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Abstract Exertion games (exergames) pose interesting challenges in terms of user interac-
tion techniques. Players are commonly unable to use traditional input devices such as mouse
and keyboard, given the body movement requirements of this type of videogames. In this
work we propose a hand gesture interface to direct actions in a target-shooting exertion game
that is played while exercising on an ergo-bike. A vision-based hand gesture interface for
interacting with objects in a 3D videogame is designed and implemented. The system is
capable to issue game commands to any computer game that normally responds to mouse
and keyboard without modifying the underlying source code of the game. The vision system
combines Bag-of-features and Support Vector Machine (SVM) to achieve user-independent
and real-time hand gesture recognition. In particular, a Finite State Machine (FSM) is used to
build the grammar that generates gesture commands for the game. We carried out a user
study to gather feedback from participants, and our preliminary results show the high level
of interest from users use this multimedia system that implements a natural way of interac-
tion. Albeit some concerns in terms of comfort, users had a positive experience using our
exertion game and they expressed their positive intention to use a system like this in their
daily lives.
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1 Introduction

Human Gestures are natural, expressive, and significant body movements which include
physical motions of the fingers, hands, arms, face, or head with the aim to send events or
interact with the virtual environment. Gestures can be static, where the human takes on a
specific pose, or dynamic, defined by motion.

Natural interaction assumes that users must not be concerned with mice and keyboards
but use instead gesture, speech, and human actions to interact with the system. Using “Hand
Gesture” as an interaction style is gaining interest in human-computer interaction context in
recent years. The main objective of gesture recognition research is to build a system which
can recognize human gestures and utilize them to control an application or a video game
instead of keyboard or mouse. The utilization of hand gesture interaction with video games
enables players to interact with computer environments in a natural, immersive, and intuitive
manner. Another benefit of utilizing hand gestures in this context is that visual data makes it
possible to interact with computerized device at a distance, without requirement for a
physical connection with the device to be controlled.

Hand gestures are a significant modality for man machine interaction. Comparing to
several interfaces, hand gestures have the advantages of being simple to use, natural,
immersive, and intuitive. Vision-based hand gesture recognition has been an active research
area recently with applications such as sign language recognition [10], socially assistive
robotics [1], directional indication through pointing [22], control through facial gestures [1],
human computer interaction (HCI), immersive game technology, virtual controllers, affec-
tive computing and remote control. Within the broad range of application scenarios, hand
gestures can be categorized into at least four classes [32]: controlling gestures, conversa-
tional gestures, communicative gestures, and manipulative gestures.

Computer games are a mainly technologically promising and commercially worthwhile
field for innovative interfaces because of the entertaining nature of the communication.
People are willing to try new interface technologies because they have the chance to be
immersed in a challenging game-like environment.

Hand gesture interaction with video games poses several challenges. The response should
be real time. The player should feel no noticeable delay between when she/he makes a hand
gesture and when the computer reacts. The computer vision algorithms should be flexible,
user-independent, and work against cluttered backgrounds. The robustness and reliability of
a natural interface is also very critical. If the interface breaks frequently or does not work
consistently, the “magic” of involvement and immersion in the interactive experience
disappears. An additional issue is “gesture spotting and immersion syndrome,” intending
to recognize actual gestures from accidental motion. A method to solve this issue is by
choosing a specific gesture to mark the “beginning” of a sequence of gestures.

“User adaptability and feedback” is the most necessity tackled in gaming applications. In
gaming systems, players benefit from having to learn the gesture vocabularies used by the
games. A training session is needed to train them how the hand gestures should be carried
out, involving speed, trajectory, and finger configuration. Immersion is a strong experience
of gaming, and has been regarded as a significant issue of interaction by gamers, designers,
and researchers [2]. In order to provide immersive player experience, real-time bare hand-
tracking and gesture recognition without particular setup procedures got a great interest
recently. Direct manipulation based on tracking and recognition of hand gestures provides a
more immersive interaction with virtual objects.

Our aim is to design a useful and natural man–machine interface that recognizes hand
gestures without the help of any markers and gloves. In previous work [5, 7] we have
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designed and developed a hand gesture recognition algorithm that utilizes both Bag-of-
features [14, 18], and SVM to realize natural, user-independent, and real time interaction
between human and computers. In this paper we have extended such research to realize a
hand gesture interface capable of issuing commands to an exertion computer game without
the need to modify the game’s source code. In this case we have employed a finite state
machine (FSM) to build a grammar that generates the gesture commands. The FSM works
by integrating the spatiotemporal (space-time) relation between every two consecutive
frames in a video sequence in terms of the transition between recognized postures and their
locations. The system starts with capturing images from a webcam to detect, track, recognize
different hand gestures, and generate gesture commands for controlling the exertion game.
Such gesture commands are translated into keyboard input commands that the underlying
operating system can recognize and pass on to the running video game. This integration
approach between interface and game allows for the extension of existing computer game
titles using a hand gesture recognition interface.

The paper is organized as follows: section 2 introduces related works; the third section
describes our hand gesture recognition system in details, including the training stage to build
the cluster and the SVM classifier models and the testing stage for recognition; section 4
discusses how our proposed system builds a grammar; section 5 explains how our proposed
system generates gesture commands; section 6 describes our 3D exertion game and the
interaction with hand gestures; section 7 presents the user study to test the proposed system
for user-independence; the last section gives the conclusion of our method.

2 Related works

Vision-based hand gesture interface gained a lot of interest in recent years since they can be
used to control other applications or video games. In [27], a natural interface to navigate inside a
3D Internet city was presented using hand gestures. The user stands in front of the screen and
uses hand gestures to navigate through the Internet 3D city. All gestures begin from a rest
position given by the two hands on the table in front of the body. Gesture recognition is
achieved by Hidden Markov Model (HMM) modelling of the navigating gestures. The feature
vector contains velocity and position of hands and head, and blobs’ shape and rotation.

In [4], a real-time hand tracking and hand posture recognition technique was utilized for
the Jing-Hang Grand Canal Serious Heritage Game. This method permitted the players to
interact with their customized avatar by natural hand gestures, observe specific models and
navigate in the virtual constructions. The hand was detected using MCT-based (modified
census transform) method [15]. Then, a multi-cue hand tracking algorithm [24] was utilized
to track the hand. In the third step, the hand was segmented using a Bayesian skin-color
model [31] and the hand tracking result. Finally hand posture was recognized by the feature
based on density distribution.

In [13], games and gesture-based recognition were augmented into mobile phone inter-
faces. Finger tracking was experimented in an augmented reality (AR) board game on
mobile phones and showed that it sustains an increased level of engagement and entertain-
ment. Using markers attached to the fingers, canonical interactions were evaluated such as
translating, scaling, and rotating virtual objects in a mobile AR setting.

In [28], a human gesture recognition technique was presented that uses 4-D spatiotem-
poral features. The technique used a time-of-flight camera for input so that depth information
can be obtained. Besides, a man–machine interface was developed that senses human
gestures and postures for TV viewing that allows intuitive operation through a device-free
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interface. In [26], a localized, continuous and probabilistic video representation was explored
for human action recognition. The proposed representation makes use of the probabilistic
distribution to encode the visual-motion information of an ensemble of local spatial temporal
features in a continuous and localized manner. In [23], an integrated framework for analyzing
human actions in video streams was proposed. The proposed approach introduces the implicit
user in-the-loop concept for dynamically mining semantics and annotating video streams.

In terms of videogame implementation that leverage on vision-based gesture recognition in
general, we can find work such as that of Kostomaj and Boh [16], who developed an Ambient
Interactive Storybook framework for children, which includes videogames that promote phys-
ical activity by doing motion detection of the body to trigger actions in the game. Their
approach is to use a webcam to track gross motion changes of the center of mass of the body
to know if the player is moving left, right, down or up, and detects the transition between any of
these positions and recognize them as postures. The location of the player is handed over to the
game engine which is responsible to respond and manage all game variables.

In a similar work, Varona et al [29] focus on detecting user motion to derive body
gestures. In their approach, they use non-parametric techniques to recognize the body
gestures, which then they apply in the control of a video game in real time. In this case,
the gesture recognition is not limited to center of body mass, but makes a more fine detection
in different joints of parts of the body including the feet, thorax, shoulders and elbows. Their
application of body gestures is used to control a Tetris video game.

In terms of hand gesture recognition applied to games, Li et al [19] make use of a rear
projector and a traditional web cam placed on a table for implementing a game using ordinary
hand gesture primitives for manipulating the game scenario. Their technique leverages on the
fact that the rear projector under the table provides a backlit image of the hand making gestures
over the table. They make the segmentation by specifying an appropriate light intensity
threshold. They support the tracking of several hands interacting over the surface of the table.

To the best of our knowledge there are not other hand gesture recognition systems where
a finite state machine (FSM) is used to build a grammar that can allow users to issue hand
gesture commands for an exertion game, using an off-the-shelf web camera. Besides, there is
not an implementation where the resulting hand gesture interface can be integrated with pre-
existing computer game titles without the need to modify the game’s source code.

3 Hand gesture recognition system

The proposed hand gesture recognition system consists of two stages: the offline training
stage and the online testing stage. The cluster and multi-class SVM classifier models will be
built in the training stage and will be used in the testing stage for recognizing hand gestures
captured from a webcam. Three critical factors affect the accuracy of the system: the quality
of the webcam in the training and testing stages, the number of the images used for training,
and choosing the number of clusters to build the cluster model.

3.1 Training stage

The training stage model is shown in Fig. 1. In Fig. 1, the first step is extracting the
keypoints for every training image using the scale invariance feature transform (SIFT).
Then, a vector quantization technique maps keypoints from every training image into a
unified dimensional histogram vector (bag-of-words) after K-means clustering. Finally, this
histogram was treated as an input vector for a multiclass SVM to build the training classifier.
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Before building the bag-of-features model, we captured 100 training images for each of the four
hand gestures, for 10 people and under different illumination conditions to increase the robustness
of the multi-class SVM classifier and the cluster model. All the training images illustrate the hand
postures without any other objects and the background has no texture or objects (white wall). In this
way, we guarantee that all the keypoints extracted from the training images using the Scale Invariant
Feature Transform (SIFT) algorithm [21] will represent the hand posture only. SIFT is real time
performance for low resolution portable gray map (PGM) images. Therefore, processing time for
extracting the keypoints using SIFT can be reduced when the image resolution is reduced and
converted into PGM format. The size of training images has been reduced to 50×50 pixels and
converted into PGM format like the size of the small image (50×50 pixels) that contains the
detected hand posture only for every frame captured from the video file in the testing stage.

The bag of features model is built using feature extraction, learning a “visual vocabulary”
by k-means clustering, quantizing features using visual vocabulary and finally representing
images by frequencies of “visual words”, as will be discussed in the following sections.

3.1.1 Scale invariant feature transform (SIFT) algorithm

Weused the Scale Invariant Feature Transform (SIFT) algorithm to extract the keypoints (features
vectors) for each training image. The size of every feature vector depends on the number of
histograms and the number of bins in each histogram. In Lowe’s original implementation [21] a 4-
by-4 patch of histograms with 8 bins each is used, generating a 128-dimensional feature vector.
Figure 2 shows some training images with their keypoints. We can increase the number of
training images to train the system as we wish for all the hand postures for different people with
different scales, orientations and illumination conditions. The more training images used with
different illumination conditions will providemore accurate k-means clustering and SVMmodels
since extracted features for training images using SIFT are invariant to scale, orientation and
partially to illumination changes [21]. Therefore, the time will increase for building the cluster
model in the training stage [5–7]. However, this will not affect the testing stage speed.

Fig. 1 Training stage

Fig. 2 Training images (a) fist with 23 features. (b) index with 31 features. (c) little finger with 27 features.
(d) palm with 48 features
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3.1.2 K-means clustering

The first step in k-means clustering is to divide the vector space (128-dimensional feature
vector) into k clusters. K-means clustering starts with k randomly located centroids (points
in space that represent the center of the cluster), and assigns every keypoint to the nearest
one based on Euclidean distance. After the assignment, the centroids (codevectors) are
shifted to the average location of all the keypoints assigned to them, and assignments are
redone. This procedure repeats until the assignments stop changing. Figure 3 shows this
process in action for five keypoints: A, B, C, D, and E and two clusters.

Keypoints of each training image will be fed to the k-means clustering model to reduce its
dimensionality into one bag-of-words vector with components equal to the number of clusters (k).
In this way, each keypoint, extracted from a training image, will be represented by one component
in the generated bag-of-words vector with a value equal to the index of the centroid in the cluster
model with the nearest Euclidean distance. The generated bag-of-words vector, which represents
the training image, will be groupedwith all the generated vectors of other training images that have
the same hand gesture and will be labeled with the same number and this label will represent the
class number. For example, label or class 1 for the fist training images, class 2 for the index training
images, class 3 for the little finger training images and class 4 for the palm training images.

There will be a sort of compromise for how to choose vocabulary size or number of
clusters. If it is too small, then each bag-of-words vector will not represent all the keypoints
extracted from its related image. If it is too large, then there will be an overfitting because of
insufficient samples of the extracted keypoints from the training image. We choose the value
750 as the number of clusters k (visual vocabularies or codebook) to build our cluster model.
This number provides the most accurate recognition rate by trying different values [7].

3.1.3 Building the training classifier using multi-class support vector machine (SVM)

A variety of approaches for decomposition of the multiclass problem into several binary
problems using SVMs as binary classifiers have been proposed. In our implementation,
multi-class SVM training and testing are performed using the library for SVM (LIBSVM)
described in [Chang01]. This library supports multi-class classification and uses a one-
against-one (OAO) approach for multi-class classification in SVM [12].

After mapping all the keypoints that represent every training image with its generated bag-
of-words vector using the k-means clustering, we fed all bag-of-words vectors with their related
classes into a multi-class SVM classifier to build a multi-class SVM training classifier model.

3.2 Testing stage

Figure 4 shows the testing stage by using face detection and subtraction and hand gesture detection
before recognition. In order to detect the hand posture in the image, a four step systemwas designed

A B

C

D E

A B

C

D E

A B

C

D E

A B

C

D E

A B

C

D E

Fig. 3 K-means clustering with two clusters
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according to our approach [5, 7] and as shown in Fig. 4. First, the templates of hand postures shown
in Fig. 6 were loaded and their contours were extracted before capturing images from a webcam or
video file. Second, the face was detected using Viola&Jones algorithm [Viola04] and then
subtracted with a black circle because the skin detection will detect the face and the face’s contours
very close to the fist hand gesture contours. After face subtraction, skin color locus for the image
was extracted for the user’s skin color using the hue, saturation, value (HSV) color model since it
has real-time performance, and it is robust against rotations, scaling, and lighting conditions. Then
as the fourth step, hand posture was detected by eliminating false positive skin pixels and
identifying hand posture and other real skin color regions using contours matching with the loaded
hand postures templates contours. The detected hand posture was saved in a small image (50×50
pixels). The keypoints were extracted from the small image that contains the detected hand posture
only and were fed into the cluster model to map them into a “bag of words” vector and finally this
vector was fed into multi-class SVM training classifier model to recognize the hand posture.

3.2.1 Face subtraction

Viola and Jones method [30] is used for face deduction. We subtract the face before applying
the skin detection algorithm [5, 7] to detect the hand gesture only by replacing the face area
with a black circle for every frame captured as shown in Fig. 5.

3.2.2 Hand posture detection

Detecting and tracking human hand in a cluttered background will enhance the performance of
hand gesture recognition using the bag-of- features model in terms of accuracy and speed because
the keypoints extracted will represent the hand gesture only. Besides, we will not be confined to
the frame resolution size captured from thewebcam, because wewill always extract the keypoints
of the small image (50×50 pixels) that contains the detected hand gesture area only not the
complete frame. In this way the speed and accuracy of recognition will be the same for any frame
size captured from awebcam such as 640×480, 320×240 or 160×120 and the systemwill also be
robust against the cluttered background because we process the detected hand gesture area only.

For detecting hand gesture using skin detection, there are different methods including skin
color based methods. In our case, after detecting and subtracting the face, skin detection and
contours comparison algorithm [5, 7] will be used to search for the human hands and discard
other skin colored objects for every frame captured. Before capturing the frames, we loaded the
templates of the four hand postures as shown in Fig. 6: fist, index, little and palm to extract their
contours and saved them for comparison with the contours of skin detected area of every frame
captured to get rid of other skin like objects.

Fig. 4 Testing stage
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In our implementation [5, 7], we used the hue, saturation, value (HSV) color model for
skin detection since it has shown to be one of the most adapted to skin-color detection [33].
It is also compatible with the human color perception. Besides, it has real time performance
and robust against rotations, scaling and lighting conditions and can tolerate occlusion. From
a classification approach, skin-color detection can be considered as a two class problem:
skin-pixel vs. non-skin-pixel classification. There are many classification techniques such as
thresholding, Gaussian classifier, and multilayer perceptron [17]. We used the thresholding
method, which has the least time on computation compared with other techniques and this is
required for real time application. The basis of thresholding classification is to find the range
of two components H and S in HSV model as we discarded the Value (V) component.
Usually a pixel can be viewed as being a skin-pixel when the threshold ranges are
simultaneously satisfied: 0°<H<20° and 75<S<190.

Once the skin area had been detected, we found contours of the detected area and then
compare them with the contours of the hand postures templates. If the contours of the skin area
comply with any of the contours of the hand postures templates, then that area will be the region
of interest by enclosing the detected hand posture with a rectangle, which will be used in tracking
the hand movements and saving hand posture in a PGM format small image (50×50 pixels) for
every frame. The small image will be used in extracting the keypoints to recognize hand gesture.

4 Building grammar

Behaviour classification has developed to be an active research subject in the computer vision
field. There are several methods for classifying high-level behaviour of vision based informa-
tion. In [11], the method of decomposing behavioural classificationwas divided into two stages:
first, a low-level event classifier based on features of raw video information, and second, a high-
level behavioural classifier based on sequences of events that were generated from the first
stage. Therefore, a behaviour classifier can be considered as a classifier of sequences of events.

Human motion analysis techniques can be classified into stochastic algorithms such as
hidden Markov models (HMMs), or deterministic algorithms such as finite state machine
(FSM). HMMs were used as state-space models for behaviour classification. However, using

Fig. 5 Face detection and subtraction as well as hand posture detection (in red square)

Fist Index Little Palm

Fig. 6 Templates of hand posture
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syntactic (grammar-based) structural methods are better than HMMs when some sequences
of low-level information inherently fall into meaningful behaviours.

A series of events or features, over time and space, create behaviour. In the proposed
system, the events are based on monitoring the transitions among detected hand postures and
their locations for every two consecutive frames captured from a webcam. Low-level
classifications are based on features of raw video information resulted from the real-time
posture recognition classifier as discussed in section 3. In the high-level, the recognized
hand postures for every two consecutive frames are concatenated in a temporal sequence to
form behaviour, which is a hand gesture. A hand gesture is an action, which consist of a
sequence of hand postures. The rules for the composition of hand postures into various hand
gestures can be determined by a grammar [3]. A method is required to monitor the sequences
of detected hand postures and classify them such as a syntactical grammar-based method,
which was presented in [11]. The different hand gesture behaviour compositions have to be
defined before classifying sequences. Every hand gesture behaviour will have a different
temporal composition of the detected hand postures. These sequence compositions are
defined with syntax rules such as regular grammars. A set of syntax rules, describing hand
gesture behaviour, is known as a grammar. The grammar is implemented through a finite
state machine (FSM). The FSM monitors the sequence of the hand postures. If a sequence of
hand postures goes with a specific hand gesture behaviour, its related FSM will accept this
sequence. Thus, the sequence of hand postures is recognized as hand gesture behaviour if its
related FSM agrees with the sequence.

We used spatiotemporal (space-time) correlation between every two consecutive frames in a
video sequence in terms of the transition between recognized postures and their locations to
develop our system into real time dynamic hand gesture recognition. The timing relation for
transition among recognized postures is monitored for every two consecutive frames of a video
sequence by saving every two recognized consecutive postures in two states queues, where the
recognized previous posture is saved in the old state queue, while the recognized current posture
is saved in the new state queue. The movement direction or space relation between every two
recognized postures from every two consecutive frames is tracked by monitoring the difference
between the two locations of the recognized previous and current hand postures.

The gesture classifier recognizes the detected hand posture and the result of the recog-
nition are fed into a FSM. The grammar of the FSM decides the real tasks. These tasks can
be commands or events to be executed from the keyboard. The FSM of the grammar for the
palm posture is shown in Fig. 7. The FSM of the grammar for the other postures such as fist,
index, and little will be the same as the palm posture.

The non-terminal symbols of the grammar are the states0{Palm, Little, Index, Fist}.
The terminal symbols of the grammar are the outputs0{Turn right/Left,
Move Up/Down, Zoom In/Out, Shoot}.
The input symbols of the FSM are the movement directions of palm posture0{Up/
Down, Right/Left, Forth/Back, Hold}

Table 1 shows FSM of the grammar for the palm posture. We notice from Table 1 that the
output depends on the input and the current state. Besides, the next state depends on the
current state and the input.

To implement the grammar of the FSM, we mapped these commands sent to the keyboard
by correlating the transition between recognized hand postures states and hand motions
directions for every two consecutive frames for the palm posture case as shown in Fig. 7.
This spatiotemporal (space-time) correlation develops our system into real time dynamic
hand gesture recognition.
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5 Generating gesture commands

Based on the grammar built in the previous section, our hand gesture recognition system can
generate gesture commands, which can be used to control or interact with an application or a
video game instead of keyboard or mouse, by sending events to be executed such as double
click, close, open, go left, right, up, or down and so on. We define 4 postures: fist, index, little,
and palm as in Fig. 6. The gesture commands can be generated by three ways. First, by
observing the gesture transitions from posture to posture, such as from fist to index, fist to
palm, fist to little, etc. For each posture we have four transitions to other states, hence, we define
16 events or gesture commands. Second, by observing the direction of movement for each
posture: up, down, left or right. We have four directions or gesture commands for each posture
or 16 gesture commands for four postures. The case of no movement for each posture had not
taken into consideration as it were counted already in the first way when the transition occurred
from fist to fist or palm to palm and so on as in Fig. 8. Finally, by observing the hand posture
size or scale: when it comes close (zoom in) or far away (zoom out) from the camera. As we
have two cases for each posture, we have eight gesture commands for the four postures. In the
following sections, we will explain how our system can generate gesture commands.

5.1 Transitions among postures

Transitions between postures depend on saving every two recognized postures from every
two consecutive frames of a video sequence in two states queues: the new state queue, which

Table 1 FSM of the grammar for the palm posture

Current state Next state Direction (input) Send key Event (output)

Palm Palm Up {UP} Move Up

Palm Palm Down {DOWN} Move Down

Palm Palm Right {RIGHT} Move Right

Palm Palm Left {LEFT} Move Left

Palm Palm Forth ^{+} Zoom In

Palm Palm Back ^{-} Zoom Out

Palm Palm Hold Nothing Nothing

Palm Fist Hold Send Ctrl key ^ Shoot

Fist Palm Hold Nothing Nothing

Move Up/Down

Palm 

Little 

Fist 

Index 

T
ur

n 
R

ig
ht

/L
ef

t 

Zoom In/Out 

Send Ctrl key 

Fig. 7 FSM of the grammar
for the palm posture
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holds the recognized current posture and the old state queue, which holds the recognized
previous posture. The recognized current posture will be saved in the new state queue after
transferring its posture state to the old state queue. Thus, for every frame captured, the
posture state of the old state queue is emptied. Then, the posture state of the current state
queue is transferred to the old state queue. Finally, the recognized current posture from the
frame will be saved in the current state queue. The system will keep observing the two states
queues for every two consecutive frames captured and will keep monitoring the transitions
among every two consecutive recognized postures and generates a specific gesture com-
mand for a specific transition among recognized postures. Figure 8 shows all the transition
states of fist posture with all other postures.

5.2 Movement direction for each posture

Movement direction for each posture depends on tracking the movement direction of the
detected posture using rectangles, which captures the detected hand posture. Once a posture
is detected, the coordinates of the middle of the rectangle X and Y are recorded. The system
will always monitor the absolute difference of distance between the two points of the middle
of the rectangle in the X and Y coordinates for every two successive frames that have the
same posture. If the absolute difference of distance in the X direction is larger than absolute
difference of distance in Y direction and the absolute difference is larger than 1 cm, then the
hand posture is moved left or right. If the difference of distance in the X direction is positive,
then the hand posture is moved right and if it is negative, then the hand posture is moved left.
If the absolute difference of distance in Y direction is larger than absolute difference of
distance in the X direction and the absolute difference is larger than 1 cm, then the hand
posture is moved up or down. If the difference of distance in Y direction is positive, then the
hand posture is moved down and if it is negative, then the hand is moved up. Figure 9 shows
all the motion direction cases of palm posture.

5.3 Distance from the camera for each posture

Distance from the camera for each posture depends on tracking the size of the height of the
rectangle, which captures the detected hand posture only, and the transition of recognized
posture still the same. Once the hand posture is detected from each frame by the rectangle
and the transition of recognized posture still the same such as little to little, the height of the
rectangle is recorded. The system will always monitor the difference between the heights of

Fig. 8 Transitions from fist to other postures
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two rectangles for every two successive frames that have the same posture. If the difference
of rectangle height between the new frame and the previous frame is positive and larger than
1 cm, then the posture gets closer to the camera (zoom in) and if the difference is negative
and larger than 1 cm, then the posture gets away from the camera (zoom out). Figure 10
shows all the zoom cases of little posture.

The size of the height of the rectangle, which captures the detected hand posture
only, is inversely proportional to distance from the camera. The threshold for detecting
hand movement away or close to the camera depends on the rectangle height difference
or distance difference between detected hand postures from camera for every two
successive frames that have the same posture, which is 1 cm, regardless of the speed
of motion. If we make threshold less than 1 cm, the system will consider left/right/up/
down change of direction or zoom In/Out for any very small hand vibration in any
dimension (x, y, z).

6 Interaction with a 3D exertion game using hand gestures

With the purpose of testing our hand gesture recognition algorithm in the context of an
interactive application, we have integrated the recognition engine into a target shooting
exertion game. Exertion games are computer video games that require the player to be
physically active while playing the game in order to achieve her/his goal. Given the
physicality of this type of games, players are faced with the difficulty of interacting with
the game using traditional input controllers like gamepads. Hence, exertion games present a
good opportunity for applying body movement tracking techniques as an alternative to more
traditional input controllers. It is in this context that we have decided to use our hand gesture
recognition algorithm.

Fig. 9 Movement direction cases of palm posture

Fig. 10 Zoom cases of little posture
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6.1 3D Exertion game

The exertion game that we have used is based on a typical target-shooting scenario and is fully
described in previous work [25]. The User Interface shows a 3D island environment where the
camera viewport has a first person shooter perspective showing the direction where the player is
looking at. The player’s character is standing on a platform facing a field, and in her/his line of
view there are three targets located at different distances which the player must knock down by
throwing coconuts at them as shown in Fig. 11. The player plays the gamewhile exercising on a
stationary bicycle which acts as the input controller for the game.

The game engine handles the rules of the game as follows: to gain points, the player must
knock down targets by hitting them with a coconut. Bonus points are gained when all 3
targets are knocked down within a 10 s time frame. After 10 s of being knocked down, a
target stands up again by itself. Targets are located at various distances from the player. The
player gets feedback about the general direction of the throw by seeing a crosshairs icon on
the screen as shown in the screenshot of Fig. 11.

The vertical movement of the crosshairs is controlled by a stationary bicycle used as an
input controller. The RPM (revolutions per minute) reading from the stationary bike’s pedals
is mapped into the Y coordinates that drive the vertical displacement of the crosshairs, which
affects the trajectory and distance (depth) to which a coconut may be thrown by the player.
The higher the RPM reading is, the higher the throw and vice versa. As the game is played,
the player must adjust slightly the speed of his/her pedaling to reach closer or farther targets.

The player controls the horizontal movement of the crosshairs by using the left and right
arrows of the keyboard. The control is limited to changing the direction on which the
crosshairs displaces (left or right), but the speed and movement of the crosshairs is preset.
This adds a level of difficulty and exertion to the game, and requires the player to make
frequent changes of direction. Throwing the coconuts is triggered by pressing the ‘control’
key on the keyboard. The player may shoot as often as she/he wants.

Fig. 11 Game input methods (without hand gesture control)
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Figure 11 depicts the 3 input methods to control the game. Shooting command and
changing direction left and right are controlled by the keyboard while changing direction up
and down is controlled by the bike. This is an excellent example of a game that requires a
novel way of interaction, since handling the keyboard while exercising on the bicycle is an
awkward challenge. Therefore, in this work, as is described in the next section, the
functionality of the keyboard is replaced with a hand gesture control, to provide a more
natural and entertaining mode of interaction for the player.

6.2 The hand gesture interface

To address the problem of moving the crosshairs left and right and throwing coconuts while
pedaling the bike, we used three hand gestures that generate commands, two of which allow the
player to change direction (left/right) and a third one to shoot a coconut. In our implementation
we wanted to minimize the requirements for modifying the codebase of the videogame to
interface with the hand-gesture recognition system. For this purpose we decided to have both
applications (Game and gesture recognition process) run independently but at the same time on
the same host computer. Since the game is already coded to respond to keyboard events for left/
right and shoot actions coming from the keyboard, we have made the gesture recognition
process make a hardware interruption to the underlying operating system to set those keyboard
events manually. In this fashion, for each in-game action, we mapped a specific hand-gesture to
the related keyboard input event as we will describe in the next section. This technique allows
the integration of any third party existing video games with the hand gesture recognition
system. With the hand gesture recognition replacing the functionality of the keyboard, we
aimed at having the player more engaged in the gaming experience using a more natural
interface. To implement this functionality, we mapped these events sent to keyboard by
integrating the transition between recognized hand postures and hand motions directions for
every two consecutive frames for the palm posture case according to the FSM presented in
Fig. 7. The derived interaction commands for the game are presented in Table 2.

Figure 12 depicts the input methods to control the game with the hand gesture interface
while the player on the bike making hand gestures and playing the game.

For a host computer, we used a PC running Windows XP operating system. The
configuration of the system was a 2.0 GHz processor and 2 GB RAM. The exercise bike
was an Ergo-bike 8008 TRS 3 model connected to the host computer by a serial cable. The
webcam was a low-cost Logitech QuickCam that provides video capture with different
resolutions such as 640×480, 320×240, and 160×120, at 15 frames-per second, which is
adequate for real-time speed image recognition. The webcam is connected to the host
computer with a USB port. The game was developed using the Unity Engine and
programmed using javascript and C#. No significant modifications were made to the game
to be compatible with the gesture interface as it simply responded to the keyboard input
events received from the operating system.

The C# was used to integrate our DLL file generated from C-based gesture recognition
component. With this framework, the C# methods can call applications and libraries in C/C++.

Table 2 Interaction commands
performed by hand gestures Current state Next state Direction Send key Event

Palm Palm Right {RIGHT} Move Right

Palm Palm Left {LEFT} Move Left

Palm Fist Hold ^ Shoot
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The program in C# was used to send events to the keyboard using the SendKeys.SendWait
method. Those events or commands are generated using our hand gestures.

6.2.1 Shooting action using hand gesture

The first custom gesture represents a “fire button” action. When this gesture is detected by
the gesture recognition process, it generates a Key-pressed event with the “Ctrl” key as an
identifier. This event is then picked up by the game, which responds by throwing a coconut.
This gesture can be observed in Fig. 13 when the player changes her/his hand posture from
palm posture to fist posture to shoot the target by throwing a coconut. The palm posture of
the player is shown in the small screenshot in the top left corner of Fig. 13a while in the next
frame, the player changes her/his hand posture to fist posture to shoot the target as shown in
the small screenshot on the top left corner of Fig. 13b.

6.2.2 Changing direction action using hand gesture

The other two gestures represent the action of moving the crosshairs left or right. Again,
when either of these two gestures is detected, a key-pressed event is generated with the “Left
arrow” or “Right arrow” identifiers, accordingly. These gestures can be observed in Fig. 14
when the player moves her/his hand palm posture left or right.

Fig. 12 Game input methods
with a hand gesture recognition

Fig. 13 “Shooting” action using hand gesture for the exertion game. On the top left: (a) Player with palm
posture (b) Player changes to fist posture for shooting
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7 User study

With the purpose of getting feedback from actual users about our interface implementation,
we conducted a user study, where 15 participants played the game using the hand gesture
interface. At this stage of our research we wanted to assess the level of technology
acceptance from users to this particular interface implementation. For this, the scope of
our present user study is to gather the opinions and impressions from users in a structured
way by using the Technology Acceptance Model [8]. At the end of the game sessions
participants answered a questionnaire and were interviewed to collect their impressions and
their suggestions regarding how natural was for them to play using hand gestures to control
the actions in the game.

There were 12 male and 3 female participants. All of them were students in the computer
science department at the University of Ottawa at the undergraduate level, and none of them
worked in the same laboratory than the authors. Their ages ranged from 21–25. None of

Fig. 14 “Left/Right” movement actions with shooting using hand gesture in the exertion game. On the top
left: (a) Player with palm posture (b) Player moves her/his palm posture right to move crosshairs right (c)
Player changes to fist posture for shooting (d) Player changes to palm posture (e) Player moves her/his palm
posture left to move crosshairs left (f) Player changes to fist posture for shooting
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them reported having any physical or mental disabilities and although all of them reported
having played video games at some point, none of them were particularly avid gamers.

The sessions were carried out with one participant at a time. At the beginning of the
session, the participant was introduced to the overall procedure of the experiment, and a
demonstration of the game and the general instructions for playing were presented. Then the
participant was given 5 min to do some warm up in the bicycle alone without having the
game on. Once the warm-up period ended the game was started and the player was left to
play the game for 5 min. At the end of the 5 min, the game would be over and the participant
was allowed to cool down pedaling on the bike.

After the gaming session participants were asked to answer a questionnaire. The ques-
tionnaire consisted of a 5-point Likert scale with 10 items including reversal statements [20].
Likert scales are typically used to measure psychometric response to assess the attitude that
users have towards some topic or experience, and are applied often as the items in a
questionnaire. It has been suggested that Likert scales are among the most common methods
to estimate usability [9].

In our study, Likert items were concerned with the player perception of ease of use,
accuracy and overall performance of the exergame’s hand gesture interface. Particularly we
wanted to assess how natural the interactions were to them and if they perceived any
performance issues such as difficulty to perform changes of direction or perceived delays
in those changes. Figure 15 shows a sample question from the full questionnaire (Appendix 1).

The interviews were guided by open questions that would cover closely the same topics
of the questionnaire except that they were meant to encourage the participant to elaborate
verbally about their overall experience.

8 Results and discussion

In this section, we present the results of the questionnaire and the interviews carried out
during the evaluation.

Responses to the individual items of the questionnaire are considered as ordinal data,
which is a common practice with Likert scales. Hence, we present the results in terms of
descriptive statistics that when analyzed can help to draw a picture of the perception that the
users got for each topic covered by the items of the questionnaire. Tables 3 and 4 show such
descriptive statistics of the data collected.

The items of the questionnaire were divided into four main areas. Questions 1 to 3 were
all related to the ‘Left/Right’ hand gestures and each one addressed a specific topic: ease of
use, perception of delay, and accuracy to perform the task. Questions 4 to 6 similarly
addressed the same topics but for the “Shoot” hand gesture. Questions 7 and 8 were in
general about the whole hand gesture interface to the game, in order to assess if it was
comfortable and felt natural and intuitive. Finally questions 9 and 10 were aimed at assessing
the willingness of the participants to use a system like such in their daily lives. The structure
of the questionnaire was defined following the precepts of the Technology Acceptance
Model (TAM) [8].

Fig. 15 Sample Likert item
from the questionnaire
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Table 3 shows a summary of the Median, Mode and Range on the data set pertaining to
each of the items of the questionnaire.

From this data summary it can be seen that the lowest value of the median across all
questions was 3 (‘neutral’) while the highest was 5 (‘strongly agree’) with a similar tendency
for the most repeated responses (mode) with values between 2 and 5. The range of the data
sets was never beyond 3 points, which shows a cohesive response pattern.

Table 4 shows an aggregation of responses for each of the Likert levels in each question.
For each question we see the tally of responses and a second row shows the same values
expressed in percentage.

Table 3 Median Mode and
Range for each Likert item Question: Median Mode Range

1.- Left/Right Gesture – Easy 4 4 3

2.- Left/Right Gesture – No Delay 3 3 2

3.- Left/Right Gesture – Accurate 4 4 3

4.- Shoot Gesture – Easy 5 5 2

5.- Shoot Gesture – No Delay 3 3 3

6.- Shoot Gesture – Accurate 4 4 2

7.- Hand Gestures - Comfortable 3 2 2

8.- Hand Gestures -Natural 5 5 3

9.- Use Intention 4 5 2

10.- Use Intention (reversed) 5 5 1

Table 4 Aggregation of responses of each Likert level across all 10 questions

Question: Strongly
disagree [10]

Disagree [1] Neutral [22] Agree [32] Strongly
agree [2]

1.- Left/right gesture - easy 0 1 4 5 5

7 % 27 % 33 % 33 %

2.- Left/right gesture - no delay 0 5 8 2 0

33 % 53 % 14 %

3.- Left/right gesture - accurate 0 4 0 10 1

27 % 67 % 6 %

4.- Shoot gesture - easy 0 0 3 4 8

20 % 27 % 53 %

5.- Shoot gesture - no delay 1 4 6 4 0

6 % 27 % 40 % 27 %

6.- Shoot gesture - accurate 0 0 3 9 3

20 % 60 % 20 %

7.- Hand gestures - comfortable 0 7 6 2 0

47 % 40 % 13 %

8.- Hand gestures -natural 0 1 2 4 8

7 % 13 % 27 % 53 %

9.- Use intention 0 0 1 7 7

6 % 47 % 47 %

10.- Use intention (reversed) 0 0 0 7 8

47 % 53 %
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From the details of the distribution of responses in Tables 3 and 4, it can be seen that both of
the modalities of hand gestures (‘Left/Right’ and ‘Shoot’) had a relatively low rating (3
‘neutral’) in response to the statement of ‘not perceived delay’. According to the responses
users did not generally agree, and presented a ‘neutral’ perspective to the statement that said that
there was no-delay. By observation we could measure an occasional noticeable delay between
the execution of the hand gesture by the player and the recognition of it by the system. When it
occurred, this delay could vary in a range from 0.5–1.0 s. However, players soon adjusted their
game strategy to cope with the delay in those cases and were able to perform well in the game.
There were no significant false positive detections, and when the system would interpret the
natural movement of the hand (resulting from exercising on the bike) as a ‘move left/right’
command, players would simply correct the action to aim for the desired target. This adjustment
from the subjects is consistent with their responses in the questionnaire, where users did not
seem to be affected in terms of their perceived accuracy to knock down the targets (the goal of
the game). In this case, they rated with values mostly on or above the ‘agree’ level with 73% of
the responses to the ‘left/right’ gesture and with 80 % of the responses for the ‘shoot’ gesture.

In terms of ease of use, both types of hand gestures were rated generally in the same
order, between ‘agree’ and ‘strongly agree’. This trend was reinforced during the interviews
with the users, who expressed that the method of interaction was simple and intuitive.

When judging if the use of the hand gestures was comfortable for directing the actions on
the exertion game, users expressed some reserves. The median value was at 3 with a mode of
2, and 47 % of the responses expressing a ‘disagree’ position and 40 % in ‘neutral’. During
the interviews users expressed that, even for an exertion game, they think that keeping the
hand raised at all times for a longer game session would be quite uncomfortable, which is
consistent with their responses on the questionnaire. Still, in terms of how natural the
interaction was to them, the median and mode values were at 5 with a low range of 1,
which shows that the mode of interaction was intuitive.

Overall from the interviews we could see that users were highly motivated to use the hand
gesture control and this can also be seen on the answers to the last two items of the question-
naire, which show an intention of use with a rating of 4 and 5 in the Likert scale.

The proposed system demonstrated acceptable interaction with 15 users in terms of
perceived accuracy and speed because the features of hand gestures were extracted in real-
time for using the SIFT algorithm, and were invariant to scale and orientation. Future work
could include an extended evaluation where different techniques are compared with the
subjects within the context of this particular game implementation.

9 Conclusion

Weproposed a bare hand gesture recognition interface that generates commands to control objects
directly in an exertion videogame that makes use of a stationary bicycle as one of the main inputs
for game playing. Our proposed hand gesture recognition system utilizes both Bag-of-features
and Support Vector Machine (SVM) to realize natural, user-independent, user-friendly, and real-
time interaction between human and computers. With this interface, the user can control and
direct left-right movement and shooting action by a set of hand gesture commands.

The preliminary results of a user study to evaluate our implementation show the high level of
interest from users to make use of multimedia systems that implement natural ways of
interaction as the one presented here. Although some concerns in terms of comfort, users had
a positive experience using our exertion game and they expressed their positive intention to use
a system like this in their daily lives.
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Appendix 1. Questionnaire

For each one of the following statements, please mark the option below that closest reflects
your level of agreement with the statement.

1) Moving the crosshairs left and right with hand gestures was easy to accomplish. 

Strongly Disagree      Disagree      Neutral      Agree      Strongly Agree 
             [  ]                       [  ]              [  ]            [  ]                   [  ] 

2) I did not perceive any delay when moving the crosshairs left and right using hand 
gestures 

Strongly Disagree      Disagree      Neutral      Agree      Strongly Agree 
             [  ]                       [  ]              [  ]            [  ]                   [  ] 

3) I had difficulty hitting the targets because the application would not respond all the time 
to my left/right hand gestures. 

Strongly Disagree      Disagree      Neutral      Agree      Strongly Agree 
             [  ]                       [  ]              [  ]            [  ]                   [  ] 

4) Shooting in the game by using hand gestures was easy 

Strongly Disagree      Disagree      Neutral      Agree      Strongly Agree 
             [  ]                       [  ]              [  ]            [  ]                   [  ] 

5) I did not perceived delays when shooting using the hand gesture 

Strongly Disagree      Disagree      Neutral      Agree      Strongly Agree 
             [  ]                       [  ]              [  ]            [  ]                   [  ] 

6) I had difficulty hitting the targets because the application would not respond all the time 
to my ‘shoot’ hand gesture 

Strongly Disagree      Disagree      Neutral      Agree      Strongly Agree 
             [  ]                       [  ]              [  ]            [  ]                   [  ] 

7) I felt comfortable interacting with the game by means of hand gestures 

Strongly Disagree      Disagree      Neutral      Agree      Strongly Agree 
             [  ]                       [  ]              [  ]            [  ]                   [  ] 

8) Playing the game using hand gestures felt natural and I was able to focus on playing the 
game 

Strongly Disagree      Disagree      Neutral      Agree      Strongly Agree 
             [  ]                       [  ]              [  ]            [  ]                   [  ] 

9) If I wanted to use an exercise bike on a regular basis I would rather use this exergame 
with the hand gestures, instead of a traditional bike 

Strongly Disagree      Disagree      Neutral      Agree      Strongly Agree 
             [  ]                       [  ]              [  ]            [  ]                   [  ] 

10)  The whole experience with the exergame and hand gesture interface was awkward and I 
would generally avoid using it for my exercising 

Strongly Disagree      Disagree      Neutral      Agree      Strongly Agree 
             [  ]                       [  ]              [  ]            [  ]                   [  ] 
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