
DOI 10.1007/s11042-012-1306-7

Audio scrambling technique based on cellular automata

Alia Madain ·Abdel Latif Abu Dalhoum ·
Hazem Hiary ·Alfonso Ortega ·Manuel Alfonseca

© Springer Science+Business Media New York 2012

Abstract Scrambling is a process that has proved to be very effective in increasing
the quality of data hiding, watermarking, and encryption applications. Cellular
automata are used in diverse and numerous applications because of their ability to
obtain complex global behavior from simple and localized rules. In this paper we
apply cellular automata in the field of audio scrambling because of the potential it
holds in breaking the correlation between audio samples effectively. We also analyze
the effect of using different cellular automata types on audio scrambling and we
test different cellular automata rules with different Lambda values. The scrambling
degree is measured and the relation between the robustness and the scrambling
degree obtained is studied. Experimental results show that the proposed technique
is robust to data loss attack where 1/3 of the data is lost and that the algorithm can
be applied to music and speech files of different sizes.

Keywords Audio scrambling ·Cellular automata ·Game of life ·Lambda parameter

1 Introduction

The term audio scrambling has a long history. A century ago, audio scrambling was
the only way to hide analog audio information transmitted, and the scrambling relied
mainly on altering the audio signal in the time domain, the frequency domain, or
both. Later, scrambling of other media types was used. For example, scrambling
techniques were used in copyright protection of cable TV broadcast; secure image
transfer from satellites to ground stations, and military communications [22].

A. Madain · A. L. Abu Dalhoum · H. Hiary (B)
University of Jordan, Amman 11942, Jordan
e-mail: hazemh@ju.edu.jo

A. Ortega · M. Alfonseca
Universidad Autónoma de Madrid, Madrid, Spain

Multimed Tools Appl (2014) 71:1803–1822

Published online: 29 December 2012

With the rapid development of information technology, the applications of audio
scrambling varied significantly; although it is still used in the field of security, it is
considered as a pre-process or post-process of watermarking, information hiding,
fingerprinting, and encryption.

The techniques that use scrambling have many applications; for example, Finger-
printing is one of the effective means of copyright protection of multimedia transmit-
ted to massive users using the multicast method [8], the development of robust data
hiding system helps more technologies find new and promising applications [15], and
watermarking is one of the methods used in Intellectual Property (IP) protection
which is an important element in multimedia transmission and delivery systems [4].

In this paper we propose a new Audio Scrambling algorithm based on Cellular
Automata (ASCA). Cellular automata (CA) is a discrete model of computation that
could be used to solve any computable task. This work seeks to find out how to best
benefit from CA characteristics in audio scrambling, where different CA types were
tested to see which one will lead to a higher scrambling degree. Also, the experiments
were applied to 30 audio files in WAV format which contains music and speech
files of different sizes and the robustness of cellular automata techniques was tested
against data loss attack where 1/3 of the data is lost.

The remaining of this paper is organized as follows: in Section 2 we review related
work briefly; Section 3 covers essential cellular automata background information;
Section 4 describes the scrambling algorithm proposed and the scrambling degree
measurement; Section 5 gives the analysis and discussion of the experimental results;
Section 6 compares the work done with previous schemes, and finally, in Section 7,
we conclude the work done and discuss possible directions for future work.

2 Related works

A lot of research has been done in the field of scrambling. For digital images,
many scrambling methods are available, such as those based on Arnold transforma-
tion [18], Advanced Encryption Standard (AES) and error-correcting code [9], cat
chaotic mapping [24], and dynamic twice interval-division [21], among others.

Cellular automata have also been used for digital image scrambling: Ye and Li [23]
described the use of CA with chaotic behavior, while Abu Dalhoum et al. [1] proved
that CA with complex behavior scrambles better than those with chaotic behavior.
In this paper we extend work done in digital image scrambling and apply it to digital
audio.

Many researchers have worked on audio scrambling: the work done in [12]
and used in [13, 14], for example, uses variable dimension operation to address
problems in one dimensional linear mapping. The algorithm changes the dimension
of coordinates and uses a transformation matrix to scramble the audio.

In [5], two scrambling algorithms are given, namely, the cyclic displacement
scrambling transformation (CDST) and the complete binary tree’s inorder traversal
scrambling transformation (ITST), then the two algorithms are combined. The
combined algorithm takes two positive integers as keys; the first is used in CDST,
while the other determines the order of execution of the two algorithms.

Work done in [6] focuses on the compressed domain, where a progressive audio
scrambling and descrambling scheme is applied to MP3 audio, the algorithm is

Multimed Tools Appl (2014) 71:1803–18221804

progressive in the sense that it does multiple rounds of scrambling based on keys
to produce a set of audio outputs of differing qualities. In order to reconstruct the
original, all the keys must be available; if some of the keys are missing then the
reconstructed audio has lower quality than the original.

In this paper we propose a new audio scrambling technique that depends on CA in
generating the scrambling key, and we study different types of CA in terms of audio
scrambling. The proposed algorithm is applied to audio in WAV format, and does
not require any additional padding; moreover, experimental results show that the
algorithm is applicable to speech and music audio files with different sizes, and can
break the correlations between audio samples effectively, in addition to being robust
to data loss attacks. Section 6 discusses scrambling algorithms applied to WAV audio
files further.

3 Cellular automata

Cellular automata (CA) are simple and highly parallel models of computation which
can exhibit complex behavior [17]. They are used in many applications covering
different fields, for example, CA is used to model complex biochemical systems [10],
and to build vehicular traffic models [3].

This paper uses two dimensional cellular automata. The model implies a grid of
identical cells, each cell can be in one of two states, zero or one (also called on or of f,
dead or alive). From a given initial state, the state of the grid cells changes from one
iteration (generation) to the next, or stays the same, based on a transition function (or
rule) which depends on the state of the specified cell and the states of its neighbors in
the previous generation. The transition function is applied simultaneously to every
cell in the grid.

3.1 Cellular automata neighborhood and boundary condition

The actual neighborhood chosen is usually crucial for the global behavior of a
CA [16]. In this paper we consider two common 2D neighborhoods, von Neumann
and Moore. In von Neumann’s neighborhood every cell has four neighbors: the cells
at its North, South, East, and West, whereas in Moore’s neighborhood the cells at the
four diagonals are also considered.

In an infinite grid, every cell has a full neighborhood, but in a finite grid there
must be a way to handle cells on the edges. We will consider both null and periodic
boundary conditions in our experiments. A CA is said to have a null boundary if
the left (right) neighbor of every leftmost (rightmost) cell is set to a zero state cell,
and a periodic boundary if the extreme cells at opposite sides are adjacent to one
another [19].

3.2 Cellular automata lambda parameter (λ)

Not all types of cellular automata result in a complex behavior and there are many
attempts to group cellular automata with the same behavior. According to Wolfram,
it seems that the patterns which arise from different types of cellular automata can
almost always be assigned to one of just four basic classes [20]. In class1, patterns

Multimed Tools Appl (2014) 71:1803–1822 1805

evolve into a stable, homogeneous state; in class2, patterns evolve to periodic state;
in class3 a chaotic behavior appears; and in class4, configurations contain structures
which interact in complex ways.

A way to describe the relation between the transition rules and the behavior of the
CA is the λ parameter, defined by Langton [11]. A small value of λ indicates that the
CA evolves to a stable state, which corresponds to Wolfram class1; a higher value
describes a periodic behavior, as in class2; for values close to 1, the CA behavior
tends to be chaotic, as in class3; for some critical values of λ, the CA exhibits complex
behavior, as in class4. Ideally, all transition functions with the same λ exhibit similar
behavior [2].

3.3 Calculating the transition rule number

In [23] the rule number (C) is calculated as follows:

C =
1∑

s=0

8∑

n=0

f (s, n) × 22n+s (1)

where f is the transition function, s is the current state at time t and n is the number
of neighboring cells with s = 1. The transition function f produces the state s at time
t + 1, if the combination between the current state at time t and the neighboring cells
with s = 1 results in st+1 = 1, then the amount 22n+s is added to the rule number. The
Moore neighborhood is assumed in this equation.

3.4 Conway’s Game of Life (GOL)

The rules of Conway’s game of life are simple [7], and can be described as follows:

– Survival. If a cell is alive at time t, it will remain alive at time t + 1 if and only if it
has either two or three neighbors alive at time t.

– Birth. If a cell is dead at time t, it becomes alive at time t + 1 if exactly three of its
neighbors are alive at time t.

– Death. If a cell is alive at time t, it will die at time t + 1 if less than two (isolation)
or more than three (overpopulation) neighbors are alive at time t.

4 Audio scrambling based on cellular automata

The technique we are proposing can be divided into two processes: first the audio is
scrambled and used as the base for further processing, or perhaps sent directly; then
the audio is descrambled to generate the final version for distribution (in case of
watermarking) or to retrieve the ciphered information (in case of encryption). Both
the scrambling and descrambling processes depend on the key generation process to
produce the indices used for scrambling.

Multimed Tools Appl (2014) 71:1803–18221806

4.1 Scrambling algorithm

The scrambling algorithm takes the audio file as input and produces a scrambled
audio plus a key as the output. The key specifies the indices used for scrambling. The
procedure starts by determining the length of the audio file which will be used to
increase the dimension of the audio, then a list of the new indices is generated using
rules of the game of life, a Moore neighborhood and a periodic boundary. This list
is used to fill the two dimensional matrix with the original audio samples, then the
dimension is decreased and the scrambled audio file is written with the same sample
rate and number of bits per sample as its original. The algorithm can be described as
follows:

(1) Read audio file X and determine its length: length(X).
(2) Select M such that (M − 1)2 < length(X) < M2. Build an M × M empty matrix

A.
(3) Calculate the last index (in row first order) occupied by the wave samples if they

were inserted into a matrix of size M × M. All positions before this point are
within range.

(4) Get the new list of indices Q, using the key generation process described in
Section 4.2.

(5) Initialize a pointer to point to the first cell in the audio array: ptr = 1.
(6) For each index in Q, if it is within range, then A

[
index

] = X
[

ptr
]
. Increment

ptr.
(7) While ptr is less than length(X), insert the remaining values in A, in row first

order using the same procedure.
(8) Decrease the dimension of A from 2D to 1D.
(9) Repeat steps 5 to 8, N times if needed.

After the scrambling process, the scrambled audio file R is written in the same
format, with the same sample rate and number of bits per sample. Figure 1a shows
an audio wave file, Fig. 1b shows a list of indices retrieved from the key generation
process described in Section 4.2, Fig. 1c shows the audio file scrambled before
decreasing the dimension. The length of the key is less than the length of the audio,
so the remaining values are inserted in row first order. The black cell is out of range
and will be discarded when the dimension is decreased.

4.2 Key generation process

The key generation process is used by the scrambling and descrambling processes.
It takes the value of M calculated in Section 4.1, and produces a list of indices Q.
The key generation process is based on 2D cellular automata and can be described
as follows:

(1) Create a CA with an M × M grid and a random initial state configuration.
(2) Initialize a status matrix B of size M × M to zero.
(3) Run the Game of life rules (using Moore neighborhood and periodic boundary)

for (NOG) generations starting from the initial state configuration. Subsequent
state configurations are K1, K2, · · · , KNOG.

Multimed Tools Appl (2014) 71:1803–1822 1807

Fig. 1 Audio scrambling
process, (a) original audio, (b)
list of new indices, (c)
scrambled audio

(a) (b)

-0.1222 -0.1657 -0.0820

-0.2122 -0.1886 -0.1435

-0.1017 -0.2362

(c)

(4) For k = 1, 2, · · · , NOG, if Kk
[
i, j

] = 1 and B
[
i, j

] = 0, add (i, j) to the list of
new indices Q, and set B

[
i, j

]
to 1.

(5) Return Q.

The number of generations (NOG) must not exceed the number needed to
scramble the whole audio file, in most applications a small number of generations is
enough to get a high scrambling degree (as shown in the experiments in Section 5.1),
because the difference in the scrambling degree decreases when the number of
generations increases, so there is little benefit from running the algorithm for too
many generations.

4.3 Descrambling algorithm

The descrambling algorithm is the inverse of the scrambling algorithm; it simply
takes the scrambled audio file generated by the scrambling algorithm and the initial
configuration of CA to return the original file. If the algorithm is repeated or the
number of generations is changed, then the algorithm requires NOG and N. Note
that the descrambling algorithm can use the initial configuration to reproduce the
key, and K1, K2, · · · , KNOG are not required. If no attacks or audio processing
operations were made to the scrambled file, the algorithm returns a file identical
to the original.

4.4 Measuring the scrambling degree

The average scrambling degree measurement is used to evaluate image scrambling
schemes as in [1, 23]; we have used the same measurement to analyze the effect
of different cellular automata types on audio scrambling, but before applying it to
audio files, two important things must be considered: first, the audio file amplitude
contains negative values and needs to be normalized; second, audio and image files

Multimed Tools Appl (2014) 71:1803–18221808

are different, so the difference should be computed in a different way, as shown in
the equations below. Let P(i) denote the original audio data, and L is the length of
the audio file, then the difference D for cell (i), is calculated as follows:

D(i) = 1

4

∑

í

[
P(i) − P(í)

]2
(2)

where (í) = {(i − 1), (i − 2), (i + 1), (i + 2)}. After computing the cell difference, the
mean difference M for the audio is calculated as:

M =
∑L−2

i=3 D(i)
L − 4

(3)

Finally the scrambling degree SD is defined as:

SD = M̀ − M

M̀ + M
(4)

Where M̀ is the mean difference of the scrambled file and M is the mean
difference of the original audio file; the value of the scrambling degree in (4) ranges
from −1 to 1, where higher values indicate better scrambling.

5 Experimental results and analysis

In this section, we study different types of CAs in terms of audio scrambling, and we
evaluate the robustness of the proposed algorithm against data loss attack, focusing
on the relation between the algorithms robustness and the scrambling degree.

The data set used to study the behavior of CAs contains 30 audio files with
different waves. The resolution of all the audio files used is 16 bit and the audios
are in WAV format. Those numbered from 1 to 15 are speech audio files; while
those numbered from 16 to 30 are music audio files. All speech audio files have one
channel, with a sampling rate of 16000 Hertz and a Bit rate of 256 kbps. The speech
audio files duration ranges from 0.810562 to 23.1853 s. Table 1 shows the details of
the music audio files.

Although some of the audio files have multiple channels, only one channel is used
in the experiments.

5.1 Correlation analysis of the Number of Generations (NOG)

The scrambling key in the proposed algorithm depends on cellular automata, so
the number of generations parameter is vital to produce keys. Table 2 shows the
experiments made using the data set described. The experiments were made with no
repetition (N = 0). From Table 2 it can be seen that the greater the NOG, the higher
the scrambling degree obtained.

Based on the proposed algorithm, the scrambling degree increases as the number
of generations increase, because if no more indices are specified by GOL rules the
algorithm will insert the remaining values in a row first order (step 7 of the scrambling
algorithm in Section 4.1), which will make the correlation between the samples higher

Multimed Tools Appl (2014) 71:1803–1822 1809

Table 1 Details of audio files
used to study CA behavior

Audio file Duration Sample rate Bit rate Channels
(seconds) (Hz) (kbps)

16.wav 1.9805 44100 705 1
17.wav 1.83991 44100 705 1
18.wav 4.40367 48000 1536 2
19.wav 8.80733 48000 1536 2
20.wav 8.80733 48000 1536 2
21.wav 1.84154 44100 705 1
22.wav 2.18181 44100 1411 2
23.wav 0.901859 44100 1411 2
24.wav 3.66782 44100 1411 2
25.wav 2.07238 44100 705 1
26.wav 1.87728 44100 705 1
27.wav 2.00615 44100 1411 2
28.wav 3.02077 44100 705 1
29.wav 5.04311 44100 1411 2
30.wav 1.67435 44100 1411 2

Table 2 Different NOGs effect on scrambling degree

Audio Number of Generations (NOG)
file 1 5 10 15 20 25

1.wav 0.83620 0.92165 0.92573 0.92747 0.92875 0.92888
2.wav 0.86472 0.91528 0.92161 0.92549 0.92788 0.92876
3.wav 0.87451 0.93195 0.93663 0.93893 0.94077 0.94120
4.wav 0.78555 0.89342 0.90488 0.91776 0.92102 0.92423
5.wav 0.84423 0.90007 0.91566 0.91871 0.91884 0.91963
6.wav 0.81119 0.89137 0.89788 0.90219 0.90362 0.90404
7.wav 0.82025 0.90550 0.91556 0.92028 0.92228 0.92243
8.wav 0.80172 0.89939 0.90461 0.90673 0.90768 0.90909
9.wav 0.85515 0.91662 0.92466 0.92713 0.92919 0.93069
10.wav 0.83170 0.89973 0.90841 0.91162 0.91227 0.91233
11.wav 0.81258 0.88852 0.90110 0.90587 0.90846 0.90975
12.wav 0.88058 0.92639 0.93450 0.93736 0.93813 0.93878
13.wav 0.84069 0.89677 0.90909 0.91043 0.91338 0.91340
14.wav 0.84991 0.91386 0.91930 0.92142 0.92304 0.92388
15.wav 0.85201 0.92929 0.93458 0.93804 0.94066 0.94080
16.wav 0.99794 0.99883 0.99885 0.99895 0.99898 0.99899
17.wav 0.99091 0.99468 0.99535 0.99574 0.99580 0.99586
18.wav 0.87958 0.92720 0.93791 0.94070 0.94394 0.94440
19.wav 0.90406 0.94644 0.95319 0.95558 0.95684 0.95765
20.wav 0.86702 0.90716 0.92831 0.93027 0.93052 0.93075
21.wav 0.87101 0.91189 0.91424 0.92479 0.92690 0.92691
22.wav 0.97422 0.98468 0.98687 0.98728 0.98743 0.98761
23.wav 0.88890 0.92236 0.93936 0.93952 0.93959 0.93966
24.wav 0.87336 0.93423 0.93662 0.94107 0.94454 0.94675
25.wav 0.92484 0.94620 0.95227 0.95433 0.95543 0.95604
26.wav 0.95391 0.97193 0.97488 0.97594 0.97689 0.97765
27.wav 0.86357 0.92056 0.93116 0.93448 0.93498 0.93716
28.wav 0.89125 0.94178 0.94663 0.95070 0.95209 0.95306
29.wav 0.92964 0.95775 0.96139 0.96608 0.96721 0.96872
30.wav 0.87511 0.92300 0.92803 0.93216 0.93580 0.93738

Multimed Tools Appl (2014) 71:1803–18221810

and the scrambling degree lower, especially when there are gaps between the indices
specified by the key.

Scrambling 1.wav for one generation produces an audio file scrambled with the
degree 0.83620. By increasing the number of generations to five, the scrambling
degree goes up significantly to 0.92165. Increasing the number of generations to
twenty, the scrambling degree increases to 0.92875. The difference between using
one generation and five is 0.08545 whereas the difference between five generations
and twenty is 0.0071. The experimental results suggest that the influence of changing
the number of generations decreases gradually when the number of generations
increases, because when the key becomes longer, less values are inserted in order.
The increase also stops when the length of the key is equal to the length of the audio
file or when the whole audio file is scrambled.

In all our experiments we will use fifteen generations. Figure 2 shows the test
audio files scrambled for 15 generations with N = 0. Although the scrambled waves
shown in the figure have very different shape and form from their original, the
level of scrambling is enhanced significantly when N is greater than zero as given
in Section 5.5.

Fig. 2 Scrambled wave plots
of different audio files with
NOG = 15

0 1 2

−0.5

0

0.5

(a) Original Wave of (3.wav)
0 1 2

−0.5

0

0.5

(b) Scrambled Wave of (a)

0 2 4
−0.5

0

0.5

(c) Original Wave of (4.wav)
0 2 4

−0.5

0

0.5

(d) Scrambled Wave of (c)

0 2

−0.5

0

0.5

(e) Original Wave of
(24.wav)

0 2

−0.5

0

0.5

(f) Scrambled Wave of (e)

0 1 2

−0.5
0

0.5

(g) Original Wave of
(25.wav)

0 1 2

−0.5
0

0.5

(h) Scrambled Wave of (g)

Multimed Tools Appl (2014) 71:1803–1822 1811

Table 3 Scrambling degree when different neighborhood types are used with NOG = 15

Audio Neighborhood Audio Neighborhood
file Moore von Neumann file Moore von Neumann

1.wav 0.92747 0.89216 16.wav 0.99895 0.99826
2.wav 0.92549 0.89339 17.wav 0.99574 0.99373
3.wav 0.93893 0.90888 18.wav 0.94070 0.91001
4.wav 0.91776 0.87439 19.wav 0.95558 0.93194
5.wav 0.91871 0.87036 20.wav 0.93027 0.88261
6.wav 0.90219 0.84349 21.wav 0.92479 0.88907
7.wav 0.92028 0.87767 22.wav 0.98728 0.97899
8.wav 0.90673 0.87753 23.wav 0.93952 0.90297
9.wav 0.92713 0.89604 24.wav 0.94107 0.90352
10.wav 0.91162 0.85531 25.wav 0.95433 0.93171
11.wav 0.90587 0.85552 26.wav 0.97594 0.96288
12.wav 0.93736 0.90851 27.wav 0.93448 0.90197
13.wav 0.91043 0.86898 28.wav 0.95070 0.92723
14.wav 0.92142 0.89487 29.wav 0.96608 0.95085
15.wav 0.93804 0.90971 30.wav 0.93216 0.89838

5.2 Correlation analysis of neighborhood type

Although many different possible neighborhood types exist, we have only tested von
Neumann and Moore neighborhood types.

Table 3 shows the scrambling degree obtained when the audio files are scrambled
using Moore and von Neumann neighborhood types. The scrambling experiments
use the same key for both neighborhood types, and the scrambling is not repeated
(N = 0).

The Moore neighborhood provides significantly better scrambling results than
von Neumann neighborhood, this is because the neighborhood effect applies to
all cells in the grid and many of the CA properties are strongly dependent on the
neighborhood [16]. Figure 3 shows the result of scrambling 15.wav and 28.wav using
different neighborhood types.

5.3 Correlation analysis of boundary condition

Table 4 shows the scrambling degree obtained when the audio files are scrambled
using periodic and null boundaries with no repetition (N = 0) and NOG = 15. The
periodic boundary gives better randomness quality [1], but based on the results
shown in Table 4, the difference between the two boundary types is not as significant
as the difference between the tested neighborhood types. Also it can be seen from
this table that on average the periodic boundary gives a slightly higher scrambling
degree than the null boundary.

5.4 Correlation analysis of lambda values

Table 5 shows different transition rules which we have chosen to test their effect on
audio scrambling. The table also shows their rule numbers.

Multimed Tools Appl (2014) 71:1803–18221812

Fig. 3 Audio files scrambled
using different neighborhood
types

0 2

−0.2

0

0.2

(a) Original Wave of
(15.wav)

0 2

−0.5

0

0.5

(b) Original Wave of
(28.wav)

0 2

−0.2

0

0.2

(c) Scrambled Wave of (a) using
Moore Neighborhood

0 2

−0.2

0

0.2

(d) Scrambled Wave of (a) using
von Neumann Neighborhood

0 2

−0.5

0

0.5

(e) Scrambled Wave of (b) using
Moore Neighborhood

0 2

−0.5

0

0.5

(f) Scrambled Wave of (b) using
von Neumann Neighborhood

Table 6 shows the scrambling degrees obtained for different lambda values, in the
experiments. No repetition was used (N = 0). The results show that the complex
behavior of the Game of Life rule (GOL) which occurs around λ = 0.2734 gives
the highest scrambling effect. This result could have been foreseen from Wolfram
analysis of CAs, but it is nice to see it confirmed.

Table 4 Scrambling degree when different CA types are used

Audio Boundary Audio Boundary
file Periodic Null file Periodic Null

1.wav 0.92747 0.92587 16.wav 0.99895 0.99893
2.wav 0.92549 0.92522 17.wav 0.99574 0.99572
3.wav 0.93893 0.93758 18.wav 0.94070 0.94023
4.wav 0.91776 0.91731 19.wav 0.95558 0.95495
5.wav 0.91871 0.91690 20.wav 0.93027 0.93007
6.wav 0.90219 0.90085 21.wav 0.92479 0.92372
7.wav 0.92028 0.91932 22.wav 0.98728 0.98737
8.wav 0.90673 0.90493 23.wav 0.93952 0.93810
9.wav 0.92713 0.92656 24.wav 0.94107 0.94086
10.wav 0.91162 0.90842 25.wav 0.95433 0.95344
11.wav 0.90587 0.90560 26.wav 0.97594 0.97549
12.wav 0.93736 0.93727 27.wav 0.93448 0.93361
13.wav 0.91043 0.90984 28.wav 0.95070 0.94977
14.wav 0.92142 0.92123 29.wav 0.96608 0.96602
15.wav 0.93804 0.93772 30.wav 0.93216 0.93051

Multimed Tools Appl (2014) 71:1803–1822 1813

Table 5 The lambda value and rule number of different transition functions

Lambda value (λ) Transition function Rule no.

0.27340 f (0, 3) = 1, f (1, 2) = 1, GOL
f (1, 3) = 1, f equals zero otherwise

0.30078 f (0, 4) = 1, f (1, 2) = 1, 416
f (1, 3) = 1, f equals zero otherwise

0.32812 f (0, 4) = 1, f (1, 2) = 1, f (1, 4) = 1, 800
f equals zero otherwise

0.41601 f (1, 3) = 1, f (0, 1) = 1, f (0, 2) = 1, 83156
f (0, 3) = 1, f (0, 5) = 1, f (0, 7) = 1,
f (0, 8) = 1, f equals zero otherwise

0.47070 f (1, 2) = 1, f (1, 3) = 1, 83188
f (0, 1) = 1, f (0, 2) = 1, f (0, 3) = 1,
f (0, 5) = 1, f (0, 7) = 1, f (0, 8) = 1,
f equals zero otherwise

Table 6 Scrambling degree when using different transition rules and NOG = 15

Audio Rule no.
file GOL 416 800 83156 83188

1.wav 0.92747 0.90355 0.90964 0.89675 0.89046
2.wav 0.92549 0.89740 0.90613 0.90563 0.89999
3.wav 0.93893 0.91107 0.91898 0.90940 0.90419
4.wav 0.91776 0.86127 0.88539 0.88648 0.88524
5.wav 0.91871 0.88793 0.89275 0.88076 0.87433
6.wav 0.90219 0.87829 0.88081 0.85902 0.84297
7.wav 0.92028 0.88667 0.89171 0.88442 0.88037
8.wav 0.90673 0.86287 0.88331 0.86251 0.86054
9.wav 0.92713 0.89360 0.90054 0.90368 0.90060
10.wav 0.91162 0.88852 0.89222 0.87261 0.86123
11.wav 0.90587 0.86327 0.87035 0.87866 0.87469
12.wav 0.93736 0.90891 0.91892 0.91685 0.91084
13.wav 0.91043 0.88061 0.88571 0.89263 0.88540
14.wav 0.92142 0.89169 0.90214 0.90917 0.90449
15.wav 0.93804 0.90007 0.91365 0.91378 0.91430
16.wav 0.99895 0.99835 0.99841 0.99852 0.99831
17.wav 0.99574 0.99276 0.99335 0.99435 0.99393
18.wav 0.94070 0.90653 0.91013 0.91485 0.91386
19.wav 0.95558 0.93144 0.93686 0.94175 0.93873
20.wav 0.93027 0.87874 0.88853 0.89457 0.89018
21.wav 0.92479 0.88041 0.88895 0.89209 0.89223
22.wav 0.98728 0.98169 0.98288 0.98439 0.98244
23.wav 0.93952 0.89533 0.90633 0.90861 0.91605
24.wav 0.94107 0.91349 0.91628 0.92185 0.92103
25.wav 0.95433 0.93845 0.93981 0.93195 0.92978
26.wav 0.97594 0.96321 0.96602 0.97001 0.96903
27.wav 0.93448 0.90217 0.91217 0.91665 0.91470
28.wav 0.95070 0.92798 0.93666 0.93856 0.93705
29.wav 0.96608 0.94266 0.94532 0.95795 0.95549
30.wav 0.93216 0.90016 0.90845 0.91578 0.91248

Multimed Tools Appl (2014) 71:1803–18221814

Table 7 Relation between
repetition (N) and scrambling
degree

Audio N = 0 N = 1 Audio N = 0 N = 1
file file

1.wav 0.92747 0.93757 16.wav 0.99895 0.99912
2.wav 0.92549 0.94025 17.wav 0.99574 0.99644
3.wav 0.93893 0.94795 18.wav 0.94070 0.95063
4.wav 0.91776 0.93023 19.wav 0.95558 0.96351
5.wav 0.91871 0.93111 20.wav 0.93027 0.94006
6.wav 0.90219 0.91506 21.wav 0.92479 0.93485
7.wav 0.92028 0.93164 22.wav 0.98728 0.98967
8.wav 0.90673 0.91975 23.wav 0.93952 0.94921
9.wav 0.92713 0.94101 24.wav 0.94107 0.95251
10.wav 0.91162 0.92461 25.wav 0.95433 0.96300
11.wav 0.90587 0.92293 26.wav 0.97594 0.98102
12.wav 0.93736 0.94821 27.wav 0.93448 0.94699
13.wav 0.91043 0.92989 28.wav 0.95070 0.96097
14.wav 0.92142 0.93897 29.wav 0.96608 0.97258
15.wav 0.93804 0.94826 30.wav 0.93216 0.94623

5.5 Correlation between confusion and repetition

In all the previous experiments, the audio files were scrambled with no repetition
(N = 0), in Table 7, it can be seen that the repetition for only one time increases
the scrambling degree and hence the confusion. Figure 4 shows the wave of 13.wav
and 20.wav with and without repetition. Although in both the scrambled waves do
not show any of the original audio structure, scrambling with repetition is better and
have a higher scrambling degree.

Fig. 4 Audio files scrambled
before and after repetition
where NOG = 15

0 5 10

−0.5

0

0.5

(a) Original Wave of
(13.wav)

0 5

−0.1

0

0.1

(b) Original Wave of
(20.wav)

0 5 10

−0.5

0

0.5

(c) Scrambled Wave of (a) with-
out repetition (N = 0)

0 5 10

−0.5

0

0.5

(d) Scrambled Wave of (a) with
repetition (N = 1)

0 5

−0.1

0

0.1

(e) Scrambled Wave of (b) with-
out repetition (N = 0)

0 5

−0.1

0

0.1

(f) Scrambled Wave of (b) with
repetition (N = 1)

Multimed Tools Appl (2014) 71:1803–1822 1815

Fig. 5 Recovered audio file
after data loss attack with
NOG = 15

0 0.5
−0.2

0

0.2

(a) Original Wave of (1.wav)
0 5

−0.5

0

0.5

(b) Original Wave of (19.wav)

0 0.5
−0.2

0

0.2

(c) Scrambled Wave of (a) when
N = 0

0 0.5
−0.2

0

0.2

(d) Scrambled Wave of (a) when
N = 4

0 0.5
−0.2

0

0.2

(e) Attacked Wave of (a) when
N = 0

0 0.5
−0.2

0

0.2

(f) Attacked Wave of (a) when
N = 4

0 0.5
−0.2

0

0.2

(g) Recovered Wave of (a) when
N = 0

0 0.5
−0.2

0

0.2

(h) Recovered Wave of (a) when
N = 4

0 5
−0.5

0

0.5

(i) Scrambled Wave of (b) when
N = 0

0 5
−0.5

0

0.5

(j) Scrambled Wave of (b) when
N = 4

0 5
−0.5

0

0.5

(k) Attacked Wave of (b) when
N = 0

0 5
−0.5

0

0.5

(l) Attacked Wave of (b) when
N = 4

0 5
−0.5

0

0.5

(m) Recovered Wave of (b) when
N = 0

0 5
−0.5

0

0.5

(n) Recovered Wave of (b) when
N = 4

Multimed Tools Appl (2014) 71:1803–18221816

5.6 Robustness experiments

In an effort to measure the algorithm robustness, we applied the data loss attack
where we eliminated 1/3 of the data samples of the data set audio files. Each audio
file was scrambled twice, the first time with no repetitions (N = 0) and the second
time the scrambling was repeated four times (N = 4), in order to show the relation
between the scrambling degree and the robustness of the algorithm. Figure 5 shows
the recovered waves of 1.wav and 19.wav after data loss. The scrambling degree for
1.wav is 0.92747 when N = 0 and 0.93951 when N = 4. The scrambling degree for
19.wav is 0.95558 when N = 0 and 0.96559 when N = 4.

From Fig. 5 it can be seen that the structure of the recovered wave is so similar to
the original, especially when N = 4 (because with better scrambling the samples are
distributed in a way that breaks the correlation between samples), so even if the data
is lost the audio recovers most of its original structure.

When listening to the recovered audio we can absolutely understand it, although
with the lower scrambling degree it can be noticed that there are isolated clicks in
the audio, and with the higher scrambling degree some noise is introduced.

6 Comparison with previous schemes

Audio scrambling algorithms can be evaluated by many aspects, including high
security and difficulty to descramble, complexity and applicability to real time appli-
cations, robustness, key size, in addition to the scrambled audio length and the need
for padding, restrictions on the audio length, audio type, dimension, etc. the choice
of which algorithm to use is usually dependent on the application and resources
available. In this section we will discuss those different aspects and compare between
some of the audio scrambling algorithms proposed.

Some of the scrambling algorithms map the original audio samples
X1, X2, . . . , Xlength(x) to the scrambled audio samples X ′

1, X ′
2, . . . , X ′

length(x)
where

the length of X is preserved as in our proposed algorithm (ASCA), other algorithms
require padding so the original audio samples are mapped to X ′

1, X ′
2, . . . , X ′

length(x)+y
where y is the length of padded audio samples. Also in some algorithms suitable
padding maybe occasionally required [22].

Cyclic displacement scrambling transformation (CDST) and the complete binary
tree’s in order traversal scrambling transformation (ITST), and their combined
algorithm proposed in [5] does not require any additional padding, while the audio
scrambling algorithm based on variable dimension space (ASVDS) proposed in [12]
requires padding.

ASVDS was proposed to address the problems of one-dimensional linear map-
ping, it increases the audio dimension to a variable dimension space, although
changing the dimension gives better scrambling, it is notable that increasing the audio
dimension higher than 2D does not necessarily increases the algorithm efficiency.
CDST, ITST, and the combination between them scramble the audio in one dimen-
sion, while our proposed algorithm (ASCA) increases the dimension to 2D only.

Because audio scrambling applications are mostly in the security domain, the key
strength and length are important, and the requirement of both aspects is dependent
on the application, for example, some of the scrambling algorithms does not need any

Multimed Tools Appl (2014) 71:1803–1822 1817

Table 8 Comparing ASCA with previous schemes

ASCA ASVDS CDST ITST Combination

Scrambled audio No change Longer than the No change No change No change
duration original

Key length Depends on the Depends on the Independent No key Independent
dependency original audio dimension integer required two integer

length number numbers
Dimension 2D Variable dimen- 1D 1D 1D

sion
Variables needed Number of gene- Original audio One integer No key Two integer

to descramble rations, repeti- length, dimension number required numbers
tions, key used, transforma-

tion matrix

key and does not achieve efficient scrambling as the others as in the case of ITST,
but it might be very beneficial in case it is used as part of a process where at some
step a key is added.

CDST requires only one integer to descramble, which is possible to decrypt if
available to the public [5]. The combination algorithm uses two integer numbers to
descramble, and finally ASVDS uses a transformation matrix of size n × n where n
is the dimension. In ASVDS if the algorithm increases the audio to two dimensions,
the key will be a 2 × 2 matrix and the determinant of that matrix is a relative prime of
the square root of the scrambled audio length. Table 8 summarizes the comparison
between the audio scrambling algorithms.

Other than the aspects we discussed above, there are benefits from relying on CA,
for example, it is not a specific approach to scrambling but a general purpose discrete
model of computation that could be used to solve any computable task which can be
of a special benefit in systems that rely on this model. Moreover, CA is known for
being a parallel model, which increases the performance of applications relying on it.

7 Conclusions and future work

A new scrambling technique for digital audio has been introduced. The proposed
scheme takes advantage of 2D cellular automata with complex behavior to achieve
a high scrambling degree. The paper studies the effect of using von Neumann
neighborhood versus Moore neighborhood and the periodic boundary versus the
null boundary. Five transition rules with different Lambda values were tested. The
process is suitable for speech and music clips of different sizes and no extra padding is
needed. The descrambling process is straightforward when the right key is available.

Experimental results suggest that the proposed technique breaks the correlation
of adjacent data samples effectively. The relation between the scrambling degree
achieved and the robustness of the algorithm is also studied, the results show that the
algorithm is robust to data loss attack and the robustness becomes better when the
scrambling degree is higher.

Some of the most popular CA types were studied in terms of digital audio
scrambling, but many more exists; future plans include the extensive study of other
CA types and other possible combinations, and extending this scheme to scramble
video files.

Multimed Tools Appl (2014) 71:1803–18221818

Studying the best approach to extend the algorithm to include multi-channel audio
is also left for future work. This extension can be done by treating each channel
separately, or by considering inter-channel dependencies.

Other future plans will include the use of this algorithm as a part of watermarking,
information hiding, fingerprinting, and encryption applications.

Acknowledgements This work is partially supported by the Spanish Ministry of Science and
Innovation under coordinated research projects TIN2011-28260-C03-00 and TIN2011-28260-C03-02
and by the Comunidad Autónoma de Madrid under research project e-madrid S2009/TIC-1650

References

1. Abu Dalhoum A, Mahafzah B, Awwad A, Al-Dhamari I, Ortega A, Alfonseca M (2011) Digital
image scrambling method based on two dimensional cellular automata: a test of the lambda value.
In: IEEE multimedia. doi:10.1109/MMUL.2011.54

2. Aleksić Z (2000) Artificial life: growing complex systems. In: Bossomaier T, Green D (eds)
Complex systems. Cambridge University Press, pp 91–126

3. Aponte A, Moreno J (2006) Cellular automata and its application to the modeling of vehicular
traffic in the city of Caracas. In: El Yacoubi S, Chopard B, Bandini S (eds) Cellular automata.
Springer, Lect Notes Comput Sci 4173:502–511

4. Chang FC, Huang HC, Hang HM (2007) Layered access control schemes on watermarked scalable
media. J VLSI Signal Process Syst 49(3):443–455

5. Chen G, Hu Q (2010) An audio scrambling method based on combination strategy. In: Proc.
international conference on computer science and information technology (ICCSIT), Chengdu,
China, pp 62–66

6. Fu W, Yan W, Kankanhalli MS (2005) Progressive scrambling for MP3 audio. In: Proc. IEEE
international symposium on circuits and systems (ISCAS), vol 6. Kobe, Japan, pp 5525–5528

7. Gardner M (1970) Mathematical games—the fantastic combinations of John Conway’s new soli-
taire game “life”. Sci Am 223:120–123

8. Huang HC, Chen YH (2009) Genetic fingerprinting for copyright protection of multicast media.
Soft Comput 13(4):383–391

9. Jiping N, Yongchuan Z, Zhihua H, Zuqiao Y (2008) A digital image scrambling method based
on AES and error correcting code. In: Proc. international conference on computer xcience and
software engineering, Wuhan, Hubei, China, pp 677–680

10. Kier L, Witten T (2005) Cellular automata models of complex biochemical systems. In: Bonchev
D, Rouvray D (eds) Complexity in chemistry, biology, and ecology. Springer, pp 237–301

11. Langton C (1990) Computation at the edge of chaos: phase transitions and emergent computa-
tion. Physica D 42(1–3):12–37

12. Li H, Qin Z (2009) Audio scrambling algorithm based on variable dimension Space. In: Proc.
international conference on industrial and information systems, Haikou, China, pp 316–319

13. Li H, Qin Z, Shao L (2009) Audio watermarking pre-process algorithm. In: Proc. IEEE interna-
tional conference on e-business engineering, Macau, China, pp 165–170

14. Li H, Qin Z, Shao L, Zhang S, Wang B (2009) Variable dimension space audio scrambling
algorithm against MP3 compression. In: Hua A, Chang S (eds) Algorithms and architectures for
parallel processing. Springer, Lect Notes Comput Sci 5574:866–876

15. Martínez-Noriega R, Nakano M, Kurkoski B, Yamaguchi K (2011) High payload audio water-
marking: toward channel characterization of MP3 compression. Journal of Information Hiding
and Multimedia Signal Processing (JIHMSP) 2(2):91–107

16. Nishio H (2006) How does the neighborhood affect the global behavior of cellular automata. In:
El Yacoubi S, Chopard B, Bandini S (eds) Cellular automata. Springer, Lect Notes Comput Sci
4173:122–130

17. Sarkar P (2000) A Brief History of Cellular Automata. ACM Comput Surv (CSUR) 32(1):80–107
18. Shang Z, Ren H, Zhang J (2008) A block location scrambling algorithm of digital image based

on Arnold transformation. In: Proc. 9th international conference for young computer scientists,
Hunan, China, pp 2942–2947

Multimed Tools Appl (2014) 71:1803–1822 1819

http://dx.doi.org/10.1109/MMUL.2011.54

19. Shin S, Yoo K (2009) Analysis of 2-state, 3-neighborhood cellular automata rules for crypto-
graphic pseudorandom number generation. In: Proc. international conference on computational
science and engineering (CSE’09), Vancouver, BC, Canada, pp 399–404

20. Wolfram S (2002) A new kind of science. Wolfram Media, USA
21. Xiangdong L, Junxing Z, Jinhai Z, Xiqin H (2008) A new chaotic image scrambling algorithm

based on dynamic twice interval-division. In: Proc. international conference on computer science
and software engineering, Wuhan, Hubei, China, pp 818–821

22. Yan W, Fu W, Kankanhalli MS (2008) Progressive audio scrambling in compressed domain.
IEEE Trans Multimedia 10(6):960–968

23. Ye R, Li H (2008) A novel image scrambling and watermarking scheme based on cellular
automata. In: Proc. international symposium on electronic commerce and security, Guangzhou
City, China, pp 938–941

24. Zhu L, Li W, Liao L, Li H (2006) A novel algorithm for scrambling digital image based on
cat chaotic mapping. In: Proc. international conference on intelligent information hiding and
multimedia signal processing (IIH-MSP’06), Pasadena, CA, USA, pp 601–604

Alia Madain received her B.Sc. and M.Sc. degrees in Computer Science from the University of
Jordan in 2009 and 2011 respectively. Her research interests are multimedia processing and security.

Abdel Latif Abu Dalhoum received his PhD degree in computer science from the University
Autonoma De Madrid, Spain in 2004. He is currently an Associate Professor of evolutionary
algorithms and complex systems at the University of Jordan. He has published about 25 papers in
evolutionary algorithms, cellular automata, Fractals and DNA computing. He is a member of GHIA
research group at the University Autonoma De Madrid.

Multimed Tools Appl (2014) 71:1803–18221820

Hazem Hiary received his PhD in Computer Science / Image Processing from the University of
Leeds (Leeds, UK) in 2008, B.Sc. and M.Sc. degrees in Computer Science from the University
of Jordan (Jordan) in 2001 and 2003 respectively. He is currently an Assistant Professor in the
Computer Science Department at the University of Jordan. His research interests include Image
Processing, Pattern Recognition, Paper Watermarks, Document Analysis and Recognition, Audio
Processing and Data Hiding.

Alfonso Ortega received the Doctorate degree in computer science from the Universidad Autónoma
de Madrid, España. He is currently a Professor at the Universidad Autónoma. He formerly lectured
at the Universidad Pontificia de Salamanca and worked at LAB2000 (an IBM subsidiary) as a
Software Developer. He has published about 30 technical papers on computer languages, complex
systems, graphics, and theoretical computer science, and has collaborated in the development of
several software products.

Multimed Tools Appl (2014) 71:1803–1822 1821

Manuel Alfonseca is a doctor in Electronics Engineering (1972) and Computer Scientist (1976),
both degrees obtained at the Universidad Politecnica of Madrid. He teaches and does research
at the Department of Computer Science of the Universidad Autónoma of Madrid, where he was
director of the Escuela Politécnica Superior (2001–2004). Previously, he was Senior Technical Staff
Member at the IBM Madrid Scientific Center, where he worked from 1972 to 1994. He has published
over 200 papers and books on computer languages, simulation, complex systems, graphics, artificial
intelligence, object-orientation and theoretical computer science, as well as popular science and
juvenile literature, with different awards in all of these fields.

Multimed Tools Appl (2014) 71:1803–18221822

	Audio scrambling technique based on cellular automata
	Abstract
	Introduction
	Related works
	Cellular automata
	Cellular automata neighborhood and boundary condition
	Cellular automata lambda parameter ()
	Calculating the transition rule number
	Conway's Game of Life (GOL)

	Audio scrambling based on cellular automata
	Scrambling algorithm
	Key generation process
	Descrambling algorithm
	Measuring the scrambling degree

	Experimental results and analysis
	Correlation analysis of the Number of Generations (NOG)
	Correlation analysis of neighborhood type
	Correlation analysis of boundary condition
	Correlation analysis of lambda values
	Correlation between confusion and repetition
	Robustness experiments

	Comparison with previous schemes
	Conclusions and future work
	References

