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Abstract From depth sensors to thermal cameras, the increased availability of
camera sensors beyond the visible spectrum has created many exciting applications.
Most of these applications require combining information from these hyperspectral
cameras with a regular RGB camera. Information fusion from multiple heteroge-
neous cameras can be a very complex problem. They can be fused at different
levels from pixel to voxel or even semantic objects, with large variations in accuracy,
communication, and computation costs. In this paper, we propose a system for robust
segmentation of human figures in video sequences by fusing visible-light and thermal
imageries. Our system focuses on the geometric transformation between visual blobs
corresponding to human figures observed at both cameras. This approach provides
the most reliable fusion at the expense of high computation and communication
costs. To reduce the computational complexity of the geometric fusion, an efficient
calibration procedure is first applied to rectify the two camera views without the
complex procedure of estimating the intrinsic parameters of the cameras. To geo-
metrically register different blobs at the pixel level, a blob-to-blob homography in
the rectified domain is then computed in real-time by estimating the disparity for
each blob-pair. Precise segmentation is finally achieved using a two-tier tracking
algorithm and a unified background model. Our experimental results show that our
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proposed system provides significant improvements over existing schemes under
various conditions.

Keywords Sensor fusion ·Human segmentation ·Multi-camera fusion ·
Thermal cameras

1 Introduction

A central theme in many modern vision systems is to identify and segment human
shapes in video sequences. Despite decades of efforts, it remains a challenging
problem due to the significant variations in visual appearances caused by occlusion,
illumination change, highlight, shadow, and color confusion. One approach that has
garnered a great deal of interest in recent years is to utilize multimodal sensors to
improve the segmentation results. As human bodies usually have different tempera-
ture than the ambient environment, thermal infrared sensors are popular choices to
be used in conjunction with regular visible-light cameras.

While the introduction of thermal camera can potentially benefit the segmentation
process, it also introduces a number of technical challenges. First, unless expensive
optical realignment apparatus is used, the thermal camera and the visible-light
camera are not spatially aligned. Error in registration between the two cameras can
significantly degrade the performance of any segmentation algorithm. As the texture
information in the two types of cameras are completely different, typical stereo vision
approaches cannot be used to solve the problem. Second, the newmodality can bring
new channels of noises which could further confuse the segmentation classifier. It is
thus imperative to develop proper sensor fusion techniques to take advantage of both
modalities in order to achieve the optimal results.

The general problem of sensor fusion has been studied for decades [16, 19]. Most
of the existing works in sensor fusion, however, remain at a relatively abstract level
as the problem heavily depends on the specific applications and the type of sensors.
While the conclusions from these studies might be general enough to cover all kinds
of sensor networks, they provide little guidance for the design of any particular sensor
fusion application.

More specifically, we are tackling a camera fusion problem which consists of two
distinct fusion processes: geometric fusion and data fusion. Geometric fusion refers
to the set of techniques that align the images from different cameras while data fusion
aims at making prediction or decision based on the aligned data. Key algorithmic
operations used in these processes are categorically illustrated in Fig. 1. They include:

1. Determining a proper camera model is the first step of designing a camera fusion
algorithm. It has a significant impact on the subsequent steps, especially the
calibration and the registration procedure. While the pinhole camera model is
used in most applications, there exists a range of other cameramodels that can be
useful in different situations—some models can offer a more precise description
of the optical process while others can provide complexity reduction with fewer
parameters for specific applications.

2. Calibration is the off-line operation that estimates the position and internal
parameters of all the cameras in the network. The complexity of this procedure
mainly depends on the chosen camera model.



Multimed Tools Appl (2014) 73:61–89 63

Fig. 1 Camera fusion diagram

3. Camera projection reduces the 3D world into 2D images, making the alignment
between different camera views an ill-posed task. Even in the best scenario
where all the cameras are stationary and calibrated off-line, the relationship
between images obtained from different cameras still depends on the unknown
3D positions of the objects. To further complicate the problem, cameras may
move during operations when they can be mounted on movable platforms. To
cope the dynamic 3D environment and camera positions, it is desirable to use an
online adaptive registration procedure that can adjust the registration parameters
in real-time and can incorporate any a priori information about the geometric
relationship between the objects and the environment.

4. Local processing must be conducted at each camera to reduce the communi-
cation and computation burden on a camera network. While it is important to
carry out a case-by-case analysis when designing the local processing algorithm
for a given camera network, there are a range of image processing algorithms
including background subtraction, feature extraction and feature tracking that
are frequently applied due to their simplicity and effectiveness.

5. Lastly, a proper data fusion model is needed to aggregate information received
from all cameras in the network. There are a myriad of sensor fusion models
applicable for camera networks [43]. Traditional sensor fusion techniques such
as fusion-by-selection techniques are useful in identifying a specific camera that
best describes the situation. Bayesian techniques provide a unified probabilistic
framework to fuse all the temporal and spatial information together and have the
capability of injecting domain knowledge as prior probabilities. If the ultimate
goal is to produce a classification result, fusion-by-classification techniques are
appropriate as they treat all available data as a single feature vector and feed it
into a classification engine.

The main contribution of this paper is a novel camera fusion design that
combines thermal and visible-light images for robust segmentation of humans in
video sequences. Our proposed system closely follows the aforementioned camera
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fusion pipeline: a novel approximation camera model named blob homography
is specifically designed for geometric fusion between these two modalities. By
rectifying the homographymatrix, our proposedmodel significantly reduces the com-
putational complexity of parameter estimation compared with the standard approach
in homography estimation. Communication between the two cameras are kept at the
minimum as local background subtraction is applied to extract foreground blobs. Our
proposed algorithm estimates in real-time the blob-to-blob homography matrices
to achieve pixel-level registration based the disparity between each blob pair from
the two cameras. The multi-modality information is then combined under a two-tier
tracking algorithm and a unified background model to mitigate segmentation noise
from either modalities. An earlier version of this work has appeared in [44]. In this
extended work, we provide a more detailed review of related work, a new formu-
lation of the blob homography to describe the registration process, and additional
experimental results to demonstrate the performance of the proposed system.

The rest of the paper is organized as follows. Related work in geometric and
data fusion are first reviewed in Section 2. In Section 3, we propose a novel camera
model called blob-homographymodel and show its merits over other cameramodels.
The joint calibration procedure for the thermal and RGB cameras is demonstrated
in Section 4. The real-time algorithms for blob-based registration and parameter
estimation are presented in Section 5. In Section 6, we describe our data fusion
component which includes robust tracking scheme and fused background modeling.
Experimental results presented in Section 7 demonstrate the effectiveness of our
proposed system over the standard approach of image warping. We conclude the
paper with a discussion on future work in Section 8.

2 Related work

The sensor fusion model described by the US Joint Directions of Laboratories or the
JDL model is arguably the earliest framework for sensor fusion. First proposed in
[40] and later revised in [30, 33], the JDL model consists of five different levels [16]:

1. Source preprocessing (Level 0): This is a pre-processing level performed locally
at each sensor. The main objective of any level-0 process is to reduce the com-
munication and computation burden needed at the later fusion stages. Common
level-0 processes include signal denoising and compression.

2. Object/Entity Assessment (Level 1): This level represents the core signal
processing of sensor data including data alignment, data association, object
tracking, and identification.

3. Situation Assessment(Level 2): The objective of this level is to find a contextual
description of the relationship between the observed objects and the anticipated
events.

4. ThreatAssessment (Level 3): By combining any prior knowledge and predictions
about the situation, processes in this level infer about vulnerabilities and oppor-
tunities in the sensor network. Typical processes include the estimation of the
security threat level and the locations of target objects.

5. Process Refinement (Level 4): This level focuses on the fusion of information
from different processes and the control of different sensors. Sensormanagement
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is the central functionality in this level and is the most important task in an active
sensor network.

Typical sensor fusion techniques in camera network corresponding to each level in
the JDL model are illustrated in Fig. 2.

While the JDL model provides a comprehensive framework for all sensor fusion
applications, the camera network fusion problem focuses more narrowly on two
aspects within level one of the JDL model: geometric fusion aimed at registering
disparate camera views and data fusion aimed at making prediction or decision based
on aligned data. Table 1 lists the recent work in these areas that are relevant to the
fusion problem between visible-light and thermal cameras. We categorize each work
based on its approach used in geometric fusion as well as the image features and
statistical inference tools used in data fusion. Geometric fusion techniques range
from hardware-based optical fusion and 3D reconstruction which are of high cost
but produce accurate pixel-alignment, and medium computational-cost scheme like
blob homography that achieves blob-alignment, to fast image warping scheme with
only frame-level alignment. For the data fusion phase, the key objective is to produce
accurate object segmentation. In general, pure image-based technique produce sub-
par segmentation results. Improved segmentation can be produced with background
(BG) subtraction and the most accurate results come from a combination of BG
subtraction and temporal tracking with probabilistic inference tools to handle uncer-
tainty. We have included our assessment in computational cost, alignment accuracy
and segmentation accuracy for each work in Table 1. We believe our system, first
described in [44] and refined in this manuscript, has better performance that other
state-of-the-art schemes as it can achieve pixel-level alignment with an efficient blob
homography system in rectified domain and produce accurate segmentation results
with an unified scheme that combines background subtraction and tracking. In the
following subsections, we survey all of these techniques and contrast them with our
design in both geometric and data fusion.

2.1 Geometric fusion

Most existing systems tackle the geometric fusion problem by either optical fu-
sion [11, 39, 42], full 3D reconstruction [23, 28], or image warping [1, 9, 13, 14, 20, 27,
36] . The optical fusion approaches use specially-designed optical devices to merge

Fig. 2 Sensor fusion techniques in camera network
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Table 1 Related work in thermal and visible-light camera fusion in human detection

Fusion Geometric Cost Alignment Image features Inference Accuracy
scheme fusion tools

[42] Optical fusion High Pixel Region grow None Low
[39] Optical fusion High Pixel BG subtraction None Medium
[31] Optical fusion High Pixel BG subtraction None Medium
[12] Alignment – Pixel BG subtraction Kalman High

assumed filter
[7] Alignment – Pixel Intensity Bayesian High

assumed net
[5] Alignment – Pixel Active contour Flux High

assumed tensor
[15] Alignment – Pixel Motion Particle High

assumed filter
[29] Alignment – Pixel BG subtraction Bayesian High

assumed
[10] Alignment – Pixel YUV spatiogram Mean-shift High

assumed net
[14] Image warping Low Frame Active contour None Medium
[27] Image warping Low Frame BG subtraction Fuzzy High

logic
[20] Image warping Low Frame BG subtraction None Medium
[18] Image warping Low Frame Thresholding None Low
[9] Image warping Low Frame Region grow None Low
[36] Image warping Low Frame BG subtraction None Medium
[1] Image warping Low Frame BG subtraction Simple Medium

logic
[28] 3D reconstruction High Pixel BG subtraction None Medium
[23] 3D reconstruction High Pixel BG subtraction None Medium
[26] Blob homography Medium Blob BG subtraction None Medium
[35] Blob homography Medium Blob BG subtraction Blob High

tracking
[44] Blob homography Low Blob BG subtraction 2-tier High

tracking

the optical axes of the two cameras so that the two cameras can see exactly the
same view. Despite their computational efficiency and registration accuracy, they are
inflexible in terms of matching cameras with different resolutions and field of views.
Some designs suffer from high manufacturing costs [39] while others have significant
degradation in image quality due to signal absorption in the optical components [11].

Instead of the hardware approach, the most accurate software approach for
geometric fusion is to reconstruct the 3D world using multiple disparate views
obtained from different cameras [23, 28]. While these system provide accurate align-
ment between different modalities, they impose heavy computational complexity
on the geometric fusion process and are not suitable for real-time operations—for
example, in [23], a full calibration of both infrared and visible-light cameras needs
to be conducted to estimate the intrinsic and extrinsic projection matrices. Then
stereo cameras are used to replace the single visible-light camera to perform online
registration in order to get the 3D position of each scene point. The geometric
fusion is achieved by projecting the 3D scene points onto the image plane of thermal
camera.
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Image warping method is the most widely adopted method for geometric fusion
due to its simplicity. It calculates a homographymatrix between the two camera views
from a set of corresponding points, which can either be hand-picked or obtained by
an automatic calibration process. The homography is then used to warp segmentation
results from one modality to the other. If the same homography matrix is applied to
all objects in the scene, significant distortion may occur if there is a large variation in
depth among different objects in the scene. Systems such as [14, 20] adopt additional
search procedures to correct the registration error. The search procedure, however,
can adversely affect the computational performance of the registration process.

Instead of using a single homography for the entire image, the authors of [32]
propose to align foreground blobs from different cameras by identifying shape
feature points to estimate the homography. Similar approaches are also used in [26].
Our proposed system is also based on estimating homography between individual
blob correspondences. Compared with these prior approaches, there are three key
contributions of our proposed system: first, we are the first to reformulate such
a blob-to-blob registration as a camera model which enables better understanding
of the proposed approach within the well-studied framework of camera models.
Second, our approach significantly reduces the complexity of the online parameter
estimation process. Specifically, we reduce the traditional eight parameters in ho-
mography to just a single parameter. Finally, by including the parameter estimation
into a combined background-subtraction and tracking system, we utilize temporal
information to provide a more robust estimation of the blob homographies.

2.2 Data fusion

While our primary goal is to geometrically fuse multiple camera views, our system
includes components such as background subtraction and tracking that make deci-
sion from disparate sensor data. Traditional data fusion techniques are pervasively
used to improve the segmentation from information obtained by multiple sensors.
Kumar et al. [27] adopt fuzzy logic to evaluate the confidence from each sensor.
Han and Bhanu [20] compares different fusion rules under a Bayesian framework.
Statistical inference techniques, such as as Kalman filter, particle filter, and mean-
shift are also commonly used to fuse the multi-modality observations to make an
informative decision [6, 12, 15, 29, 45].

Alternatively, the data fusion can be performed at the image level. In [42], region
grow segmentation algorithm is performed using the output of thermal camera as
seeds. Similar techniques are used in [7]. Morphological operations are adopted in
[13, 14, 35]. In our proposed system, we combine the thermal and color image into
a fused non-parametric background model similar to the scheme in [24]. While we
do not claim novel contribution to the theoretical fusion problem, we argue that a
simple two-tier background modeling with adaptive parameters in each tier is robust
enough to provide efficient and accurate segmentation results.

3 Camera model

Depending on the application requirements, different camera models can be used to
describe the process of camera projection. The most popular model is the pinhole
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camera model. It captures the key characteristics of the projection process and has
a convenient mathematical representation in homogeneous coordinates. However,
it requires 11 parameters for each camera and the robust estimation of these
parameters can be computationally intensive. The parallel projective model is a sim-
plification of the pinhole camera model where the lines of projection are assumed to
be parallel. Not only does the parallel projective model have less degrees of freedom,
it admits a simpler mapping between disparate camera views. The weak perspective
model, a special case of the parallel projective model, further assumes the average
distance of the objects to the camera to be much larger than the distance variation
among the objects. The weak perspective model can further reduce the number of
parameters. Despite its simplicity, the assumption of constant depth in weak per-
spective model is often violated in real-world applications such as video surveillance.
Our proposed camera model combines multiple weak perspective models to simulta-
neously improve the registration and maintain low computational complexity. In this
section, we review the mathematical underpinning of existing cameramodels that are
relevant to our applications, and provide the precise formulation of the new model.

3.1 Pinhole camera model

Under the pinhole camera model [21], a 3 × 4 projection matrix P is used to map a
3D point X, represented in homogeneous coordinates [x, y, z, 1]T , into 2D camera
coordinates x = [x′, y′, 1]T

x = PX

The camera projection matrix P can be decomposed into two matrices:

P = K[R|t]
[R|t] is the extrinsicmatrix which is composed of a rotation matrix R and a translation
vector t of the camera coordinate systemwith respect to the world coordinate system.
K is called the intrinsicmatrix which encapsulates the camera’s internal parameters:

K =
⎛
⎝

fx s cx
0 fy cy
0 0 1

⎞
⎠

where fx, fy are the focal length of the camera converted into image pixel units; cx, cy
are the coordinates of the center of the image plane; the skew factor s is non-zero only
when the x and y image axes are not perpendicular.

The pinhole camera model has 11 degrees of freedom. Since they are coupled
together during the projection process, a carefully designed calibration is required to
estimate them.

3.2 Lens distortion

Camera lenses sometimes introduce non-linearity into the projection process. If the
camera suffers from significant lens distortion, an equalization process is needed
before applying the pinhole camera model. Let xd = [xd, yd]T be the image co-
ordinate under distortion and xu = [xu, yu]T be the coordinate with the distortion
corrected. xc = [cx, cy]T is the center of the image and r = √

(xd − cx)2 + (yd − cy)2
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is the distance of the pixel in question to the image center. There are generally two
types of distortion [4]:

1. Radial distortion models the radially symmetric part of lens distortion. In
practice, it accommodates most of the distortion. It is usually modeled as a
polynomial with only even power terms:

xu = xc +
(

1 +
n∑

i=1

κir2i

)
(xd − xc)

where κi’s are the lens-specific parameters for the radial distortion.
2. Tangential distortion is caused by improperly-aligned lens and is mathematically

modeled as follows:

xu = xd +
[
D1(r2 + 2(xd − cx)2)+ 2D2(xd − cx)(yd − cy)(1 + ∑n

i=1 Di+2r2i)
D2(r2 + 2(yd − cy)2)+ 2D1(xd − cx)(yd − cy)(1 + ∑n

i=1 Di+2r2i)

]

where Di’s are parameters for the tangential distortion and n controls the highest
degree term used in the model.

3.3 Parallel projection model

To reduce the number of parameters in the pinhole camera model, one can move
the camera center to infinity so that the projection lines become parallel. While it
is obviously an unrealistic assumption, this parallel projection model can generate
different approximations that can significantly simplify the parameter estimation
process.

Under the parallel projection assumption, the projection matrix P becomes P∞
defined below [21]:

P∞ =
⎛
⎝

fx s cx
0 fy cy
0 0 1

⎞
⎠

⎛
⎝
r1,1 r1,2 r1,3 0
r2,1 r2,2 r2,3 0
0 0 0 1

⎞
⎠ (1)

where ri, j are the elements of the rotation matrix R. Under this model, the intrinsic
matrix remains the same as in the pinhole camera model but the extrinsic matrix is
simplified as the camera center is at infinity. The model in (1) is called the af f ine
camera model. The degree of freedom in the extrinsic matrix reduces to three,
resulting in a total of eight parameters in the affine camera model.

Further simplifications of the affine camera model are possible. By setting the
skew factor to zero, the weak perspectivemodel has only seven degrees of freedom. It
is a good approximation when the average distant of the object to the camera is much
larger than the distance variation among different objects. In fact, it is equivalent to
first projecting the object onto the object plane by a set of parallel rays orthogonal
to the plane, then projecting the image from the object plane to the image plane by
scaling the whole image by a fixed factor proportional to the inverse of the average
depth of the object. This process is shown in Fig. 3.

A further simplification of the weak perspective model is the scaled orthographic
projection model obtained by setting fx = fy which results in only 6 degrees of free-
dom. The orthographic projectionmodel can be derived from the scaled orthographic
projection model by setting fx = fy = 1.
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Fig. 3 Weak perspective model. The object is first projected onto the object plane by lines parallel
to the image axis. It is then scaled by a factor related to the average depth of the object to the image
plane

3.4 Plane homography model and blob homography

Using the pinhole camera model, any 3D point observed in one camera can be seen
anywhere along the epipolar line on the image plane of a second camera [21, ch. 9].
As such, there is no bijective mapping between two camera views. However, if we
restrict the 3D points to be co-planar, there does exist a bijective mapping between
image points from any two camera views. Specifically, if x1 = [x1 y1 1]T and x2 =
[x2 y2 1]T are points from the two camera views of any 3D point on a given plane,
there exists a invertible linear mapping H that maps one to the other [21, ch. 2]:

x1 = Hx2 (2)

Thematrix H, known as the homography matrix, is a 3 × 3 matrix with eight degrees of
freedom. Unfortunately, the homography matrix depends on the depth and pose of the
object plane [21, ch. 13.1]. As such, the homographymatrix has to be estimated on-line.

In 3D computer vision, it is a common practice to rectify camera views before
estimating the scene structure. The rectification process finds linear mappings in
homogeneous coordinates that move the epipoles of the camera pair into infinity. As
a result, the pairs of conjugate epipolar lines become collinear and parallel to one of
the image axes.Denoting the rectification matrices for the two cameras as H1 and H2,
the points after rectification in two images as x′1 = [x′1 y′1 1]T and x′2 = [x′2 y′2 1]T , and
the homography between the two rectified image planes as H′, we have the following
set of relationships:

x′1 = H1x1
x′2 = H2x2
x′2 = H′x′1 (3)

Using (2) and (3), the original homography matrix H and the rectified homography
matrix H′ are related by the following equation:

H = H−1
1 H′H2 (4)
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The rectification matrices depends only on the epipoles of the two camera views
which can be obtained from the fundamental matrix. The fundamental matrix does
not depend on the scene structure and can be robustly estimated offline using a
calibration object. The significance of the rectification process is that the rectified
homography matrix H′ is very simple. In fact, we can show that H′ has only three
parameters. The precise form of H′ is described in Theorem 31 and the proof can
be found in the Appendix. An important consequence is that after rectification, a
pair of corresponding image points x′1 and x′2 in the two camera views have identical
y-coordinate. The difference in the x-coordinate between corresponding points is
called disparity.

Theorem 31 (Homography in rectified images) The homography H′ in rectif ied
image domain is in the form

H′ =
⎡
⎣
a11 a12 a13

0 1 0
0 0 1

⎤
⎦

If an object in the scene is far away from the camera, all parts of the same object
can be assumed to have the same depth to the camera. This is a valid assumption in
common surveillance scenarios because the foreground human objects are at least
several meters away from the cameras, while the depth variation of the different
parts of a human body is within several centimeters. Based on this assumption, we
propose the blob homography model in which a separate homography is used to
map between the blobs at different views that correspond to the same foreground
object. The projection process under the blob homography is shown in Fig. 4. The
blob homography model represented in the rectified domain can lead to significant
simplification in H′—since the entire object is assumed to have the same depth, the
disparity of every pair of corresponding points from the two rectified camera views

Fig. 4 Blob homography model. The foreground image is firstly segmented into blobs. The weak
perspective model characterized by different depth is then applied for each blob
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of the same object must be identical to each other. For every pair of corresponding
points x′1 = [x′1 y′ 1]T and x′2 = [x′2 y′ 1]T , we have

x′2 − x′1 = d

(a11 − 1)x′1 + a12y′ + a13 = d (5)

The constraint (5) is derived based on Theorem 31 and must hold for all points
on the same blob, thereby implying that a11 = 1, a12 = 0 and a13 = d. The blob
homography between correspondent blobs thus depends only on one coefficient, a13,
which is the disparity in the rectified image. The estimation of this single parameter
can be robustly performed with very few corresponding points and the estimation
process is described in Section 5. This is particularly important for registration of
thermal images which do not have prominent texture information to produce a large
number of point correspondences. In the subsequent sections, we will describe how
correspondences are established in our proposed system.

4 Joint camera calibration

Camera calibration has been studied for decades and a handful of robust multi-
camera calibration toolboxes have emerged. For example, the tools provided in [2]
are useful for estimating intrinsic parameters, including the distortion parameters for
individual cameras. The tools described in [8, 34] are frequently adopted for esti-
mating the extrinsic parameters for multiple cameras in a unified world coordinate
system. However, these popular toolboxes are usually designed for homogeneous
camera networks with regular visible light cameras. When cameras with different
modalities are concerned, they must be adapted to handle the significant disparity
between views. This is particular challenging for color and thermal images due to the
significant differences in object appearances.

The blob homography model described in Section 3.4 has the advantage that it
does not explicitly require the intrinsic and extrinsic parameters of the cameras. All
it needs are the rectification matrices which can be estimated based on a small set
of corresponding point pairs from both camera views. In order to provide a rapid
calibration process, we have constructed a simple calibration object shown in Fig. 5.
It is a circular metal plate painted with a distinctive color. The distinct color can

(a) video camera (b) thermal camera (c) color classifier

Fig. 5 The colored metal plate in a is used as calibration object. b shows the ellipse-fitting result in
the thermal camera and c shows the classification and ellipse-fitting result in the visible-light camera
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be easily identified in the color frame using a color classifier. To be robust against
change in illumination, a mixture-of-Gaussian classifier is applied to the hue channel
of the image to robustly identify all pixels that match the target hue. To make the
same object equally distinct in the thermal image, the metal plate is slightly heated
so that it is at a higher temperature than the ambient environment. As a result, it
becomes very prominent in the thermal image as shown in Fig. 5 and a simple thresh-
old can easily identify the entire shape. We then use a least-square ellipse fitting
algorithm to determine the centers of the detected regions from both modalities. The
pair of centers is used as a single correspondence and a set of corresponding points
are obtained by moving the calibration objects to different positions.

After the correspondence have been established, Hartley’s method for rectifying
noncalibrated cameras is applied [22]. A RANSAC algorithm is first performed to
remove outliers before the estimation of the fundamental matrix. The epipoles are
then obtained by decomposing the fundamental matrix. Finally, by minimizing the
projection error, an iterative method is used to obtain the two homographies that
maps the epipoles to infinity. Note that after rectification, the rectified images will
have the same resolutions regardless of their original resolutions.

5 Online registration

As stated in Section 3.4, the blob homography after rectification is completely
described by the constant disparity along the horizontal direction between a pair
of corresponding blobs. In order to produce a robust estimate of this disparity,
we scan through all possible pairs of corresponding points along the contours
of the blobs from the color and thermal frames. We then employ a number of
geometric constraints to filter out the outliers and compute our final estimate based
on the statistical mode of the measured disparities among the remaining pairs of
correspondences. The details of the algorithm are given in Algorithm 1.

Online registration algorithm
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Fig. 6 Removing erroneous correspondences at different scan-lines: green line (upper) gives good
match while red line (bottom) contains uneven number of points due to the shadow, which will be
ruled out by our algorithm. Along the blue line (middle), the rightmost points of each image is a false
match and is likely to be filtered out by disparity range

Two different mechanisms are used in Algorithm 1 to effectively filter out the
outliers. We illustrate these mechanisms based on a real example shown in Fig. 6.
The rectified color and thermal contours of an individual are shown along with
three sample scan-lines: green, blue, and red. Among the three scan-lines, only the
green one produces two reliable correspondences from the left and right contour
points that will be used for disparity estimation. The faulty correspondences from
the blue and red lines are identified using the following procedure. First, when a scan
line have different numbers of points in the two views, it is treated as unreliable
and discarded without calculating any disparity. This process helps to rule out
difficult situations due to occlusion, shadows, and defective foreground/background
segmentation. The red line in Fig. 6 is an example of such a mismatch pruned away
by this first step. Second, we remove problematic scan-lines based on disparity range
[dmin,dmax] . We obtain this disparity range during the calibration process by placing
the calibration objects at extreme ends within the field of views of both cameras.
After performing the rectification, the disparity range is measured by projecting the
calibration points into the rectified domain and finding the minimum and maximum
disparities. Disparities measured during the online registration that are out of the
disparity range are simply discarded. Along the blue scan-line in Fig. 6, the disparity
of the pair of right contour points from the color and thermal images is bigger than
dmax and is thus eliminated from the pool of correspondences.

6 Robust fusion via tracking and background modeling

In Section 5, we present the core algorithm in estimating disparity between corre-
sponding blobs that is robust against minor occlusions and segmentation defects. In
this section, we address the key issues of extracting blobs from the videos, estab-
lishing correspondences between blobs from the two camera views, and handling
major occlusions and other segmentation problems. Our approach is based on a two-
tier blob tracking scheme coupled with a joint color-thermal background subtraction
module. The different components of our approach are shown in Fig. 7.
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Fig. 7 Block diagram of our
robust fusion via two-tier
tracking and background
modeling

Before describing the technical details of our approach, we first provide an
overviewof the entire process andmotivate our approach with an example.As shown
in Fig. 7, background subtraction is first performed locally at each camera to extract
the color and thermal foreground blobs. The detected blobs are fed into separate
trackers to detect occlusions and filter out possible false positives. A combined
tracker is then used to match objects between the two camera views, calculate and
track the disparity of each object. Using the disparity estimated from the combined
tracker, a blob homography matrix for each blob can be calculated using (4) which
will be used to align each pair of matched objects to perform a second joint back-
ground subtraction. Finally, the improved segmentations from the joint background
subtraction are used to update the state of each tracker for processing subsequent
frames.

Figure 8 illustrates this process. In the first time instant shown in Fig. 8a, there is
only one object in each view. However, in the next time instance in Fig. 8b, due to the
shadow of the object on a nearby wall, the visible-light camera produces two blobs
after background subtraction and the tracker mistakenly takes the shadow blob as a
new object. In the combined tracker, no correspondences can be established in the
calculation of disparity in Algorithm 1 as all the point pairs are filtered out. Using the
temporal prediction from the tracker in the visible-light camera, we can still produce
a reasonable estimate of the disparity. By feeding the estimated disparity to the joint
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(a) result in time t

(b) local tracker at t + 1

(c) fused result in t + 1

Fig. 8 Snapshot of segmentation result in successive frames. The color bounding box shows the state
in local trackers, we see how the second tier of the tracking correct the wrong estimation from local
trackers in the first tier
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background subtraction, we are able to get a much better segmentation shown in
Fig. 8c. The new information is passed back to the local and combined trackers
to update their states. The details of the tracking and background subtraction are
provided in the next subsections.

6.1 Robust tracking

Each tier of the two-tier tracking process consists of simple trackers at two different
levels—the local level and combined level. The local tracker tracks the objects’
bounding box and velocity. The velocity is updated at a fixed adaption rate α using
the formula below:

vt = αvt−1 + (1 − α)v̂t (6)

where vt−1 is the velocity state from the previous time and v̂t is the current observed
velocity. A blob association process is used to associate each observed blob to the
closest track within its tracking gate. A candidate track is established for each non-
associated blob and it will become a formal track after receiving observations contin-
uously for a few frames. A track will be deleted from the tracker if no observations
are associatedwith the track for an extended period of time. In the case of brief occlu-
sion, the two objects will momentarilymerge together into a single blob and reappear
as two blobs once the occlusion has passed. Motion segmentation during occlusion is
a well studied topic in computer vision and any competitive technique can be applied
here. For our system, we rely on the scheme from our earlier work in [37] which uses
the velocity of the bounding box and texture similarity for object segmentation.

The combined tracker attempts to smooth out the disparity of the object based on
temporal history. The state of the combined tracker zt is defined as follows:

zt =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

zt−1 if |zt−1 − 1

dmax − d̂
| > ε1,

αzt−1 + (1 − α)
1

dmax − d̂
otherwise.

(7)

The observation 1
dmax−d̂

is computed based on the disparity output d̂ from Algorithm
1 and the maximum possible disparity dmax. This quantity has been shown to be
linearly proportional to the depth of the object from the rectified image plane [17,
ch. 11.1.1]. This transformation is important as the transformed quantity provides
a more uniform variation over the entire range of disparity for noise removal. As
the disparity depends on the local blob segmentation which can be quite noisy, we
implement a gating process so that the state will not be updated unless the new
observation is within ε from the previous state. ε1 is a design parameter that controls
how conservative the combined tracker is. Implementing the gating process directly
on the disparity will unfairly penalize objects that are close to the cameras. In the
final step, we compute a robust estimate of disparity d̄ = dmax − 1

zt
which is used to

align corresponding blobs from the two camera views.
The two tiers of tracking are basically identical. The results of the first-tier tracking

are used to provide an estimation of the registration parameter d̄ between the two
camera views. After obtaining d̄, the states of all trackers will be restored to the
previous time instance while the two local background models will be aligned to
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produce a more reliable foreground segmentation. The improved foreground blobs
are then fed to the trackers in the second tier of tracking and the states of the tracker
are updated with the new observations. In the next section, we provide the details of
both the local and joint background/foreground segmentation.

6.2 Background modeling

There are three different background modeling processes in our system—two of
which are performed locally at each camera view and one is performed after the
registration process is completed. We first discuss the local background modeling
at the thermal camera. Due to the significant temperature difference between the
environment and human bodies, the detection of human figures in the thermal image
is relatively straightforward. A Gaussian distribution is used to model the variation
of ambient temperature measured at each pixel. We collect a number of frames of
the background offline to estimate the mean µx and the standard deviation σx of the
ambient temperature at each pixel location x. By applying this model to an incoming
image, a probability map can be generated for foreground detection. The foreground
label at each pixel in the thermal image is determined by the following formula:

foreground label L(x) =
{

1 (T(x)− μx)
2 > ε2 · σ 2

x
0 otherwise.

(8)

where T(x) is the temperature intensity at x. ε2 is a empirically-determined threshold
chosen to produce a negligible miss detection rate—this usually results in a fairly
accurate human figure segmentation but may occasionally includes background
objects such as furniture that are momentarily at a higher temperature after coming
in contact with human.

For the local processing of color image, we adopt a non-parametric adaptive back-
ground modeling algorithm from [24]. Under this model, the background model at
each pixel is described by a list of codewords. Each codeword includes a color vector
Cb (x) = (Rb (x),Gb (x), Bb (x)) and a brightness range ( Ǐ(x), Î(x)). The brightness
range is key in removing shadows and highlights, which aremajor sources of noise for
background subtraction in color frames. Shadows and highlights usually have a high
brightness variation but a small color variation when compared with the background
model. As such, the brightness range is narrowly set so as to fully eliminate these
artifacts, possibly at the expense of a less accurate human segmentation. Using
this codebook, an incoming color pixel C(x) = (R(x),G(x), B(x)) is classified as
background if it matches any codeword based on the following criteria:

colorDist(C(x),Cb (x)) ≤ ε3 and Ǐ(x) ≤ I(x) ≤ Î(x) (9)

where the color distance is defined as

colorDist(C(x),Cb (x)) =
√
||C(x)||2 − < Cb (x),C(x) >

||Cb (x)||2 ,

I(x) = 0.3R(x)+ 0.59G(x)+ 0.11B(x) is the luminance value, < · > is the inner
product, and ε3 is an empirically-determined parameter.

After the local foreground extraction processes at both cameras, the results are
passed to the first tier tracking system to compute the registration parameters as
described in Section 6.1. After aligning each pair of corresponding blobs, we again
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run the two background subtraction processes with adjusted parameters under the
aligned coordinates system. A pixel is declared as foreground if both processes return
foreground. Full details of the joint background subtraction are given in Algorithm 2.

Joint thermal-RGB background subtraction algorithm

Notice that in Algorithm 2, a new set of threshold parameters are used for
background subtraction. The reasons behind such changes are as follows:

1. The threshold ε2 used on the thermal image is raised to a higher value ε′2 so
that all warmed background objects are eliminated leaving only human figures
at higher temperature.

2. The luminance range ( Ǐ(x), Î(x)) used on the color image is uniformly expanded
to ( Ǐ′, Î′) so as to produce a more accurate human segmentation. The more
lenient brightness range will not introduce any false positives because the
subsequent fusion with the thermal foreground will guarantee that any shadow
or highlights introduced will be eliminated.

7 Experimental results

Our system consists of a UnibrainTM Fire-i 400 video camera and a ElectroPhysicsTM

PV320 thermal camera. The two cameras are fixed in a horizontal bar and put next
to each other, as shown in Fig. 9. The system runs on a Shuttle computer with
2 GB memory and Athlon Dual core 3800+ CPU at 2.0 GHz. Both cameras capture
images at resolution 320 × 240. Our single-thread non-optimized implementation of
the system can process video frames at 12.8 frame per second.

We have conducted a number of experiments to highlight the weakness of
existing approaches and demonstrate the performance of our proposed system. As
our primary contributions reside within geometric fusion, the techniques that we
should quantitatively compare with fall in three different categories as described in
Section 2. They are optical fusion, full 3D reconstruction, and imagewarping. Optical
fusion techniques require specialized optical hardware to align the two modalities
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Fig. 9 System setup

and have significant limitations in the choice of cameras. Full 3D reconstruction
involves reconstructing the 3D scenes using dense point correspondences which
cannot be realized in real-time. Our proposed system can run in real-time without
any specialized hardware and the only compatible approach to perform a reasonable
comparison is image warping. As such, we focus on comparing our systemwith image
warping.

In the first experiment, we demonstrate the weakness of image warping using
simulation. The simulation is based on a typical stereo camera projectionmodels with
8 mm focal length, 5.6 µm square pixel size, and standard VGA (640×480) resolution
with a baseline separation of 100 mm. We consider five different scenarios, each
characterized by difference ranges of object distances: close-up, conference, indoor
surveillance, outdoor mid-range, and outdoor long-range. For each scenario, we first
randomly draw 20 3D points within the distance range as calibration points. We
then use calibration tools in Mathematica [41], which includes standard RANSAC
and global error minimization tools, to calculate the homography between the two
camera views. Afterwards, we randomly sample 500 3D points within the range,
project them onto one camera view, and map them into another camera view using
the homography. The registration error is calculated by comparing the reprojected
points with the direct projection of the 3D points onto the second camera using
its camera projection matrix. The registration errors under different scenarios are
presented in Table 2.

Table 2 Reprojection error using image warping method in different scenarios

Mean error (in pixels) Error standard deviation(in pixels)

Close up (0.3–1 m) 224.5 204.3
Conference (1–3 m) 16.70 13.93
Indoor surveillance (3–10 m) 4.674 3.978
Outdoor mid-range (10–20 m ) 1.339 0.8405
Outdoor long-range (20–30 m ) 0.3301 0.2015
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Based on the simulation results, we conclude that image warping methods are not
suitable for any indoor applications where the objects are less than 10 m away from
the cameras. In the second experiment, we validate the simulation results using a
simple indoor sequence. Figure 10 shows two scenarios with different object depths.
For each scenario, we show the thermal image and the registration of the thermal
blobs (red objects) onto the color image using either image warping or our proposed
method in Section 5. In the first row of Fig. 10, we can see that both methods have
comparable performances when the calibration points for image warping are chosen
roughly at the same depth as the object. However, when the object moves away from
the camera in the second row of Fig. 10, the single homography in image warping
can no longer accurately register the thermal blob with the color image. On the other
hand, our registration algorithm can successfully align the two views regardless of the
variation in object depth.

In the third experiment, we show the effectiveness of our combined tracker over
the segmentation results using either thermal or visible-light camera alone. For the
color background model, we use the implementation from opencv library [3]. We
choose the default parameters during the local processing, and then use a relaxed
brightness range of Ǐ′ = 10 and Î′ = 20 when combined with registered results from
the thermal camera. For the thermal background model, we use ε2 = 2 in the first
phase and raise it to ε′2 = 3 to obtain the best visual segmentation. The threshold
parameter ε1 used in the gating process of the combined tracker is set at 10. Figure 11
is a snapshot of the tracking result. The thermal background subtraction in Fig. 11c
shows reasonable segmentation but still has small parts missing due to occlusion and
low temperature appurtenance. The color background subtraction in Fig. 11d suffers
from illumination changes and shadows. All of these problems are solved by the
combined tracker as shown in Fig. 11e. The entire video sequence used in the second

(a) Thermal image (b) Image warping (c) Proposed algorithm

(d) Thermal image  (e) Image warping (f) Proposed algorithm

Fig. 10 Performance comparison of registering thermal images to color images using image warping
and the proposed algorithm



82 Multimed Tools Appl (2014) 73:61–89

(a) thermal image (b) color image

(c) thermal background
subtraction

(d) color background sub-
traction

(e) combined tracker

Fig. 11 The result produced by our proposed system in e shows the best results over using thermal
camera alone in c or video camera alone in d

and the third experiments alongwith the segmentation results from different schemes
can be found in http://vis.uky.edu/ cheung/MTA2012/hallway/hallway.html.

In the fourth experiment, we perform quantitative comparisons of different
foreground segmentation schemes using ground-truth data. Figure 12 is a snapshot
of the footage comparing our proposed system to background subtraction using only
color or thermal camera. The full video can be found in http://vis.uky.edu/∼cheung/
MTA2012/whiteboard/whiteboard.html. Twelve frames are randomly chosen and
hand-segmented with an interactive graph-cut software [25]. We then compare the
accuracy of our proposed algorithm against color background segmentation. In
Fig. 13, the leftmost image is the ground truth segmentation. The middle and the
rightmost images are color segmentation and fused segmentation results overlayed
with the ground truth. The pink-color regions correspond to correct classification,
red-colored regions to the false negatives and blue-color regions to false positives.
The average accuracy for the twelve frames are tabulated in Table 3. We can see that
the fused segmentation algorithm admits a very low false negative rate (1.6 %) while
keeping the false positive rate at the same level as the color segmentation.

In the last experiment, we demonstrate the performance of our proposed system
using a complicated sequence with three human subjects and multiple instances of
occlusions. The one-minute long sequence has three individuals, originally sitting in
three distinct locations. The individual in the middle first stood up and started writing
on a small whiteboard. Afterwards, this individual walked behind the whiteboard and
another person and exit from the left edge of the frame. The person near the right
edge then stood up and followed the first individual to leave the scene. A snapshot of
the sequence is shown in Fig. 14: the top left image is from the original video; the top-
right and the bottom-left foreground masks are obtained by applying background
subtraction on the thermal camera and the visible-light camera respectively. We can

http://vis.uky.edu/~cheung/MTA2012/hallway/hallway.html
http://vis.uky.edu/~cheung/MTA2012/whiteboard/whiteboard.html
http://vis.uky.edu/~cheung/MTA2012/whiteboard/whiteboard.html
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Fig. 12 Ground-truth sequence: the top left image is from the visible-light camera; the top right and
the bottom left are the color and thermal background subtraction results respectively. The bottom
right is the result obtained with our fused system

see that while the thermal mask produces a more accurate silhouette of the human
figure, it erroneously includes part of the chair as the foreground—the chair is still
warm from being sat on by the same individual. The bottom right image shows an
interesting application of the fused segmentation mask obtained by our proposed
algorithm—the mask is used to obfuscate the appearance of two individuals in the
scene in order to protect their identity. Two different types of obfuscation are used.
For the middle individual, the foreground blob is filled with a solid red color and
completely covers the color texture information. Such type of obfuscation is useful
in hiding the identity while providing information about the action. The shape of

Fig. 13 Quantitative measurement of the segmentation result. Left: ground truth; middle: color
segmentation; right: fused segmentation
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Table 3 Segmentation error in
single camera system and
fused camera system

False positive False negative
(type I error) (type II error)

Color segmentation 0.2071 0.0965
Fused segmentation 0.1857 0.0160

this foreground blob is more accurate than the corresponding blobs from either
thermal and visible camera. For the left individual, the foreground blob is filled
with the background information making the individual completely transparent. This
form of complete object removal has been demonstrated to provide the ultimate
protection of visual privacy in surveillance and teleconference [38]. In Fig. 15, we
show another frame to highlight the occlusion handling of our proposed algorithm.
The segmentation between the two persons on the right is quite accurate except for
the lower left edge of the person in the back is slightly enlarged to include part of the
person in front. The original sequence and the obfuscated sequence using the fused
segmentation mask can be found in http://vis.uky.edu/∼cheung/MTA2012/privacy/
privacy.html.

Fig. 14 Using thermal and visible light camera fusion algorithm to improve human segmentation
with applications in privacy protection. The top left image is from the original video, the bottom left
image is the background subtraction from thermal camera, and the top right is the segmentation result
from visible-light camera. The bottom right image is the final result by removing the person on the
left and obfuscating the person in the middle, both benefited from an accurate fused segmentation
result

http://vis.uky.edu/~cheung/MTA2012/privacy/privacy.html
http://vis.uky.edu/~cheung/MTA2012/privacy/privacy.html
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Fig. 15 The left image is the original and the right image shows the occlusion handling of our
algorithm. The segmentation between the two persons is quite accurate except for the lower left
edge of the person in the back is slightly enlarged to include part of the person in front

8 Conclusions

In this paper, we have presented a robust human segmentation system by fusing
visible-light and thermal imaginary. After a simple calibration procedure, blob-wise
registration can be achieved by estimating the disparity of each corresponding blob-
pair in real-time. The estimation of registration parameters is further improved by
a two-tier tracking algorithm. The segmentation under a fused tracking and back-
ground subtraction system shows significant improvements over that of using either
modality alone. In our current implementation, the temporal inference of the dispar-
ity is performed using a simple weighted averaging together with a gating process. A
more sophisticated tracker such as particle filter may be used to estimate the disparity
under a probabilistic framework. Finally, our current implementation separates
overlapping blobs during occlusion based only on texture information. If the two
objects have different depths, the distribution of the measured disparities should be
multi-modal. One can conceivably use a statistical test to determine the number of
modes and then use the different modes to identify separate homographies. Such
approach should produce a more accurate registration than the current approach.

Acknowledgements We would like to thank the anonymous reviewers and the guest editors for
their valuable comments.

Appendix

A Proof of Theorem 31

Since the homography matrix H′ is up to scale, we can assume it is in the form of

H′ =
⎡
⎣
a11 a12 a13

a21 a22 a23

a31 a32 1

⎤
⎦
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According to the definition of image rectification, epipoles of the two image is at
infinity and in the form of [1 0 0]T and [a 0 0]T also subject to the homography. Plug
them in (3) we have

a11 = a

a21 = 0

a31 = 0

since

y′2 = a22y′1 + a23

a32y′1 + 1
= y′1

the following equation will always hold,

a32y′21 − (a22 − 1)y′1 − a23 = 0

Therefore, all the coefficients for different order have to be zero. We have a32 =
0, a22 = 1, a23 = 0.
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