] and σM denote the expected value and standard deviation, respectively.

According to Definition 1, the Average Precision Stability is defined as the
expected Mean Average Precision value divided by the standard deviation of those
Mean Average Precision values with respect to a set of query modifying transforma-
tions. In this way, it reflects the stability of a similarity measure as follows. In case
the similarity measure is invariant against the query modifying transformations, the
Average Precision Stability becomes the expected Mean Average Precision value.
Otherwise, the Average Precision Stability decreases with varying Mean Average
Precision values. As can be seen in the definition, the proposed Average Precision
Stability generalizes the Mean Average Precision measure by including the standard
deviation of the Mean Average Precision values. Consequently, it is also bounded
between 0 and 1.

In general, this concept of the stability of a similarity measure can be extended
to any other evaluation measure, for instance the F-Measure or the Normalized
Discounted Cumulative Gain, by replacing the evaluation measure appropriately.
It is thus flexible to fit individual user and system requirements when evaluating
the retrieval performance of content-based multimedia retrieval systems. However,
since Mean Average Precision is a frequently encountered evaluation measure in the
area of content-based multimedia retrieval, we provide an Average Precision Stability
evaluation study of signature-based similarity measures for the purpose of content-
based image retrieval in the following section.
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5 Experimental evaluation

In this section, we study the stability of the signature-based similarity measures pre-
sented in Section 2 in the context of content-based image retrieval. For this purpose,
we used the Holidays [11], UKBench [17], and Copydays [6] image databases, all
providing a solid ground truth reflecting photometric and geometric transformations
in order to benchmark content-based image retrieval approaches. The Holidays
database comprises 1,491 holiday photos corresponding to a large variety of scene
types. It was designed to test the robustness, for instance, to rotation, viewpoint, and
illumination changes and provides 500 selected queries. The UKBench database con-
sists of 10,200 images showing 2,550 different objects or scenes that are photographed
from four different viewpoints. Within these two databases, the first image of each
object or scene serves as query object. The Copydays database comprises 157 images
which have been cropped by 50 %. The cropped images serve as query objects for
the original images of the Copydays database that is enlarged with 10.000 additional
images from the MIR Flickr database [9].

Based on these image databases, we generated feature signatures by extracting
local feature descriptors and by clustering them with the k-means algorithm. We
extracted a low-dimensional descriptor denoted by PCT [1], which describes the rel-
ative spatial information of a pixel, its CIELAB color value, and its first and second
Tamura texture features [23], the coarseness and contrast. The PCT descriptor was
extracted with a random sampling of 40,000 pixels per image. After having extracted
the local feature descriptors, we applied the k-means clustering algorithm to generate
multiple feature signatures per image by varying the feature signature size between
10 and 100.

We first investigated the retrieval performance in terms of Mean Average Preci-
sion (MAP) for different changes in cardinality between the query signature size α ∈
[10, . . . , 100] and the database signature size β ∈ [10, . . . , 100] in order to evaluate
the stability with respect to the most natural modification regardless of any specific
local features. The resulting MAP values for the Holidays database are reported
in Fig. 2 for the Earth Mover’s Distance (EMD), the Perceptually Modified Haus-
dorff Distance (PMHD), the Signature Quadratic Form Distance (SQFD), and the
Weighted Correlation Distance (WCD), where we used the Euclidean distance L2 as
ground distance. While the Earth Mover’s Distance and the Perceptually Modified
Hausdorff Distance are free of any additional parameter, the Weighted Correlation
Distance requires the definition of an appropriate maximum cluster radius R ∈ R, see
Section 2. Based on the applied k-means clustering, we adapt the maximum cluster
radius R to the average ground distance between the representatives of each feature
signature of the current database throughout our experimental evaluation, as this
shows the highest retrieval performance. Similarly, we adapt the parameter of the
Gaussian similarity function used within the Signature Quadratic Form Distance to
the reciprocal average ground distance between the representatives of each feature
signature of the current database minus a constant value of 1.5. In this way, both
the Weighted Correlation Distance and the Signature Quadratic form Distance are
adjusted to the individual characteristics of the corresponding image databases.

Figure 2 reveals, that all of the signature-based similarity measures are able to
achieve a retrieval performance in terms of Mean Average Precision of greater than
70 % on the Holidays database. In particular, the highest Mean Average Precision
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Fig. 2 Mean average precision (MAP) values on the Holidays database [11] as a function of the
query signature size α ∈ [10, . . . , 100] and the database signature size β ∈ [10, . . . , 100] for the
following distances: a Earth Mover’s Distance (EMD), b Perceptually Modified Hausdorff Distance
(PMHD), c Signature Quadratic Form Distance (SQFD), and d Weighted Correlation Distance
(WCD)

value of 0.813 is reached by using the Perceptually Modified Hausdorff Distance in
combination with a query signature size of α = 90 and a database signature size of
β = 70. This Mean Average Precision value is followed by a value of 0.761 using the
Signature Quadratic Form Distance with lower signature sizes of α = 40 and β = 60.
The Earth Mover’s Distance reaches a Mean Average Precision value of 0.722
with comparatively high signature sizes of α = 90 and β = 80, while the Weighted
Correlation Distance reaches a value of 0.701 with signature sizes of α = 40 and
β = 50.

The results of the UKBench database, reported in Fig. 3, show the same tendency
as those of the Holidays database. By using a query signature size of α = 100 and
a database signature size of β = 80 the Perceptually Modified Hausdorff Distance
reaches the highest Mean Average Precision value of 0.875. The second-highest
value of 0.766 is reached by the Signature Quadratic Form Distance with the feature
signature sizes of α = 50 and β = 60. The Earth Mover’s Distance requires the
feature signature sizes of α = 60 and β = 50 to reach a value of 0.742, while the
Weighted Correlation Distance stays at a value of 0.695 with the feature signature
sizes of α = 40 and β = 50.

Finally, the results of the Copydays database are shown in Fig. 4. Similar to both
databases before, the Perceptually Modified Hausdorff Distance reaches the highest
Mean Average Precision value of 1.0 when using a query signature size of α = 30
and a database signature size of β = 20. The Signature Quadratic Form Distance
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Fig. 3 Mean average precision (MAP) values on the UKBench database [17] as a function of
the query signature size α ∈ [10, . . . , 100] and the database signature size β ∈ [10, . . . , 100] for the
following distances: a Earth Mover’s Distance (EMD), b Perceptually Modified Hausdorff Distance
(PMHD), c Signature Quadratic Form Distance (SQFD), and d Weighted Correlation Distance
(WCD)
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Fig. 4 Mean average precision (MAP) values on the Copydays database [6] as a function of the query
signature size α ∈ [10, . . . , 100] and the database signature size β ∈ [10, . . . , 100] for the following
distances: a Earth Mover’s Distance (EMD), b Perceptually Modified Hausdorff Distance (PMHD),
c Signature Quadratic Form Distance (SQFD), and d Weighted Correlation Distance (WCD)
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Table 1 Overview of the
minimum, average, and
maximum Mean Average
Precision values for the
Holidays, UKBench, and
Copydays image databases

Database MAP EMD PMHD SQFD WCD

Holidays max 0.722 0.813 0.761 0.701
avg 0.683 0.705 0.712 0.662
min 0.533 0.276 0.458 0.492

UKBench max 0.742 0.875 0.766 0.695
avg 0.688 0.707 0.704 0.648
min 0.490 0.153 0.422 0.428

Copydays max 0.925 1.000 0.958 0.868
avg 0.842 0.873 0.870 0.775
min 0.532 0.195 0.394 0.424

shows the second-highest value of 0.958 when using a query signature size of α = 40
and a database signature size of β = 70. The Earth Mover’s Distance requires the
feature signature sizes of α = 70 and β = 100 to reach a value of 0.925, while the
Weighted Correlation Distance stays at a value of 0.868 with the feature signature
sizes of α = 20 and β = 30. The minimum, average, and maximum Mean Average
Precision values for the combination of all image databases and all signature-based
similarity measures are summarized in Table 1.

In general, the aforementioned signature-based similarity measures show a sim-
ilar behavior on all image databases. First, it can generally be observed that the
correlation-based approaches, i.e., the Signature Quadratic Form Distance and
the Weighted Correlation Distance, require smaller feature signatures in order to
achieve high retrieval performance in comparison to the transformation-based and
matching-based approaches, i.e., the Earth Mover’s Distance and the Perceptually
Modified Hausdorff Distance. Second, the retrieval performance deteriorates in case
the query signatures or the database signatures are of low cardinality. Third, in
particular the Perceptually Modified Hausdorff Distance shows a significant loss in
retrieval performance when the cardinality of the query signatures is larger than that
of the database signatures, as can be seen in Figs. 2b, 3b, and 4b. Finally, all signature-
based similarity measures show a comparatively stable plane of high Mean Average
Precision values for a large number of cardinality changes between the query and the
database side. Nevertheless, the fluctuations in the marginal areas affect the stability
of the corresponding similarity measures, as can be seen in Table 2, where we finally
report the Average Precision Stability.

Summarizing, it can be seen in the Table 2 that the Signature Quadratic Form
Distance shows the highest stability with respect to changes in cardinality. It reaches
the Average Precision Stability of 0.661, 0.645, and 0.763 on the Holidays, UKBench,
and Copydays databases, respectively. The second-highest stability is reached by the
Earth Mover’s Distance, followed by the Weighted Correlation Distance and, finally,
the Perceptually Modified Hausdorff Distance. This behavior is reasoned in the
correlation-based and transformation-based nature of the first mentioned similarity
measures, i.e. the Signature Quadratic Form Distance, the Weighted Correlation

Table 2 Average Precision
Stability (APS) for the
Holidays, UKBench, and
Copydays image databases

Database EMD PMHD SQFD WCD

Holidays 0.649 0.622 0.661 0.629
UKBench 0.640 0.588 0.645 0.607
Copydays 0.763 0.722 0.763 0.707
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Distance, and the Earth Mover’s Distance. On the one hand, by taking into account
the complete similarity structure of the feature signatures, these similarity measures
are more robust to changes in quality compared to the matching-based Perceptually
Modified Hausdorff Distance. On the other hand, the latter provides higher absolute
retrieval performance.

We conclude that the highest retrieval performance does not necessarily coincide
with the highest stability. Thus, a hybrid approach combining both correlation-based
and matching-based nature might provide a signature-based similarity measure that
is able to reduce the gap between high absolute retrieval performance and high
stability.

6 Summary and conclusions

We investigated the stability of the major signature-based similarity measures with
respect to quality changes between the query and the database side. For this purpose,
we first described the feature signature model, which comprises feature signatures
and signature-based similarity measures. We then outlined existing evaluation mea-
sures and pointed out their missing ability to express the variance of a measured
quantity. In order to counteract this issue, we defined the Average Precision Stability
by means of the concept of query modifying transformations. Based on this measure,
we finally evaluated the stability of the signature-based similarity measures with
regard to changes in cardinality between the query and the database signatures.

Our performance evaluation on three recent benchmark image databases includ-
ing photometric and geometric modifications reveals a gap between the highest
retrieval performance and the highest stability. While the first is reached by the
matching-based Perceptually Modified Hausdorff Distance, the latter is reached by
the correlation-based Signature Quadratic Form Distance.
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