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Abstract We propose a method to optimally truncate the head-related impulse responses
(HRIRs) in this paper. The truncated HRIR consists of a portion of the original HRIR and a
flat line. An algorithm based on dynamic programming is used to optimally select the
portions of the original HRIRs and the constants of the flat lines to minimize the modeling
errors. The truncated HRIRs can be used to reproduce multi-channel sound for headphones
with a significantly lower computational cost. The proposed method is compared with
another approximation method, the CAPZ (Common-Acoustical-Pole and Zero) approach.
The experimental results show that the proposed method yields lower composition as well as
modeling errors for the same amount of computation. Compared with the direct implemen-
tation, the proposed approach requires about 35 % of the computational cost while main-
taining acceptable composition errors.

Keywords HRTF . CAPZ .Multi-channel . Dynamic Programming . Headphones

1 Introduction

With the popularity of DVD (Digital Versatile Disc) and BD (Blu-ray Disc), a video program
frequently contains multiple channels of audio signals, encoded with AC-3 [1], DTS [7],
MPEG-2/4 AAC [14], or other technologies. A typical audio format in such a program is
5.1-channel, where ‘5’ represents five full-bandwidth channels, namely, left (L), center (C),
right (R), left surround (LS), and right surround (RS), and the ‘0.1’ represents the low-
frequency effect (LFE) channel. The acoustic sounds of the full-bandwidth channels in a
typical setting are individually reproduced by loudspeakers placed at the locations specified
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by the channel names. For example, the loudspeaker for LS channel is placed on the back
left of the listener’s position.

Sometimes, a listener may have to use headphones when watching DVD/BD programs to
avoid, among other considerations, disturbing others. In this case, it is necessary to feed
multi-channel audio signals into headphones, which typically have only two transducers.
The simplest method to reproduce multi-channel audio using headphones is to perform a
down-mix operation, under which audio signals of C, L, and LS are mixed into left channel,
and C, R, and RS signals are mixed into right channel. Unfortunately, this method is not
satisfactory because the front-back spatial information is totally lost during the down-mix
process. To preserve spatial sensation, it is required to use head-related impulse responses
(HRIRs) [3] during the reproduction process.

One concern of using HRIRs in reproducing spatial sound using headphones is its high
computational demand [17], which is expensive to implement for commercial applications.
In this paper, we present a method to approximate the HRIR with fewer coefficients so that
the computational cost can be reduced. In the proposed method, an HRIR is approximated
by a portion of the original response and a flat line. To optimally truncate the original
response, an algorithm based on dynamic programming is adopted. With the proposed
approach, the required computation for reproducing spatial sound using headphones can
be significantly reduced.

The rest of the paper is organized as follows. Section 2 gives a brief review of spatial
hearing and HRIR, and also explains how to reproduce multiple-channel audio using head-
phones. Section 3 gives a brief survey of existing approaches. Section 4 describes the
proposed HRIR approximation method and its complexity. An efficient search algorithm
to optimally truncate the HRIRs is presented in section 5. In addition to the proposed
approach, we also implement the common-acoustical-pole and zero (CAPZ) method [11]
as the comparison target of our approach. Section 6 presents the experimental results for
both approaches, and section 7 gives the conclusions. For completeness, the complexity
analysis of the exhaustive search is given in appendix A.

2 Spatial hearing and reproducing multi-channel audio using headphones

2.1 Spatial hearing

The psychoacoustic studies [3] reveal that the main factors of the spatial hearing are the
inter-aural time difference (ITD) and inter-aural intensity difference (IID), among other
factors. Whereas it is possible to model the behavior of spatial hearing using mathematics
[5], it is much more popular to conduct experiments to obtain empirical numerical models [9,
13]. Specifically, if the path between the sound source and the eardrum is modeled as a linear
system, the system’s (finite duration) impulse response can be experimentally measured. The
concept has been realized by various research groups, including the MIT (Massachusetts
Institute of Technology) Media Lab [9] and the group in IRCAM and AKG [13].

In Gardner and Martin’s studies [9, 10] in the MIT Media Lab, they placed a dummy,
equipped with different sizes of pinnae, and a loudspeaker in an anechoic room. Then, they
used the loudspeaker to produce pseudorandom noise. The microphones inside the dummy’s
ears received the noise, which was used to compute the impulse responses between the
loudspeaker and the microphones. The results were many sets of transfer functions with
zeros only, called head-related transfer functions (HRTFs). Since there are only zeros in the
measured HRTFs, they can also be regarded as head-related impulse responses (HRIRs). The
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influences of IID, ITD, and the shapes of pinnae are implicitly represented by the coef-
ficients of the HRIRs.

In the following discussion, we will use elevation and azimuth angles to describe the
relative direction of the sound source to the head. A positive elevation angle indicates that
the sound source is higher than the horizontal plane intercepting the ears. The elevation
angle, throughout the discussion of the paper, is always set to zero. The azimuth angle is
measured in clockwise direction with the dummy facing zero degree. Figure 1(a) shows a
sound source at an azimuth of 45°. From Fig. 1(a), the right ear is closer to the sound source;
therefore the sound reaches the right ear faster and stronger. On the other hand, the sound
source is farther to the left ear and is partially impaired by the head; thus, the left ear receives
the sound with a longer delay and weaker intensity as shown in Fig. 1(b) [9]. Thus, IID and
ITD are implicitly represented by the differences of magnitude and time delay in responses
between left ear and right ear.

During the MIT’s measurements, the dummy was equipped with different sizes of pinnae
in left and right ears in order to collect two sets of HRTF datasets corresponding to different
sized ears. These two datasets are available in the full-length version (512 coefficients for
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Fig. 1 (a) The sound source
placed at 45° azimuth angle. (b)
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each HRIR). For the compact version (128 coefficients for each HRIR), the symmetry
assumption (Eq. 1) is used to produce HRIRs for both ears from one ear, i.e.

ha;R ¼ hð360�aÞ;L ð1Þ

where ha,R is the impulse response relating the right ear and the sound source at an a°
azimuth, and h(360−a),L is the impulse response relating the left ear and the same sound
source at a (360−a)° azimuth. Therefore, the compact version of HRIR dataset actually
contains measurement results from one ear. In our experiments, we follow the MIT’s
convention and use the symmetry assumption to obtain the responses of the right ear from
left ear.

In contrast to the MIT’s experiment where a dummy was used, researchers in IRCAM and
AKG [13] used ‘real’ persons in the experiments. Since the left and right pinnae of a real
person are not necessarily identical in size and shape, HRIRs for both ears had to be
measured. Therefore, the obtained HRIRs are asymmetric, and therefore Eq. 1 does not
hold. In this case, the impulses of ha,R and ha,L are both available in the dataset. With the
impulse responses for both ears, we may reproduce spatial sound at the angle of a degrees,
as to be discussed next.

2.2 Reproducing multi-channel audio using headphones

Given the HRIRs, it is not difficult to reproduce spatial sound using headphones. Suppose
that ha,L[n] and ha,R[n] represent the impulse responses relating left and right ears and a
sound source at a° (azimuth). If the signal x[n] is to be reproduced with the sensation of the
same azimuth angle, we may use the following equations

yL½n� ¼ x½n�*ha;L
yR½n� ¼ x½n�*ha;R ð2Þ

where ‘*’ is the convolution operator and yL[n] and yR[n] are signals to drive the left and
right transducers of the headphones. Note that Eq. 2 does not take the impulse responses of
the headphones into account, because, for commercial applications, it is generally not
possible to know the impulse responses of the headphones the listener may use in advance.
In the following presentation, if appropriate, we’ll drop the time index n for brevity.

It is straightforward to extend Eq. 2 to multiple sound sources at different azimuth angles -
simply sum up the convolution results for each of the sound sources with its corresponding
HRIRs. Let xL, xR, xC, xLS and xRS denote the signals in the L, R, C, LS, and RS channels (with
time index n being dropped). If the sound sources are to be reproduced (using headphones) with
spatial angles at a,β,0 (zero), g, and δ degrees respectively, the composite signal yR can be
calculated as

yR ¼ ðxL*ha;R þ xR*hb;R þ xC*h0;R þ xLS*hg;R þ xRS*hd;RÞ=5
¼ 1

5

P
i¼fL;R;C;LS;RSg

xi*hθðiÞ;R ð3Þ

where θ(i) represents one of the azimuth angles. The composite signal yL can be obtained by an
equation similar to Eq. 3. In the above calculation, the LFE channel is not considered because it
is not associated with any particular spatial direction. If necessary, it can be easily mixed into yL
and yR. In the rest of the paper, if not causing confusion, we shall also drop the subscript R and L
for brevity. In Eq. 3, the values of a, β, g and δ may be arbitrarily chosen as long as the angles
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are reasonable. However, it is a common practice to place the loudspeakers at symmetrical
locations. That is,

a ¼ 360� b and g ¼ 360� d: ð4Þ

With these constraints, one set of possible angle values is as follows: a0315, β045, g0
125, and δ0235 (degrees).

Though straightforward, direct implementation of Eq. 3 is computationally expensive. The
HRIR measurements provided by the MIT’s Media Lab contain at least 128 coefficients
(compact version) for each impulse response h[n]. Therefore, computing a single sample of
yL and yR requires 128×1001280 multiply-and-accumulate (MAC) operations. To process an
audio program in a DVD with a sample rate of 48 ks/s, a total of 61,440,000 MAC operations
per second is required. Since most digital signal processors execute one MAC operation in one
instruction, implementation of Eq. 3 requires at least 61.4 MIPS (million instructions per
second). As a figure for comparison, a low-cost MP-3 encoder consumes about 35 MIPS
[20]. Since an MP-3 encoder needs to perform a series of complicated operations [19, 20]
including filter bank, Modified Discrete Cosine Transform, and nonlinear quantization, spend-
ing 61.4 MIPS solely for the task of reproducing spatial sound is apparently too expensive.
Therefore, it is desirable to reduce the amount of computations.

3 Related work

One of the challenges of using HRIRs is the high computational cost. To reduce the cost,
Sakamoto et al. [17] proposed to divide the input signals into three frequency bands, and
each band uses a different filter to approximate a portion of the HRTF. By doing so, they
achieved a performance of about 50 MIPS for monaural (one channel) inputs. For low-cost
digital signal processors, this figure is still too high.

A large number of HRIR measurements has been available and has drawn many attentions to
compress or approximate them. By using twelve principal components [12], it is possible to
approximate the individual HRIR within 5 % of modeling error. Though this approach offers
space savings, it cannot be used to reduce computational cost at run-time, because the convolu-
tion operations required in Eq. 3 cannot be performed directly with principal components.
Therefore, it is necessary to convert the principal components into the resulting approximated
HRIR before the convolution. Since the approximated HRIR has the same number of coefficients
as the original one, this method does not provide any computational savings if Eq. 3 is in use.

Since the measured HRIRs are of finite duration, various researchers have proposed using
pole-only [15, 16] or pole-zero transfer functions to approximate HRIRs [4, 8]. One concern
of the pole-only approximation is that it is more sensitive to numerical errors if fixed-point
arithmetic is to be performed. Unfortunately, fixed-point arithmetic is usually the only
arithmetic available in a low-cost digital signal processor. For the pole-zero approaches,
the locations of poles and zeros can be obtained through various search methods. In this
approach, different sets of poles are used for different HRTFs (corresponding to different
source locations) [4, 8]. However, in reality there is a set of common poles in all HRTFs due
to the resonance of the ear canal. It is the basic idea of the CAPZ (Common-Acoustical-Pole
and Zero) model [11]. By using common poles, it is possible to further reduce the compu-
tational cost of Eq. 3 (to be described in section 6.1). Since the CAPZ model is a better
approach for HRIR approximation, we will use it as a reference to evaluate the performance
of the proposed approach in section 6.
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4 The proposed approximation approach

When closely examining a typical HRIR, we observe that it can be roughly divided into four
sections, as shown in Fig. 2(a). The first and the fourth sections have very small coefficient
values, the second section has large coefficient values, and the third section is a small curve. Since
the first and fourth sections contain very small coefficient values, these values can be simply set as
zero without losing too much spatial information. On the other hand, coefficients of the second
section are large values, implying higher importance, and therefore as many of them should be
retained as possible. The third section, a small curve, is less important than the second section and
can be approximated by a flat line. The approximated impulse response is shown in Fig. 2(b).
With the proposed approximation, the computational cost of performing Eq. 3 is reduced.
Although the idea looks simple, finding the optimal locations and lengths of the second sections
for all of the HRIRs requires special techniques, which will be given in section 5.

The idea of dividing one HRIR into four sections is based on the following physical phenom-
ena. First, left and right ears of a listener do not hear the sound at the same time if the azimuth angle
of the sound direction is nonzero. The time difference is known as the ITD (given in section 2.1).
Therefore, the pair of HRIRs associated with the left and right ears have different ‘silent’ time
before exhibiting large magnitude responses. Consequently, any HRIR has the first section (called
section I in the following). Since the diameter of a human head is around 20 cm, the time difference
for the impulse sound reaching two ears in room temperature is (at most) around 0.6 ms, or
equivalently 26 samples with a sample rate of 44.1 ks/s. Once the impulse sound reaches the ear,
the sound wave is partially reflected by the pinna, head, shoulder, and torso. Through the ear canal,
finally the soundwave reaches the ear drum. The overall effect of these factors normally produces
an impulse response with duration of (less than) around 1.5 ms [12] (or 66 samples with 44.1 ks/s
sample rate). As the ear canal acts as a resonant system, its magnitude impulse response fluctuates
after receiving the impulse and then gradually decays. The part of response with large magnitude
constitutes the second section (section II), and that with smaller magnitude constitutes the third
section (section III). After the 1.5 ms duration, the response is very small and may be ignored.

Fig. 2 Original HRIR and approximated HRIR
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This part is the forth section (section IV). Based on our discussion, an HRIRmay need up to 26+
66092 samples to represent. In the MIT’s compact version, each HRIR has 128 samples (with a
sample rate of 44.1 ks/s). Therefore, every HRIR in the compact version satisfies the above
requirement. In fact, when we examine the HRIR dataset provided byMIT, we find that all of the
HRIRs possess four sections.

We now consider the computational complexity of the proposed approach. Let the
original impulse response be

h ¼ hI þ hII þ hIII þ hIV ð5Þ
where hI to hIV contain the coefficients of h in sections I to IV. Then, the approximated
impulse response is bh ¼ hII þ bhIII ð6Þ

where bhIII is the flat-line approximation of section III. Therefore, the convolution becomesby ¼ bh*x ¼ hII*xþ bhIII *x ð7Þ
For the first term hII*x, it is difficult to reduce the complexity. However, for second termbhIII *x , we may efficiently compute it. Since bhIII is a flat line, it can be represented asbhIII ½n� ¼ k0;mIII � n < mIII þ NIII , where k0 is a constant, mIII is the starting point of

section III, and NIII is the length of section III. With this notation, we know

byIII ½n� ¼ bhIII ½n�*x½n�
¼ PmIIIþNIII�1

m¼mIII

bhIII ½n�x½n� m�

¼ k0
PmIIIþNIII�1

m¼mIII

x½n� m�
 !

¼ k0
PmIIIþNIII

m¼mIIIþ1
x½n� m� þ x½n� mIII � � x½n� mIII � NIII �

 !
ð8Þ

S i n c e m I I I a n d N I I I a r e i n d e p e n d e n t o f n , w e k n ow byIII ½n� 1� ¼

k0
PmIIIþNIII�1

m¼mIII

x½n� m� 1�
 !

¼ k0
PmIIIþNIII

m¼mIIIþ1
x½n� m�

 !
. Therefore, from Eq. 8, we have

yIII ½n� ¼ k0 yIII ½n� 1� þ x½n� mIII � � x½n� mIII � NIII �ð Þ , which can be efficiently comput-
ed with one multiplication, one addition, and one subtraction. Therefore, the cost of
computing Eq. 6 is mainly determined by the length of section II. Consider the following
case. If NII

θðiÞ is the number of coefficients in hIIθðiÞ and F is the number of impulse responses

involved in Eq. 3, then the required number of MAC operations to generate a pair of output
samples for both channels is (with F subtraction operations ignored)

Cprop ¼ 2 �
XF
i¼1

NII
θðiÞ þ 1

� �
¼ 2 � ðM þ FÞ ð9Þ

whereM is the sum of all NII
θðiÞ . Please note that in an actual application, the exact location of

each division is pre-computed. Therefore, the parameter M is the only factor related to the
computational cost of reproducing multi-channel sound for headphones.
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In the experiments shown in Section 6, we use Eq.1 to obtain all necessary impulse
responses from the MIT’s dataset. However, in order to cover the general case, the presen-
tation of this paper does not take the advantage of the symmetry property (i.e. Eq. 1) in
computing yL and yR. Doing so can further reduce the computational cost [18]. It is
straightforward to modify the proposed approach to incorporate such a change.

Based on Eq. 9, ifM0220 and F05, the proposed approach reduces the computation cost
to about 35.2 % of the direct implementation. Thus, if a direct implementation requires 61.4
MIPS (given in section 2.2), the proposed approach with M0220 can be implemented with
21.6 MIPS, which is acceptable for many embedded devices. The modeling and composition
errors in this case will be given in section 6. If the approach of [18] is also used, the
computation cost is further reduced to around 10.8 MIPS.

5 Search algorithm for optimal truncation

5.1 Objective function for optimality

The key issue of the proposed approach is that, given M, how to optimally truncate the

original HRIRs to minimize the error between h and bh (called modeling error). To do so, we
need to define the objective (cost) function to be minimized first. For demonstration
purposes, we use mean-square error to represent the modeling error, although other objective
functions can also be easily applied to the proposed search algorithm. That is, we define the
individual modeling error of an HRIR as either (without normalization)

ei ¼
XN�1

n¼0

hθðiÞ½n� � bhθðiÞ½n�� �2
ð10Þ

or (with normalization)

ei ¼
PN�1

n¼0
hθðiÞ½n� � bhθðiÞ½n�� �2
PN�1

n¼0
h2θðiÞ½n�

ð11Þ

where N is the length of the impulse response. We’ll then examine whether normalization is
necessary based on experiments. The average modeling error is calculated as

eMD ¼ 1

F

XF
i¼1

ei ð12Þ

where F is the number of impulse responses to be approximated. Therefore, given a desired
value of M, an optimal approximation is achieved if eMD is minimized. Since taking the
logarithm operation on eMD does not affect the optimization criterion, the modeling error can
also be represented in dB.

5.2 Computational complexity for minimization

In the proposed approach, a good approximation of h heavily depends on how h is
partitioned into hI, hII, hIII, and hIV, especially on the length and the starting point of hII.
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Once hII is determined, hI is fixed, and since hIV can be easily determined by a predefined
threshold, hIII can also be computed.

We now consider the complexity of the search problem that determines the optimal
lengths and starting points for all hIIθðiÞ . Following the notation in Eq. 9, let M be the sum

of all NII
θðiÞ . The most straightforward method is to compute the modeling errors for all

possible lengths and starting points of NII
θðiÞ and then select the best one, a method known as

the exhaustive search. By doing so, the complexity for approximating five impulse responses
is ΩðM9Þ , where Ω denotes the lower bound asymptotic growth rate [6] (see Appendix A
for justification). Such a complexity would require a prohibitively long search time and
cannot be used in practice, even though the search algorithm is executed off-line with a high
performance computer (see also Appendix A).

Instead of using the exhaustive search method, we propose an algorithm (given in next
subsection) based on dynamic programming [6] to find the lengths and starting points for all
hIIi . The proposed search algorithm has a time complexity of O(FM3), where F is the number

of impulse responses to be approximated. Therefore, a set of optimal bh can be found within
a few seconds using a personal computer.

5.3 Search algorithm based on dynamic programming

For brevity, the search problem is called optimal allocation problem and is expressed simply as
‘allocatingM coefficients into F impulse responses’without emphasizing that the goal is to find
the lengths and starting points of section IIs so that the overall modeling error is minimized
(using either Eq. 10 or Eq. 11). Correspondingly, the proposed search algorithm finds the
optimal solution of allocating M coefficients into F impulse responses. We use A0{L,S} to
denote a solution to the problem, where L ¼ fl1; l2; . . . ; lFg and S ¼ fs1; s2; . . . ; sFg indicate
the lengths and starting points of the section IIs, respectively. For example, suppose 20
coefficients are to be allocated into 2 impulse responses. Then, A ¼ ff12; 8g; f15; 20gg
represents a solution, which allocates 12 and 8 coefficients to the first and second impulse
responses, respectively, and the starting points of the first and second impulse responses are at
15 and 20, respectively.

Note that, the optimal allocation problem is non-trivial, because an optimal search
algorithm must minimize the overall error of several impulses responses simultaneous-
ly, which requires considering too many combinations of lengths and starting points.
However, when F01, the problem becomes trivial. In this case, since all M coef-
ficients are to be allocated into the same impulse response, an optimal algorithm can
simply search for all possible starting points and find the best one, which can be done
in O(M2)time (there are O(M) starting points; each requires O(M) time computing the
modeling error, assuming the number of coefficients of the impulse response is
proportional to M). The proposed algorithm uses a divide-and-conquer strategy, which
breaks the problem into smaller subproblems until F becomes 1, which can be solved
easily.

Following the treatment of dynamic programming algorithms given in [6], the key
observation is that the problem exhibits optimal substructure, i.e., an optimal solution to
the optimal allocation problem contains within it optimal solutions to the subproblems.
Given j coefficients for allocation, an optimal solution must split j coefficients into 2
parts, one for the last impulse response and the other for the first (F-1) impulse
responses. Let the two parts to have k and (j-k) coefficients. Then, k coefficients are
allocated to the Fth impulse response and (j-k) coefficients are allocated to the 1st ,…,

Multimed Tools Appl (2014) 70:2167–2188 2175



(F-1) th impulse responses. In other words, once k is determined, the problem is reduced to two
smaller subproblems, one allocates k coefficients and the other allocates (j-k) coefficients. The
following Lemma states and proves the optimal substructure of the problem.

Lemma: Suppose A0{L,S} is an optimal solution of allocating j coefficients into F impulse
responses, where L ¼ fl1; l2; . . . ; lFg and S ¼ fs1; s2; . . . ; sFg indicate the lengths and

starting points of the impulse response, and j ¼PF
i¼1 li . Let k0lF and j� k ¼PF�1

i¼1 li .
Then, A0 ¼ fflFg; fsFgg is an optimal solution to the subproblem of allocating k coefficients
into the Fth impulse response. And, A00 ¼ ffl1; � � � ; lF�1g; fs;; � � � ; sF�1gg is an optimal
solution to the subproblem of allocating (j-k) coefficients into 1st ,…, (F-1) th impulse responses.

Proof: We will prove that A0 ¼ fflFg; fsFgg is an optimal solution to the subproblem of
allocating k coefficients into the Fth impulse response first. By contradiction, suppose that A′
is not an optimal solution to the subproblem. Then, there exists another solution B0 ¼
fflbg; fsbgg having a lower modeling error than A′. Let e(X) denote the modeling error of
applying a solution X. Then, eðB0Þ < eðA0Þ . We can combine B′ and A″ to create a
new solution B ¼ ffl1; � � � ; lF�1; lbg; fs;; � � � ; sF�1; sbgg to the original problem. Since
B also uses j coefficients, B is a legal solution to the original problem. But,
eðBÞ ¼ eðffl1; � � � ; lF�1; lbg; fs;; � � � ; sF�1; sbggÞ ¼ eðA00Þ þ eðB0Þ < eðA00Þ þ eðA0Þ ¼ eðAÞ,
which contracts the assumption that A is an optimal solution. A similar argument can be used
to prove that A00 ¼ ffl1; � � � ; lF�1g; fs;; � � � ; sF�1gg is an optimal solution to the subproblem of
allocating (j-k) coefficients into 1st ,…, (F-1) th impulse responses. For brevity, we will omit the
proof.

The above optimal substructure shows that we can build an optimal solution by splitting the
original problem into two subproblems, finding optimal solutions to the two subproblems and
then combining these optimal subproblem solutions. Assuming k is known (how to efficiently
find k will be given later), the first subproblem, allocating k coefficients into the Fth impulse
response, can be solved easily by searching all possible starting points of theFth impulse response.
The second subproblem, allocating (j-k) coefficients into 1st,…, (F-1) th impulse responses, can be
solved by recursion. Let e[i][j] denote the minimal error of allocating j coefficients into totally i
impulse responses with 1 � i � F , and error[i][j] be theminimal error of the ith impulse response
when j coefficients are used. From the two subproblems, e[i][j] can be defined recursively as

e½i�½j� ¼ error½i�½k� þ e½i� 1�½j� k� ð13Þ
where error[i][k] and e[i−1][j−k] are the errors of the first and second subproblems, respectively.
But, using Eq. 13 implies that we know the value of k, which we do not. Since k can be as small as
0 and as large as j, wemust examine all possible values of k to ensure that we find the optimal one.
Thus, the recurrence relation for computing minimal error e[i][j] becomes

e½i�½j� ¼
error½1�½j� if i ¼ 1;
error½i�½0� þ e½i� 1�½0� if j ¼ 0
Min0�k�jðerror½i�½k� þ e½i� 1�½j� k�Þ if i > 1:

8<: ð14Þ

Since the value of error[i][j] can be obtained by searching all possible starting points of the ith

impulse response, the recurrence relation can be used to solve the optimal allocation problem.
Instead of computing e[i][j] in a top-down fashion by a recursive program, it is more

efficient to perform the computation in a bottom-up fashion, i.e., storing e[i−1][j−k] in a
table and using it to compute e[i][j]. The algorithm to implement (14) is given below.
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01 procedure OptimalAllocation() is 
02 // Input: 
03 //    M: The desired total section II length (e.g., 220) 
04 //    N: Number of coefficients of each HRIR (e.g., 512) and N >= M
05 //    F: Number of HRIRs to be approximated (e.g., 5) 
06 //    h[i][j]: the coefficient hi[j] 
07 // Output: 
08 //    n[i][j]: hi ’s optimal II

iN , when j coefficients are used 
09 //    s[i][j]: optimal II

ih ’s starting point when j coefficients are used 
10 begin 
11      // Compute error[i][j] and s[i][j] 
12      for i := 1 to F do 
13           for j := 0 to N do 
14 min := ∞;
15                for k := 0 to N-j+1 do  // each k is a starting point 
16 h’ := An approximation of hi that uses only 
17                            h[i][k]..h[i][k+M-1] and the rest of  
18                            the coefficients are set as either zeros 
19                            or constant values (flat line);
20 h’_error := error between h’ and h[i] defined 
21                            by Eq. (10) or (11); 
22                     if (h’_error < min) then 
23                          error[i][j] := h’_error; 
24                          s[i][j] := k; 
25 endif 
26                end do 
27           end do 
28      end do 
29      // Initialize e[1][j] and n[1][j]; boundary condition i = 1 
30      for j := 0 to M do 
31           e[1][j] := error[1][j]; 
32           n[1][j] := j; 
33      end do 
34      // Compute e[i][j] with dynamic programming 
35      for i := 2 to F do 
36           e[i][0] := e[i − 1][0] + error[i][0]; 
37           n[i][0] := 0; 
38           for j := 1 to M do 
39                min := ∞; // infinity 
40                for k := 0 to j do 
41                     t := e[i − 1][j − k] + error[i][k]; 
42                     if (t < min) then 
43                          min := t; 
44                          e[i][j] := min; // store the best e[i][j] 
45                          n[i][j] := k; // store the best n[i][j] 
46                     endif 
47                end do 
48           end do 
49      end do 
50 end
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In the algorithm, lines 12–28 compute the values of error[i][j] by searching all possible
starting points. In addition, when an error[i][j] is found, the entry s[i][j] records the best
starting point associated with the error[i][j]. Lines 30–33 initialize e[1][j] based on the i01
boundary condition. Line 36 initializes e[i][0] based on the j00 boundary condition. Lines
38–48 search for the best k that gives the minimal error.

When the algorithm finishes, the table n and s can be used to retrieve the optimal section
II length and starting point of each impulse response. Each n[i][j] stores the optimal value of
k (line 45), when j coefficients are allocated into i impulse responses. That is, the optimal
solution allocates the ith impulse response with n[i][j] coefficients starting at the point
s[i][n[i][j]]. The rest of lengths and starting points can be determined similarly. For example,
suppose M0220 and F05, the optimal is stored in n[5][220] with its optimal starting point
stored in s[5][n[5][220]]; the optimal NII

4 is stored in n[4][220−n[5][220]] with its optimal
starting point stored in s[4][n[4][220−n[5][220]]; and so on.

In the following, we use a simple example to illustrate how the algorithm works. For
simplicity, the example allocates only M04 coefficients into F03 impulse responses. The
coefficients of the three impulse responses to be approximated are given in Table 1(a)
labeled as h[i][j], where each HRIR has N05 coefficients and each coefficient is an integer
between −32768 to 32767 corresponding to −1 to 1 in the floating-point representation. In
the actual computation, the integer value is converted into a floating-point number by
dividing 32768. From h[i][j], the algorithm obtains error[i][j] (Table 1(b)) and s[i][j] (Table 1
(c)) using Eq. 10 (lines 12–28). For example, error[3][2] stores the minimal error of using 2
points for the 3rd HRIR, i.e., the coefficients {0, 100, 20, 10, 0} are approximated as {0, 100,
20, 5, 5} (themiddle two values 100 and 20 are preserved and the last two values 10 and 0 in the

original HRIR are averaged into 5 and 5). Following Eq. 10, we have error½3�½2� ¼
ð10=32768� 5=32768Þ2 � ð0� 5=32768Þ2 � 4:7� 108: The special case of error[i][0] is
considered as approximating all coefficients with a flat line (since no coefficients are preserved).
Table 1(d) shows the resulting e[i][j]. Note that e[1][j] is the same as error[1][j] (line 31). The
computation of the rest of e[i][j] follows lines 38–48 (or the recurrence). For example,
e[3][4] is determined by the minimal value among (error[3][0]+e[2][4]), (error[3][1]+
e[2][3]), (error[3][2]+e[2][2]), (error[3][3]+e[2][1]), and (error[3][4]+e[2][0]). Therefore,
e½3�½4� ¼ Minð6:6� 10�6 þ 0; 1:9� 10�7 þ 5:6� 10�7; 4:7� 10�8 þ 7� 10�6 , 0þ 2:6�
10�5; 0þ 5:2� 10�5Þ ¼ 1:9� 10�7 þ 5:6� 10�7 ¼ 7:5� 10�7 . Since (error[3][1] +
e[2][3]) gives the minimal error, the value of k is 1 and is stored in n[3][4] (line 45). The
resulting n[i][j] is shown in Table 1(e). From n[3][4] (marked by a circle), we know that 1
coefficient is allocated to the 3rd impulse and the starting point is s[3][1]02. The rest of the 4−10
3 coefficients are allocated to the first two impulse responses. Again, from n[2][3] (marked by a
circle), we know that 2 coefficients are allocated to the 2nd impulse response, and the starting
point is s[2][2]03. Finally, the 1st impulse response is allocated with n[1][1]01 coefficient and
starts at s[1][1]02.

The time complexity of the algorithm can be easily determined from the algorithm. Since
lines 16–21 can be computed in O(N) time, the algorithm has a complexity of O(FN3+FM2).
In practice, M is proportional to N. Therefore, the complexity can also be rewritten as O
(FM3). Note that the widths of table e and error are not the same (M and N, respectively). To
make the algorithm easier to understand, we assume N≥M, which is true for MIT’s full-
length HRIR dataset (N is 512 and a typical M is 220). In case that M>N, the algorithm
needs a slight modification. Line 31 could access error[1][M], which does not exist;
therefore, it should be modified to use error[1][N] instead of error[1][j], when j>N. For the
same reason, line 40 should be modified to limit the range of k not to exceed N, when j>N.
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6 Experiments and results

This section compares the performance of the proposed approach and the CAPZ
method. The performance is measured by modeling error and composition error, to
be given below.

Table 1 An example of allocating M04 coefficients into F03 impulse responses

(a) ]][[ jih : the coefficient of hi[j] 

j=1 j=2 j=3 j=4 j=5 

i=1 0 100 30 0 0 

i=2 0 0 200 200 0 

i=3 0 100 20 10 0 

(b) ]][[ jierror

j=0 j=1 j=2 j=3 j=4 j=5 

i=1 6100.7 −× 7106.5 −×  0 0 0 0 

i=2 5105.4 −× 5109.1 −×  0 0 0 0 

i=3 6106.6 −× 7109.1 −× 8107.4 −×  0 0 0 

(c) ]][[ jis : the resulting optimal starting point of each HRIR is marked by a circle 

j=0 j=1 j=2 j=3 j=4 j=5 

i=1 x 2 2 1 1 1 

i=2 x 3 3 2 1 1 

i=3 x 2 2 2 1 1 

(d) ]][[ jie

j=0 j=1 j=2 j=3 j=4 

i=1 6100.7 −× 7106.5 −×  0 0 0 

i=2 5102.5 −× 5106.2 −× 6100.7 −× 7106.5 −× 7102.6 −×
i=3 5108.5 −× 5102.3 −× 5104.1 − × 6102.7 −× 7105.7 −×

(e) ]][[ jin : the optimal length of each HRIR is marked by a circle 

j=0 j=1 j=2 j=3 j=4 

i=1 0 1 2 3 4 

i=2 0 1 2 2 2
i=3 0 0 0 0 1
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6.1 Reducing computational cost for the CAPZ approach

Since the CAPZ (Common-Acoustical-Pole and Zero) model [11] is used in the experiments
for performance comparison, we briefly explain why the common poles offer computational
savings when Eq. 3 is applied. To see the reason, let the CAPZ-approximated HRIRs be
written as

ehθðiÞ ¼ pCM*zθðiÞ ð15Þ
where pCM and zθ(i) represent the impulse responses due to the poles and zeros in the
approximated transfer function with an azimuth of θ(i). Thus, when using Eq. 3, we obtain

byR ¼
X

i¼fL;R;C;LS;RSg
xi*ehθðiÞ;R ¼

X
i¼fL;R;C;LS;RSg

xi*zθðiÞ;R

0@ 1A*pCM ð16Þ

Using Eq. 16 implies savings in arithmetic operations by taking advantage of associativ-
ity. Considering that the common poles can be implemented as an IIR filter, the implemen-
tation of Eq. 16 with Npole common poles and Nzero zeros requires Npole þ 5 � ðNzero þ 1Þ
MAC operations. More generally, suppose that there are F impulse responses, the compu-
tational cost of the CAPZ approach can be expressed as the function CCAPZ ¼ 2 � ðNpole þ
F � NzeroÞ for a pair of output samples (for left and right channels). For F05, Npole020, and
Nzero040, the required computation is 21.6 MIPS, which is the same as M0220 coefficients
of the proposed approach (see Section 4). Therefore, when comparing CAPZ with the
proposed approach, we will also use M to represent the computation cost of the CAPZ
approach with M ¼ Npole þ F � Nzero .

6.2 Experiment overview

Before conducting experiments, we need to establish a criterion to assess the relative
performance of the proposed approach and the CAPZ approach. In addition to evaluating
modeling errors, we also consider composition error, the error of the composite signals (yL
and yR) produced by a particular approach. Judging from the application, we define the
composition error as

eCP ¼ 1

2
10 log

P
n
ðyL½n� �byL½n�Þ2P

n
y2L½n�

þ 10 log

P
n
ðyR½n� �byR½n�Þ2P

n
y2R½n�

0B@
1CA ð17Þ

where y[n] is the result obtained using Eq. 3 and by½n� is from the approximation method.
In the experiments, unless otherwise stated, we assume that the number of audio channels

is five (F05), the angles are a045, β0315, g0235 and δ0125 (degrees), and the HRIRs to
be approximated contain the coefficients of the compact version (N0128) provided by
MIT’s media lab [9]. For the evaluation of composition errors, except for the last experiment,
we use the 5.1-channel audio extracted from a Dolby digital trailer (Broadway) as the source
signal. The duration of the signal is around 30 s.

The sequence of the experiments is as follows. The first experiment evaluates the compo-
sition error produced by the proposed approach. The second and third experiments compare the
modeling errors and composition errors, respectively, of the proposed approach with the CAPZ
approach. The fourth experiment is similar to the second and third experiments except that the
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full-length version (N0512) of HRIR dataset and a different set of azimuth angles are used. To
study the performance with more varieties of audio signals, the last experiment compares
composition errors for more multi-channel audio signals. The experimental results will show
that the proposed approach is better than the CAPZ approach.

Before the first experiment, we perform visual inspection of section IIs obtained by the
proposed search algorithm. We use M0220 coefficients to obtain the five approximated
HRIRs. Figure 3 shows each original HRIR and its section II marked with vertical lines.
Note that the starting points and lengths of the section IIs are all different. A thorough
examination by the authors confirms that the proposed search algorithm indeed minimizes
the overall modeling error and gives the optimal number of coefficients and starting points
for each response.

6.3 Experiment one

The first experiment evaluates the composition error of the proposed approach. In this
experiment, we investigate the following three problems: (i) Of the Eqs. 10 and 11 used in
the search algorithm, which will produce lower composition errors? (ii) Does a nonzero
value in section III actually improve the composition accuracies? (iii) How does the increase
of M affect composition errors? Are there any suitable values of M that can be used for
practical applications? To answer these questions, we will plot a chart showing the compo-
sition error under different values of M, with or without section III for both modeling error
criteria.

The results are shown in Fig. 4, where “without normalization” and “with normalization”
indicate that the results are obtained by using Eqs. 10 and 11 , respectively, and “with sec.
III” and “without sec. III” indicate that the results are obtained using a nonzero value or zero
in section III, respectively. From Fig. 4, we know that using Eq. 10 yields better composition
errors. This is because, with normalization, an HRIR with smaller energy and one with larger
energy are considered equally important when the optimization algorithm determines the
lengths of section IIs. But during the signal composition process in Eq. 3 or Eq. 7, an HRIR
with larger energy actually contributes a larger portion in the composition error and, thus,
needs a longer length to reduce composition error. Figure 4 also indicates that using flat lines
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(section IIIs) can reduce the composition error, and a larger M (longer section IIs) gives a
smaller composition error. Overall, the proposed approach yields a composition error of less
than −15 dB for M0220. Since using Eq. 10 and flat lines give better results, the following
experiments will always use Eq. 10 and flat lines (section IIIs).

6.4 Experiment two

The second experiment compares the modeling errors of the proposed approach with
the CAPZ approach. Due to the use of symmetrical HRIRs, reporting modeling errors
for ten HRIRs (two HRIRs per direction) is not necessary, as there are only five sets
of modeling errors. Therefore, we report HRIRs associated with left ear only. To
simplify the comparison, the number of poles used in the CAPZ approach is set to 20,
and only the number of zeros varies. In the CAPZ case, M is 20+5⋅Nzero (see
Section 6.1). For example, when M0120, the number of zeros used in each impulse
response is ð120� 20Þ � 5 ¼ 20 . The results are plotted in Fig. 5(a), indicating that
given the same amount of computation (M), the proposed approach provides smaller average
modeling errors than the CAPZ approach. To gain more insights, the individual modeling errors
are also given in Fig. 5(b), which shows that the CAPZ approach has a larger variation of errors
among different HRIRs than the proposed approach. Because the HRIR having the largest
modeling error eventually dominates the composition error, a good approximation approach
should have small variations of errors among different HRIRs. In this regard, our approach is
better. From the viewpoint of computational cost, our approach produces individual modeling
errors below −15 dB with 220 coefficients, but the CAPZ approach requires about 300
coefficients to achieve the same result.

6.5 Experiment three

The third experiment compares the relative composition errors between the proposed
approach and the CAPZ approach. To further investigate the influence of the number of
common poles on the composition error of the CAPZ approach, we also evaluate the
composition errors with 15 and 30 common poles. The results, given in Fig. 6, show that
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the proposed approach has a better performance on composition errors. The reason that the
CAPZ approach has larger composition errors is partially due to its larger variation of
modeling errors shown in the previous experiment. The results also indicate that using more
poles in the CAPZ approach does not significantly improve its composition errors.
Therefore, for the CAPZ approach, increasing the number of zeros is the only effective
method to reduce composition errors.

6.6 Experiment four

The fourth experiment studies the error performance of approximating the full-length HRIRs
(N0512) with a different set of azimuth angles, namely, α030, β0330, γ0240, and δ0120

100 150 200 250 300 350 400 450 500 550
-40

-35

-30

-25

-20

-15

-10

-5

0

A
ve

ra
ge

 m
od

el
in

g 
er

ro
r 

(d
B

)

proposed
CAPZ

100 150 200 250 300 350 400 450 500 550
-40

-35

-30

-25

-20

-15

-10

-5

0

M
od

el
in

g 
er

ro
r 

(d
B

)

0 degrees, proposed
45 degrees, proposed
135 degrees, proposed
225 degrees, proposed
315 degrees, proposed
0 degrees, CAPZ
45 degrees, CAPZ
135 degrees, CAPZ
225 degrees, CAPZ
315 degrees, CAPZ

Number of coefficients (M)

(a) 

Number of coefficients (M)

(b) 

Fig. 5 The modeling errors of the
proposed approach and the CAPZ
approach. (a) Average modeling
error. (b) Individual modeling
errors

Multimed Tools Appl (2014) 70:2167–2188 2183



(degrees). The results are shown in Fig. 7, which reveals that the characteristics of the
composition errors of the first and the second sets of angles are very similar. For most of the
computational regions (M<1000 andM>1300), the proposed approach has lower composition
errors than those of the CAPZ approach. The composition errors of the full-length version are
much higher than those of the compact version, because the values of hθ(i)[n] in the full-length
version are not zeros for n>128. These values, though very small, still contribute to making
errors. Overall speaking, we can conclude that the proposed approach gives a composition error
better than the CAPZ approach when the computing resources are limited (M<1000).

6.7 Experiment five

This experiment studies whether the proposed approach is effective for audio signals
of different varieties. Several test items from different sources are used. The first and
second one are also Dolby-digital trailers designed to demonstrate the capability of
the five-channel surround sound. The third and fourth items are musical works from Internet
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[2]. These works contain different types of instruments played at different locations (azimuth
angles). However, most instruments are located in front of the audience (i.e., in the front
channels). The fifth one is a surround test file containing a female voice saying ‘front left’,
‘center’, etc. for each channel. Items sixth to ten are video clips retrieved from DVD discs. The
first eight items have duration of 30 s or less, whereas the last two items have 10 min. The
details of the test pieces are listed in Table 2. Overall, these test pieces cover many real scenarios
a player may encounter. To simplify the comparison, we use M0220 for all test items. The
resulting composition errors are given in Fig. 8, which shows that the proposed approach
constantly outperform the CAPZ approach for all test items. We also note that the composition
error is a function of audio contents, a reasonable situation. However, the proposed approach
produces composition errors with much less fluctuation than the CAPZ does. Therefore, the
proposed approach not only performs better, but also more consistently.

7 Conclusions

In this paper, we propose a method to optimally truncate HRIRs for reproducing spatial sound for
headphones with a lower computational cost. The approximated impulse response contains a
portion of the original impulse response plus a flat-line. The numbers of coefficients preserved in
the approximated impulse responses are determined by a dynamic programming algorithm. The
experimental results show that the proposed approach yields modeling errors to less than −15 dB
when the amount of computation is about 35 % of that required in the direction computation. We

Table 2 The test items used in experiment five

Index Content

1 Dolby Digital Trailer: Canyon

2 Dolby Digital Trailer: Temple

3 Secret World [2], first 30 s

4 A Lifetime of Moments [2], first 30 s

5 5.1 Surround Test File [2]

6 DVD Release of Iron Man II (with dialogue and background music, 30 s)

7 DVD Release of Robin Hood (with dialogue and background sound of forest, 30 s)

8 DVD Release of Unstoppable (with dialogue and background noise, 30 s)

9 Same as item 6, duration 10 min

10 Same as item 8, duration 10 min.
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also implement the CAPZ approach as an alternative approach for comparison. Given the same
amount of computation, the proposed approach is better than the CAPZ approach in terms of both
modeling and composition errors. Therefore, when computing resources are limited, the proposed
approach is a better choice to reproduce spatial sound for headphones.

Appendix A. Computational complexity of exhaustive search

This appendix briefly discusses the lower-bound time complexity of using an exhaustive search
to find optimal section IIs, i.e., the optimal starting points and lengths (Ni

II) of section IIs. Let

the number of impulse responses be F, the number of coefficients in a response be N, M ¼PF
i¼1 N

II
i , and, for simplicity, N0M (M is proportional to N in practice). An allocation ofM is

an assignment of the values of N1
II … NF

II satisfying the constraint that M ¼PF
i¼1 N

II
i . For

example, if F05 andM0100, a possible allocation isN1
II01,N2

II01, N2
II01,N3

II01, N4
II096.

In this case, since N1
II01, the section II of the first impulse response has a total of N possible

starting points. An exhaustive search must compute the modeling errors of all possible distinct
allocations and starting points, and record the one with the smallest error. We will show that
there exists at least Ω(MF−1) distinct allocations, and each of the distinct allocation has at least
Ω(MF−1) distinct combinations of starting points. Therefore, an exhaustive searchmust compute
ðMF�1 �MF�1Þ ¼ ðM 2F�2Þ distinct modeling errors. Since computing a particularmodeling error
requires Ω(N)0Ω(M) time (Eq. 10 or Eq. 11). The complexity of an exhaustive search is Ω(M2F−1).

Let’s consider the number of distinct allocations first. Since we are concerned with the
lower bound, we do not need to calculate all possible distinct allocations. Instead, we
consider a subset of all possible distinct allocations, one with the restriction that 1 � NII

1 �
M
F ,…, 1 � NII

F�1 � M
F . Under this restriction, N1

II have M
F different possible values; so are

N2
II …NF−1

II . Note that this restriction requires F � 1 � PF�1

i¼1
NII
i � ðF�1Þ

F M , and therefore

there must exist a value of NF
II that satisfies M ¼PF

i¼1 N
II
i . In other words, all combina-

tions of possible values of N1
II…NF−1

II are legal and are distinct allocations. Therefore, there

exist Ω MF�1

FF�1

� �
distinct allocations. Since F is typically a constant (e.g., 5), FF−1 is also a

constant (e.g., 540625). The number of distinct allocations can be simplified as Ω(MF−1).
We now calculate the number of possible starting points for each distinct allocation. Normally,

for the ith impulse response, depending on the value ofNi
II, the number of distinct starting points can

be as small as 1 (when Ni
II0N), and as large as N (when Ni

II01). However, for the first (F−1)
impulse responses, we have made the restriction that 1 � NII

i � M
F . When Ni

II01 and NII
i ¼ M

F ,

the number of distinct starting points are N and N � M
F , respectively. Thus, each of the first (F−1)

impulse response has at least Ω(M) distinct starting points. Therefore, the first (F−1) impulse
responses alone have Ω(MF−1) possible combinations of starting points. Note that we did not count
the starting points of theFth impulse response. This is safe becausewe are calculating a lower bound.

Since there are Ω(MF−1) distinct allocations and each allocation has Ω(MF−1) distinct
combination of starting points, an exhaustive search must compute ðMF�1 �MF�1Þ ¼
ΩðM 2F�2Þ different possible modeling errors. The modeling error of each allocation can be
calculated in Ω(N)0Ω(M) time according to Eq. 10 or Eq. 11. Therefore, the complexity of an
exhaustive search becomes ΩðM 2F�2 �MÞ ¼ ΩðM2F�1Þ . If F05 (five-channel audio) and
M0220, the number of computations is at least proportional to M 9 ¼ 1:2� 1021 . For a
computer that can compute one square and one addition in Eq. 10 in 10−8s, it would take 3.8×
105 years to find an optimal solution, which is clearly impractical.
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