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Abstract Huge amounts of video are being recorded every day by surveillance
systems. Since video is capable of recording and preserving an enormous amount
of information which can be used in many applications, it is worth examining the
degree of privacy loss that might occur due to public access to the recorded video.
A fundamental requirement of privacy solutions is an understanding and analysis
of the inference channels than can lead to a breach of privacy. Though inference
channels and privacy risks are well studied in traditional data sharing applications
(e.g., hospitals sharing patient records for data analysis), privacy assessments of video
data have been limited to the direct identifiers such as people’s faces in the video.
Other important inference channels such as location (Where), time (When), and
activities (What) are generally overlooked. In this paper we propose a privacy loss
model that highlights and incorporates identity leakage through multiple inference
channels that exist in a video due to what, when, and where information. We model
the identity leakage and the sensitive information separately and combine them to
calculate the privacy loss. The proposed identity leakagemodel is able to consolidate
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the identity leakage throughmultiple events andmultiple cameras. The experimental
results are provided to demonstrate the proposed privacy analysis framework.

Keywords Privacy ·Surveillance ·Video ·Modeling ·Events ·Anonymity

1 Introduction

Sensor traces have found vital applications in a variety of diverse scenarios, such as
logistics, advanced driver assistance systems, medical care, public security, defense,
aerospace, robotics, industrial production, precision agriculture [18], traffic monitor-
ing, and policy making [2, 7]. However, the use of sensory data in these scenarios
has often raised privacy concerns. The privacy concerns get more serious with video
sensors. This is because people generally don’t like their activities being recorded and
watched by others. The main challenge here is to understand and analyze various
inference channels that can result in a breach of privacy. While such inference
channels are well studied in the context of traditional data sharing applications (e.g.,
a hospital releasing patient records and GPS based location aware services), it is
challenging to understand inference channels embedded in semantically rich video.

In the past works on privacy preserving applications of video, it has been assumed
that the identity leakage itself is equivalent to the privacy loss [5, 33]. We recognize
that privacy loss occurs when an adversary is able to map an identity to the sensitive
information present in the video, for example their habits, physique, companions, etc.
The adversary can either be a human being with prior knowledge or an automated
system with pattern information obtained through data mining and similar learning
techniques [11]. There has been a great deal of work in privacy modeling in the
field of video surveillance. In these works, privacy is modeled as a binary variable
based on the presence of faces [5, 12, 19, 33] or silhouettes [15]. While removing the
facial information is necessary for privacy preservation, it is not sufficient. Saini et al.
[24] identified implicit identity leakage channels which exist even in the absence of
the facial information. However, in this work the authors only considered privacy
loss from a single camera video. The access to multiple camera videos may cause
additional privacy loss in the following ways:

– The adversary can correlate persons in multiple video streams and observe more
activities resulting in increased chances of identity leakage and privacy loss. For
example, from a single camera generally we cannot infer what places a person
visits or whom he meets over a period of time at different places. But this
information can be easily extracted by correlating people over multiple camera
videos.

– When an adversary identifies a person in a video, he can use this information
to identity other persons in the video. Furthermore, this leakage could be
propagated to other camera videos if the adversary is able to correlate people
across multiple videos.

In the model proposed in [24], the activity information is measured as a binary
variable for the whole video clip. It has completely ignored how many activities
there are in the video. However, the chance of identity leakage increases with the
amount of activity information. For example, it is easier to identify a person in a ten
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minute video full of activities rather than in a one hour video in which the activities
effectively occur only for a short duration of one minute. The same is true for privacy
loss; the chances of privacy loss generally increase with the number of activities in
the video.

In this paper we analyze the implicit inference channels in the case ofmulti-camera
surveillance videos and provide an enhanced model to measure the privacy loss due
to what, when, and where, i.e. W3-Privacy. In the proposed model, we first divide
the video into a sequence of events and then analyze these events for privacy loss.
Information extraction is applied to find different types of evidence what, when and
where. The evidence information is used to measure the identity leakage that can
occur due to each event. To incorporate the identity leakage due to event patterns,
we prepare event lists for each person and fuse the identity leakages from all the
events in the list using the anonymity based approach [28]. We separately measure
the the amount of sensitive information as sensitivity index, and model privacy loss
as a probabilistic product of identity leakage and the sensitivity index. While the
proposed event based privacy model incorporates the breach in the current privacy
methods, it also integrates seamlesslywith currently growing research on event-based
semantic representation of video [8, 10, 21]. The model measures the privacy at the
semantic level in comparison to the earlier approaches which are mainly based on
regions of interest (RoI) such as face and blob.

The main contributions of this paper are summarized as:

– A model that captures the increase in the identity leakage due to the simultane-
ous presence of multiple events.

– An assessment of privacy loss based on identity leakage and the associated
sensitive information present in the video.

– Extending the model for privacy loss assessment to multi-camera surveillance
videos.

The paper is laid out as follows. In Section 2, we describe the past works related to
privacy loss assessment in video surveillance and discuss the novelty of the proposed
work. Section 3 presents the proposed work. Various definitions used in the paper
are provided in Section 3.1 and identity leakage is modeled in Section 3.2. A model
to measure sensitivity of the video follows in Section 3.3 and privacy loss assessment
in Section 3.4. We provide experimental results in Section 4, along with a discussion
on the deployment of the model in real systems in Section 4.4. Finally we conclude
the paper in Section 5.

2 Related work

In the past works, the privacy loss is often viewed as a discrete value. This set could
be of size two (privacy is preserved or lost) [12, 15, 20, 23, 25, 29] or a fixed number
[19, 33]. To the best of our knowledge, we are the first to model privacy loss as a
continuous variable in the range [0,1] consolidating identity leakage through events
and event patterns.

Privacy preservation has been studied by many researchers in the video surveil-
lance community, leading to a number of data suppression techniques. In these
techniques, the image regions occupied by humans are transformed partially or fully
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Table 1 A summary of related work

Work Implicit Multi- Sensitive Modeling Consideration
channels camera information binary/continuous of events

Boyl et al. [4] No No No Binary No
Senior et al. [25] No No No Binary No
Moncrieff et al. [19] No No No Fixed levels No
Fidaleo et al. [12] No No No Binary No
Wickramasuriya et al. [33] No No No Fixed levels No
Koshimizu et al. [15] No No No Binary No
Spindler et al. [27] No No No Fixed levels No
Thuraisingham et al. [29] No No No Binary No
Carrillo et al. [5] No No No Binary No
Paruchuri et al. [20] No No No Binary No
Qureshi et al. [23] No No No Binary No
Saini et al. [24] Yes No No Continuous Single
Proposed model Yes Yes Yes Continuous Multiple

to hide the identity information. For instance, [12] proposed to use a filter to detect
and remove the facial information before saving it onto the server until the person’s
behavior is considered suspicious. Similar strategies are adopted in works [4, 5, 25] to
preserve privacy in video, i.e. if a person’s face is obscured in the video, the privacy
is considered preserved. In another set of works, the whole body is replaced by a
solid color, estimated background, bar, dot, edges, border, silhouette, or mosaic [6].
While these works don’t model privacy loss explicitly, they assume that hiding bodily
cues (such as faces) is enough for privacy preservation. They have overlooked other
implicit inference channels associated with what (activity), where (location where
the video is recorded) and when (time when the video is recorded). An adversary
can observe the behavior, look at the places visited and use prior knowledge to infer
identity information.

Table 1 presents a summary of existing works and shows how the proposed
work is novel in comparison. This summary has been provided from the following
aspects: whether implicit inference channels are considered; whether privacy loss
is modeled for surveillance video from multiple cameras; whether the notion of
sensitive information has been used in privacy loss computation; whether privacy loss
is determined as a binary or continuous value; and whether privacy loss is determined
based on single or multiple events in the video. It is clearly shown in the table that
the proposed work is novel in many aspects.

3 Proposed work

3.1 Definitions

For the sake of brevity, let us first define the key terms used in the paper.

Definition 1 (Event) The event definition has been adopted from [3]: ‘Event is a
physical reality that consists of one or more living or non-living real world objects
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(who) having one ormore attributes (of type) being involved in one ormore activities
(what) at a location (where) over a period of time (when)’.

Definition 2 (Identity leakage) The probability with which an adversary can identify
an individual in the video.

Definition 3 (Anonymity) The size of the group of people who can not be distin-
guished from each other with the information available in the video.

Definition 4 (Sensitivity index) This is a measure of sensitive information in the
video for which an individual feels a privacy violation would occur if made available
to public.

Definition 5 (Privacy loss) This is defined as the probability that an adver-
sary will be able to gain sensitive information about an individual depicted in
the video.

Definition 6 (Implicit channels) Except facial information, all other means of iden-
tity leakage are called implicit channels of identity leakage.

Definition 7 (Evidence) This is the information which is extracted from the video
data. The facial information is termed as “who” evidence, any activity related
information is termed as “what” evidence, temporal information is said to be “when”
evidence, and spatial information as “where” evidence. These evidence types have
been identified as main aspects of a generic event model [32].

3.2 Identity leakage

In the proposed framework, the privacy loss is determined based on the identity
leakage and association of the identity with the sensitive information present in the
video. This is illustrated in Fig. 1.

The aim of an adversary is to establish a relation between an identity and sensitive
information present in the video. Hence, the first step in privacy modeling is to
determine the extent of identity leakage. Let us start with the analysis of the human

Identity Leakage
Analysis

Sensitive 
Information 
Detection

Privacy Analysis

Privacy Loss

Video Sequence

Fig. 1 The process of assessment of privacy loss of individuals in the video
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Table 2 Different idiosyncrasies which human beings use in order to recognize other people

Evidence Idiosyncrasy Example

who Face The face is considered to have features which
distinguish people accurately.

what Clothes Depending on their taste, people repeat a particular
style of clothes.

Gait Many people have a particular way of moving
their body parts.

Who else they meet A person meeting a professor very frequently is
probably one of his students.

Social behavior This includes gender specific, culture specific,
and religion specific behavior.

when Timing of actions What time they have lunch, what time they go
to the office etc.

where Spatial information A person inside a particular food stall is most
likely the owner.

recognition system. We recognize people generally by their name, face, and habits
etc. Table 2 enumerates usual idiosyncrasies used by human beings to recognize
fellow humans. In our formalization of identity leakage, we model ‘face’ as who
evidence, ‘gait’ and ‘social behavior’ as what evidence, ‘time’ as when evidence, and
spatial information as where evidence [24]. Other aspects such as ‘associated objects’
and ‘who else they meet’ can be considered by determining the number of objects
present in the video.

We measure the identity leakage through the degree of anonymity. An identity
leakage with κ-anonymity means that the size of the smallest group with which the
adversary can associate the individual’s identity is κ [28]. With the detection of each
idiosyncrasy, we are able to associate the identity of the individual to a subgroup
of people (the default initial group is the world’s total population). For example,
when it is detected that the place is ‘Smart Lab, NUS’, through prior knowledge
we can relate the identity of the individuals in the video to the group of people
who visit ‘Smart Lab’. Furthermore, if the time is also detected as evening, we can
use the knowledge that only half of them are expected to be there, reducing the
association group by half. Hence, the identity leakage depends on prior knowledge
of the adversary and corresponding observations from the video. We model the
knowledge of an adversary as a rule based expert system [14]. In its knowledge
base, an expert system contains facts and beliefs learned over time, which can be
used to interpret the observations (in our case its purpose is to infer identity from
given evidence). The structure of the knowledge base and its application will be
discussed later. Note that a significant amount of work is being done on knowledge
modeling in the interdisciplinary fields of Natural Language Processing, Information
Retrieval, Machine Learning, and Knowledge Representation and Reasoning [31].
Systems are being developed that can learn these rules automatically [10, 11] and
make inferences, causing privacy loss.

Figure 2 shows the overall framework for identity leakage calculation. Events are
detected from the video of each camera and analyzed to enumerate the number
of targets. Consequently, an event list is constructed for each target. In the figure,
T1,T2, . . . ,Tm denotem targets and E1, E2, . . . , Em denote the corresponding event
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Fig. 2 The framework for Identity Leakage Analysis. Here, the term target is used to denote
individuals in the video

lists. The event list contains all the events in which a particular target is detected.
Overall identity leakage Ii for the target Ti is calculated by using anonymity based
fusion [28] of the information from the corresponding events in the event list Ei. The
anonymity is calculated for each target appearing in the detected events using the
adversary’s knowledge base.

3.2.1 Video segmentation

The input video from multiple cameras is segmented into events. This segmentation
can be performed based on various criteria. For example, one event can be the
video segment between two consecutive background frames encompassing non back-
ground frames with motion and activity [17]. Alternatively, video can be segmented
based on the number of people [26]. The proposed framework is independent of how
we segment the video.

3.2.2 Evidence detection

After segmenting the video into events, we detect evidence from each event. This is
done by analyzing the information present in the video. If the information is sufficient
to recognize the place, we consider that the where evidence is detected. Similarly, if
the event contains time information, it leads to when evidence. The what evidence is
always present if the event involves one or more persons; which is true by definition
(c.f. Section 3.1).

3.2.3 Proposition generation

The event related knowledge of an adversary can be represented using propositional
logic statements. This knowledge can be learned using machine learning techniques
or it can be an expert knowledge base related to the application scenario. Every
statement consists of a premise and conclusion. A premise is a proposition that is
used as the foundation for drawing a conclusions. In our case, each premise proposi-
tion statement consists of information about an event. An event consists of following
attributes: when, where, and what (we exclude the who because the face is assumed
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obscured in the video). Hence, a premise statement is represented by a 4-tuple
P(ts, te, act, loc); where ts and te are the start and end time of an event respectively
(when), act is the activity (what), and loc is the location (where). For example, a
premise statement P(25-Oct-2010:10:35, 25-Oct-2010:11:10, “working”, “smart lab”)
means “a group of people was working in the smart laboratory from 10:35 h to
11:10 h on 25-Oct-2010”. This premise leads to the corresponding conclusion C(grp),
where grp is the associated group of people. A knowledge base consists of pairs of
premise and conclusion statements. A knowledge base entry P ⇒ C denotes that if
a premise P is true, it leads to conclusion C. For example, P (25-Oct-2010:10:35, 25-
Oct-2010:11:10, “working”, “smart lab”) ⇒ C(G1) would mean that “The group of
people who are working in the smart laboratory from 10:35 h to 11:10 h on 25-Oct-
2010 are G1”. Note that the absence of any attribute in the tuple is represented by
a null symbol ‘φ’. For instance, a premise statement P (φ, φ,“dancing”, φ) denotes
“a group of people was involved in dancing activity in the scene”. This premise leads
to the corresponding conclusion C(G2) “The group of people in the video who are
involved in the dancing activity are G2”.

Using the above propositional statements, we can build propositions for each type
of idiosyncrasy listed in Table 2. For example, identity leakage through clothes can
be represented as P(ts, te, “kurta”, “office”) to distinguish people who wear kurtas
in an office, social behavior related identity leakage can be represented as P(ts, te,
“praying”, “temple”) which can map to the people of a particular religion who go to
temple to pray, the proposition for gait related identity leakage can be constructed
as P(ts, te, “hand in pocket”, “temple”), and companion related identity leakage as
P(ts, te, “with Mukesh”, “temple”).

The event contains the information that can be learned by the adversary about any
individual. Every event is a potential source of identity leakage. The identity leakage
can take place in two ways:

– Through individual events in isolation, i.e. every event has what, when andwhere
information which can be used to associate a person’s identity to a particular
group of people.

– Through a spatiotemporal sequence of events which might map to an identity
revealing patterns present in the knowledge base. The matching patterns further
restrict the identity to a subgroup of people.

Although all statements of the knowledge base conclude in an association group,
they differ for both the cases discussed above. The statements used for identity
leakage from events generally have propositions that are generated by only that
event, whereas for a later case the premise may consist of multiple propositions
derived from multiple events which might be from multiple cameras. We will
calculate both types of identity leakages (due to individual events and event patterns)
and combine them to find the overall identity leakage.

3.2.4 Identity leakage from individual events

The propositions generated in the previous section contain the event information.
However, the identity leakage only occurs if similar propositions are also present in
the adversary’s knowledge base. Hence, for each proposition, we find mapping in
the knowledge base. If an appropriate mapping is found, we add the corresponding
associated group in the set of mapped groups G. Let Ge be the resulting association
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group due to event information. It is calculated as the intersection of all the groups
in G as follows:

Ge = ∩{G | G ∈ G} (1)

For example, if the knowledge base consists of propositions P1 to P10 with the
corresponding association groups G1 to G10; and the event under consideration
generates propositions P2 and P8, then the set of mapped groups G = {G2,G8} and
the resulting association group Ge = G2 ∩G8. The above equation implies that by
using the information present in the event, we are able to associate the identity of
the person seen in the video to a group of people Ge.

3.2.5 Identity leakage through multiple event patterns

In the previous section we modeled the identity leakage by considering the events
in isolation. However, the adversary may track the person over multiple events
and multiple cameras which allows the adversary to exploit the knowledge of event
patterns to further reduce the anonymity of identity. In order to model the identity
leakage through event patterns, events are analyzed to detect the total number
of targets present in the video. A separate event list is created for each target as
shown in Fig. 2. The target association across events is done based on similarity of
appearances such as height, clothes etc. This is because the adversary can obtain an
event sequence only if the person looks similar across cameras.

Once we build the event list for all the targets, we fuse the identity leakage for
each target using the information obtained from its associated event list. Let Ge

ij be
the association group for the j th event in event list Ei, which corresponds to target
Ti, and is calculated using (1).

To understand how the knowledge of patterns helps in identity leakage, let us
consider the following example. Suppose the adversary knows that G1 = {A1, A2,
. . . , A10} people are expected at site 1, and G2 = {A1, A2, B1, B2, . . . , B6} people
are expected at site 2. If A1 appears at site 1 and site 2 in two separate events (from
separate cameras), the corresponding anonymities are 10 for event 1 and 8 for event
2. This results in an anonymity of 8 for A1 (i.e. the minimum of the two values),
if events are considered in isolation. However, even without facial information the
adversary can identify that the person detected at site 1 as well as site 2 is same
through visual similarity. The adversary has the pattern information that only A1
and A2 are seen at both sites which results in a reduced anonymity of 2. The pattern
information (only A1 and A2 are seen at both sites) is embedded in G1 and G2 and it
can be easily obtained by intersecting G1 and G2. Hence, the combined association
group G ′

i for target Ti is calculated as the intersection of all the association groups of
corresponding events in its event list Ei (See (2)).

G ′
i = Ge

i1 ∩ Ge
i2 ∩ . . .Ge

ine (2)

where ne is the number of matching propositions for all the events in Ei.
In the discussion above, it is assumed that the adversary has the knowledge of all

populations in their entirety. In practice the adversary may not have knowledge of
G1 and G2 but may only know that if someone is seen at both site 1 and site 2, it
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is either A1 or A2, which can be stored in the knowledge base using the following
statement:

P(φ, φ, φ, Site1) ∧ P(φ, φ, φ, Site2) ⇒ C(A1, A2) (3)

Now, if there are two events generating propositions P(φ, φ, φ,Site1) and
P(φ, φ, φ,Site2), they will not cause any identity leakage individually as they do not
have anymapping statements. However, when found to be related to the same target,
both events can bemapped together to the pattern statement discussed above causing
additional identity leakage. Let G p

i1,G p
i2... be the association groups for the matching

pattern statements. The overall association group is now calculated by intersecting
all the association groups corresponding to events (Ge

ij) and event patterns (G p
ij ):

Gi =
(Ge

i1 ∩ Ge
i2 ∩ . . .Ge

ine

) ∩ (G p
i1 ∩ G p

i2 ∩ . . .G p
inp

)
(4)

In the above equation, np is the number of matching patterns for all the events in Ei.
The anonymity, κi, of target Ti is calculated as the size of the overall association

group Gi:

κi = |Gi| (5)

Finally, the identity leakage, Ii, for target Ti is the inverse of the anonymity by
definition and is computed as:

Ii = 1

κi
(6)

If all the events belong to one person, that person should be common among all
the association groups. Nevertheless, there can be multiple people satisfying the
same set of propositions. For example, there can be multiple people who come to
the laboratory at night and do similar activities. Therefore, the identity leakage is
generally less than one.

3.3 Sensitivity index

Privacy loss and identity leakage are two separate phenomena.Mere identity leakage
does not always lead to privacy loss. For example, a video which only shows the
full frontal face reveals the identity of the person quite accurately. However, if no
other information can be learned from the video (activity, place, time, etc.), people
generally don’t feel that their privacy is being compromised, whereas, if the video
also shows which place the person is visiting or whom the person is meeting, it might
be a privacy loss for some individuals. Similar situations can be found in the statistical
data publication where well structured data records of individuals are published
after the removal of the direct identifiers [13]. There, the privacy loss occurs when
an adversary is able to map the identity to the sensitive information stored in the
sensitive information fields of the published data records. For example, medical data
records might contain disease names as sensitive information.

Video generally contains an enormous amount of information which might qualify
as sensitive. Which information is sensitive and which is normal, depends on the
individuals and may vary from person to person [16]. Yet Table 3 enumerates
commonly found video attributes which are considered sensitive. These attributes
can be categorized as one of the evidence types what, when, and where, and the
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Table 3 Commonly identified
sensitive information

Sensitive attribute Example

Activity Adjusting clothing when alone.
Spatial information Generally we do not want strangers

to know which places we visit.
Time Some people mind when others associate

their activities with timing patterns.
Gesture People make strange gestures while

they are alone and do not want others
to watch that.

Clothes Many teens wear clothes which they
do not want their parents to see.

Physique People with an atypical physique may be
sensitive to that, e.g. height.

Habits Most people have some personal
idiosyncratic sensitive habits like
twiddling fingers under stress.

Companion Some people do not want everyone
information to know with whom they associate.

Associated objects What we carry with us.

identity leakage through these implicit channels can provide a basis to determine
the privacy loss. Further discussion on state of the art techniques to determine these
attributes is provided in Section 4.4.

We assume that the information in the video consists of a set of attributes and that
some of these represent the sensitive information. Let A = {a1, a2, ...al} be the set of
attributes that can potentially be sensitive information. LetW be the priority vector
defined as:

W = {wk | k ∈ [1, l], wk ≥ 0, w1 + w2, ...+wl = 1} (7)

The elements of the vector are weights (wk) which are set by the individuals seen in
the video and they reflect their priority of the corresponding attribute as sensitive
information. While the priority vector could be different for each individual, we
recommend the calculation of a representative priority vector for a group of people
seen at video recording site. For each target we detect the sensitive attributes in all
of the events in the corresponding event list and build a sensitivity matrix as follows:

S = {ski | k ∈ [1, l], i ∈ [1,m]} (8)

Each column is related to one target, and each row to one sensitive attribute. The
elements of the array are calculated as follows:

sik =
{

1 if kth attribute is detected for target Ti;
0 otherwise.

(9)

The sensitivity index for each ith target can be calculated as follows:

�i =
l∑

k=1

wksik. (10)

The equation reflects that any information in the video only adds to the privacy
loss if it is also sensitive to the individuals in the video. In the above discussion we
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assume that the sensitivity of an attribute remains unchanged over time. However,
an attribute which is not sensitive today, may become sensitive at some later point
in time. This is the limitation of all existing privacy solutions and remains so in
our proposed model as well. It is very difficult to capture the evolving sense of
privacy loss.

3.4 Privacy loss

If we remove the identity information completely, the video cannot cause privacy
loss to any individual, no matter how much sensitive information the video contains.
This is because the sensitive information cannot be associated with anyone. Similarly,
if there is nothing sensitive in the video, it generally does not cause privacy loss even
when people are identified. In both the cases, the resulting privacy loss is zero. Hence,
the privacy loss γi of ith target can be calculated as a product of the identity leakage
(Ii) and the sensitivity index �i, i.e.

γi = Ii�i (11)

where γi is the total privacy loss of ith individual. In order to reduce the privacy loss,
we need to minimize both identity leakage and sensitive information. Interestingly,
even if one of them is close to zero, we can keep privacy loss to a minimum.

3.5 Remarks

The proposed model measures the privacy loss of the individuals that are usual
inhabitants living in the vicinity of the video recording site. The framework takes
a conservative approach and models the privacy loss that would occur when no
random people appear at the site. To understand this point, let us assume that
there is a hypothetical model that considers random people as well in determining
the association groups. If r is the number of additional random people seen at the
site, G is the association group according to the proposed framework, and Gr is the
association group considering these r random people as well; it can be easily proven
that ∀r ≥ 0, G ⊂ Gr . In the limiting case we have:

lim
r→0

|Gr|
|G| = 1. (12)

Since γ ∝ 1/|G| (see (5), (6), and (11)), the privacy loss computed using our model
will always be higher than the actual privacy loss for any nonzero r. The proposed
privacy model considers the worst case scenario when no random people show up
and provides an upper bound of the privacy loss for the given video and adversary
knowledge base.

This paper examines an anonymity based approach to ensure privacy in a video,
however, it remains to be explored how a differential privacymechanism [9], which is
a completely new direction and claims to provide amore accuratemeasure of privacy,
can be used in the W3-privacy framework.
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4 Experimental results

To demonstrate the utility of the proposed model, we conduct three experiments. In
the first experiment we highlight the difference between identity leakage and privacy
loss. In the second, the effect of multiple events of the identity leakage is shown.
Finally in the third experiment, we show how the proposed framework is used to
calculate privacy loss in the case of a multi-camera surveillance video.

4.1 Experiment 1: identity leakage vs privacy loss

The distinction between identity leakage and privacy loss is demonstrated using
the following experiment. We consider a case where a person is sick and visits a
hospital. He does not want his friends to know his disease and the doctor with whom
he is consulting, likely because the doctor’s specialization might reveal the disease.
Here, there are two sensitive attributes A = {a1, a2} where a1 is the companion and
a2 is the location. The corresponding priority weights for sensitive information are
given as W = {w1, w2} where w1 = 0.5, and w2 = 0.5. He goes to the hospital and the
surveillance camera records four separate images of the person. For this example we
assume that each image is representative of one event. The four images are shown
in Fig. 3. The sensitivity matrix is a column vector since we are analyzing the privacy
loss of only the patient, which is denoted as S = {s1, s2}T . The values of s1 and s2 are
different for different images which are determined below.

In Fig. 3a, we cannot see the person’s face, hence the privacy loss predicted
by traditional models is 0. The picture also does not have any other information
which can be used for implicit inference channel, hence the proposed model also
gives zero identity loss as well as privacy loss. In Fig. 3b we can see the person’s
face implying a privacy loss of 1 with traditional models of privacy. However, since
no sensitive information is available in this image, s1 and s2 are taken as 0, which
results in zero privacy loss using the proposed model (11). Figure 3c clearly has
companion information, making s2 = 1. This results in a privacy loss of γ = 0.5 × 1 =
0.5. Finally, from Fig. 3d we can deduce the exact disease through hospital name.
Hence the privacy loss γ = 1 × (0.5 × 1 + 0.5 × 1) = 1. Figure 4 shows the results of
the experiment. To get the user perceived privacy loss, five students aged between
20 and 30 were explained the situation and were asked to rate the privacy loss for
each image from 0 to 1. The users were explained the scenario that a person has a
sensitive disease and he is visiting a doctor in a hospital. If they are the sick person in
the picture, how would they rate the privacy loss for each of the four pictures.

(a) (b) (c) (d)

Fig. 3 Four pictures taken by surveillance cameras placed around a hospital
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Fig. 4 Identity vs privacy

There are two implications of the results. Firstly, if the video does not contain any
sensitive information for the person, we do not need to hide the identity information;
the video will not cause any privacy loss. Alternatively, if the identity cannot be
inferred from the video, the video can be released with all the sensitive information,
although this is generally not possible as sensitive information itself can cause identity
leakage through other implicit inference channels.

4.2 Experiment 2: event based identity leakage

The goal of this experiment is to highlight the effect of multiple events on identity
leakage. We use a video clip from a single camera recorded in a laboratory scenario.
The knowledge base in this case has statements shown in Table 4. The video, half
an hour in length, consists of seven events described in Table 5 with three targets
involved. Here, SL means ‘Smart Lab’ and for clarity we mention the events as
C1,C2, . . . , etc., which later form the event lists Ei. The representative images from
four of them are shown in Fig. 5. In this video clip, all three types of evidence are
detected as follows: what = walking (WK), running (RN), discussion (DC), where =
smart lab (SL), when = evening (EV). Since all the events had the same starting and
ending time (EV), in the propositions we mention both the start and end time using
a single EV.

Since the proposition generation depends on the targets, we describe it for
individual targets separately. In Table 6, the first column shows the events in which
the target is detected. The second column shows the proposition generated by
that event. In the third column we write the association group according to the
mapping proposition in the knowledge base shown in Table 4. We calculate the
final association group by calculating the intersection of all groups due to individual
events. Table 6 shows the results for T1 and T2. Target T3 only appears in one
event and generates the proposition P(EV, WK, SL) which maps to statement 3,
giving G3 = G3. In case the event generated proposition does not have mapping

Table 4 Knowledge base for
experiment 2

1. P(φ, φ,SL) ⇒ G1(A1–10)
2. P(φ,DC,SL) ⇒ G2(A1–2, A4–7)
3. P(EV, φ,SL) ⇒ G3(A3–4, A7, A9)
4. P(φ,RN,SL) ⇒ G4(A5–7, A9–10)
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Table 5 Event description of the video for experiment 2

Event Description Event Description Event Description

C1 T1, WK C4 T1, WK C7 T2, RN
C2 T1, WK C5 T1, T2, DC – –
C3 T2, WK C6 T3, WK – –

in the knowledge base, the association group is assumed to be the universal group
(UV) which is superset of all other groups. Note that if only individual events
are considered, the association groups would be the smallest in the list, which is
incidentally the same for all three targets, i.e. 4. Figure 6 compares anonymities
calculated using both models.

It is interesting to observe that a unity identity leakage of a target can increase
identity leakage of other targets. For example, in this experiment we conclude that
the anonymity of T1 is anonymous between A4 and A7 and T2 is known to be A7.
Since we know that A7 is T2, we can conclude that T1 is A4. The exact identities of
T1 and T2 also reduce the anonymity of T3 to two (A3 or A9). The ground truth is
A4, A7, A9.

4.3 Experiment 3: privacy loss from multiple cameras

If the adversary has access to multiple camera videos where the same person is
spotted at multiple places, the adversary can use the knowledge of spatiotemporal
patterns to infer the identity. In this experiment we demonstrate two main contri-
butions: (1) The effect of multiple cameras on identity leakage and (2) The privacy
loss assessment in a multi-camera scenario. For this experiment we recorded video
at four places in the department building: (1) Department Entrance (DE) (2) Audio
Lab (AL) (3) Staff Club (SC) and (4) Canteen (IC) Fig. 7. A total of 40 people are
expected in the department (A1–10, B1–10, C1–10, D1–10). However, the adversary
does not have knowledge about all of them. The adversary’s knowledge is limited to
the propositional logic statements given in Table 7.

Six actors created a series of events at these sites. Table 8 provides the description
of all the events captured at these sites. These actors were involved in one of
the following activities: discussion, walking, and running. For the calculation of
anonymity, we created event lists for each target separately. The time was detected
as evening in all the cameras except camera 1 at the department entrance.

The event lists for the targets and generated propositions are given in Table 9.
Similar to the previous experiment, the first column shows the events where the
target was detected. The second column shows the proposition generated by the

(a) (b) (c) (d)

Fig. 5 Representative images from four events of the video recoded in the smart lab
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Table 6 Event lists and
identity leakage for individual
targets

E1 (Target T1) E2 (Target T2)

C1 P(EV, WK, SL) G3 C3 P(EV, WK, SL) G3
C2 P(EV, WK, SL) G3 C7 P(EV, RN, SL) G4
C4 P(EV, DC, SL) G2 C4 P(EV, DC, SL) G2

P(EV, WK, SL) G3 P(EV, WK, SL) G3
C5 P(EV, WK, SL) G2 – – –
G1 = G2 ∩G3 = (A7, A9) G2 = G2 ∩G3 ∩G4 = (A7)

Fig. 6 The anonymity when
we consider events in isolation
and event sequences. The third
bar shows the results of
recursive identity leakage

(a) DE (b) AL (c) SC (d) IC

Fig. 7 Representative images from four cameras: aDepartment Entrance, bAudio Lab, c Staff Club,
d Canteen

Table 7 Knowledge base for
experiment 3

Statements for individual events
1. P(φ, φ,SC) ⇒ G1(B1–10, C1–2, A1–3)
2. P(φ, φ,AL) ⇒ G2(A1–10, B1–5, D1–2)
3. P(φ, φ, IC) ⇒ G3(A1–5, B1–5, C8–10)
4. P(φ,DC, φ) ⇒ G4(A1–3, B1–4, D5–8)
5. P(EV, φ,SC) ⇒ G5(A1–2, B1–5, C1–2)
6. P(EV, φ,AL) ⇒ G6(A1–4, B1–3, D1–2)
7. P(EV, φ, IC) ⇒ G7(A1–5, B1–3, C8)

Statements for multi-event patterns
8. P(φ, φ,DE) ∧ P(φ, φ, IC) ⇒ G8(A1, A8, B1, B8)
9. P(φ, φ,DE) ∧ P(φ, φ,SC) ⇒ G9(A1, B1–3, C1–3)
10. P(φ, φ,DE) ∧ P(φ, φ,AL) ⇒ G10(A1–6, B1–6, D1)
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Table 8 Description of events captured by cameras

Event Description Event Description Event Description

Camera 1 - Department Entrance (DE)
C11 T1, WK C16 T4, WK C112 T4, WK
C12 T1, WK C17 T6, WK C113 T2, RN
C13 T5, WK C18 T5, WK C114 T2, WK
C14 T2, WK C19 T2, WK – –
C15 T3, WK C110 T3, WK – –

Camera 2 - Audio Lab (AL)
C21 T1, T2, DC C23 T1, WK C25 T1, RN
C22 T6, RN C24 T2, WK – –

Camera 3 - Staff Club (SC)
C31 T4, WK C35 T5, WK C39 T5, WK
C32 T3, WK C36 T5, WK C310 T3, WK
C33 T4, WK C37 T4, WK
C34 T3, T1, DC C38 T5, WK

Camera 4 - Canteen (IC)
C41 T1, WK C43 T4, WK C45 T4, WK
C42 T1, WK C44 T1, WK

event. In third column we write the association group derived from the knowledge
base by proposition mapping. An event proposition may have multiple matches in
the knowledge base, in which case we list all the groups in the third column.

In order to calculate privacy loss, we need to determine the sensitive information
matrix. In this experiment we have chosen the sensitive attributes to be: (1) Com-
panion (2) Running activity (3) Height (4) Clothes. The priorities for the attributes
are as follows:W = {0.45,0.30,0.15,0.10}. The weights have been determined based
on common notions of privacy. People are more sensitive to their company than
their clothes or height. Similarly, they might not feel comfortable being watched
while running. The sensitivity matrix can be easily derived from event descriptions
as follows:

⎛

⎜
⎜
⎝

1 1 1 0 0 0
1 1 0 0 0 1
1 1 1 1 1 1
1 1 1 1 1 1

⎞

⎟
⎟
⎠ (13)

Since Ii = 1/|Gi|, the identity leakage vector is calculated as I = {0.50,0.17,0.25,
0.5,0.17,0.14}. With these values of W, S, and I, we can calculate the privacy loss.
Figure 8a shows the resulting identity leakage and privacy loss in three scenarios of
identity leakage: (1) Individual events (2) Patterns among single camera events and
(3) Patterns amongmultiple camera events. It can be seen that when multiple camera
video is available and adversary has knowledge of patterns, the identity leakage and
privacy loss increases.

Similarly, Fig. 8b shows the identity leakage and privacy loss for all the targets
measured using the proposed framework for multi-camera video. The identity
leakage for T1 is highest because T1 was seen at all four sites and was involved in all
the activities: walking, running and discussion. T2 and T4 appear in the same number
of events, however, T4 appears in events from multiple cameras hence its identity
leakage is higher than T2. T1 and T4 have the same identity leakage, yet the privacy
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Table 9 Event lists and identity leakage for targets

E1 (Target T1)
C11 P(φ, WK, DE) UV C41 P(EV, WK, IC) G7
C12 P(φ, WK, DE) UV C42 P(EV, WK, IC) G7
C112 P(φ, WK, DE) UV C44 P(EV, WK, IC) G7
C21 P(EV, DC, AL) G4, G6 Pattern 8 G8
C23 P(EV, WK, AL ) G6 Pattern 9 G9
C25 P(EV, RN, AL) G6 Pattern 10 G10
C34 P(EV, DC, SC) G4, G5
G1 = G4 ∩G5...G10 = (A1,B1)

E2 (Target T2)
C14 P(φ, WK, DE) UV C21 P(EV, DC, AL) G4,G6
C19 P(φ, WK, DE) UV C24 P(EV, WK, AL) G6
C113 P(φ, RN, DE) UV Pattern 10 G10
C114 P(φ, WK, DE) UV
G2 = G4 ∩G6 ∩G10 = (A1–3, B1–3)

E3 (Target T3)
C15 P(φ, WK, DE) UV C34 P(EV, DC, SC) G4, G5
C110 P(φ, WK, DE) UV C310 P(EV, WK, SC) G5
C32 P(EV, WK, SC) G5 Pattern 9 G9
G3 = G4 ∩G5 ∩G9 = (A1, B1−3)

E4 (Target T4)
C16 P(φ, WK, DE) UV C43 P(EV, WK, IC) G7
C31 P(EV, WK, SC) G5 C45 P(EV, WK, IC) G7
C33 P(EV, WK, SC) G5 Pattern 8 G8
C37 P(EV, WK, SC) G5 Pattern 9 G9
G4 = G5 ∩G7 ∩G8 ∩G9 = (A1, B1)

E5 (Target T5)
C13 P(φ, WK, DE) UV C38 P(EV, WK, SC) G5
C18 P(EV, WK, DE) UV C39 P(EV, WK, SC) G5
C35 P(EV, WK, SC) G5 Pattern 9 G9
G5 = G5 ∩G9 = (A1, B1−3, C1−2)

E1 (Target T6)
C17 P(φ, WK, DE) UV Pattern 10 G10
C22 P(EV, RN, AL) G6 – – –
G6 = G6 ∩G10 = (A1−4, B1−3, D1)

(a) (b)

Fig. 8 a Identity leakage and privacy loss for T1. b Identity leakage and privacy loss for all targets
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loss of T1 is still higher than T4. This shows the effect of the sensitive attributes on
privacy loss. For T1, all sensitive attributes are detected whereas for T4, only two out
of four attributes are detected.

4.4 Discussion and practical considerations

This paper highlights the privacy breach that exists in the current privacy preserving
methods which consider only facial and appearance based cues. Although the current
technology is not robust enough to decipher the event information accurately, a
human observer can definitely detect what, when, andwhere information from multi-
camera video which may lead to privacy loss. In experiments it is demonstrated that
even when the bodily cues are absent, in extreme cases the adversary can identify the
individuals with a small value of anonymity.

The success of any privacy preserving method depends on the automated detec-
tion techniques and there is a whole community of researchers working on improving
these detectors [8, 10, 21]. Recent surveys on human activity detection techniques
[1, 22, 30] describe how current research is progressing toward the detection of
different gestures, actions, interactions and group activities. While gestures include
individual body part movements such as “stretching an arm” and “raising a leg”;
actions are composed of a sequence of gestures such as “walking”, “jogging”,
“hand shaking”, “pushing” “pool diving”, “boxing”, “kissing”, “hitting”, “opening
a cabinet”, “picking up an object”, “jumping”, “bending”, and “waving”. Similarly,
interactions and group activities involve multiple people e.g. “meeting”, “marching”,
“fighting”, “presenting”, “discussing”, “taking a break” etc. Furthermore, there have
been a number of works on localization using video, which can automatically detect
the presence of where information [34–36].

We recognize that the extent to which we can block these privacy leakage channels
is limited by the accuracy of the methods for automatic object tracking and event
detection. However, we can follow a conservative approach for event detection in
order to preserve privacy (but at the cost of utility). By “conservative approach”,
we mean that we can lower the detection thresholds. Although this may result in
a large number of false detections; by adopting this approach we may over-do some
suppression operations. This approach can be flexible in the sense that the thresholds
can be raised as progress is made in event detection research. In this paper we
restricted our focus to expose the various channels (other than the human face) that
can cause privacy leakage, which we believe is an important first step toward future
privacy aware multi-camera systems.

The acceptable value of privacy loss can be determined by considering the
sensitivity of the video recording site and application context. For example, in a very
sensitive application, such as defense, even a small value of privacy loss may not
be acceptable, while in other normal applications like shopping mall surveillance, a
relatively higher value of privacy loss could be acceptable.

5 Conclusions & future work

Implicit inference channels of what, when, and where can cause significant privacy
loss when an adversary gets access to multiple-camera surveillance videos. The
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privacy loss through these inference channels is modeled as W3-Privacy. The privacy
loss measured by the proposed model is closer to the user perceived privacy loss than
earliermodels. Furthermore, privacy loss only occurs when sensitive information and
identity leakage co-exist. Therefore, any of these can be separately controlled to
minimize privacy loss. The proposed model can be configured for any adversarial
knowledge and the sensitive attributes of the individuals, making it flexible and
applicable in diverse scenarios. For example, in a surveillance scenario, the occupants
of the surveilled premises can provide the sensitive attributes and the person who has
access to this surveillance video can be considered as an adversary.

Following are the conclusions derived from this work:

1. The proposed model is able to consolidate the privacy loss through what, when,
and where inference channels. Compared to earlier models, the proposed model
calculates privacy loss that is closer to the user perceived privacy loss.

2. Event and activity patterns across multiple cameras lead to privacy loss which
does not result from a single camera. Therefore, a recurring behavior at multiple
camera sites can increase the risk of privacy loss for the usual occupants.

3. Identity leakage of an individual can also affect the identity leakage of other
individuals in the video. When the identity leakage of a person is unity, the
anonymity of all other people showing similar patterns reduces by 1.

4. The proposed model measures the upper bound of privacy loss by considering
the worst case scenario when only usual occupants are seen(i.e., no random
people appear).

The privacy assessment model proposed in this paper is necessarily the first and a
very important step toward privacy protection of the people in multi-camera videos,
and this work sets the directions for future research, i.e. to investigate methods to
reduce the privacy loss with minimal loss of utility of videos. We hope to inspire
further research in data transformation techniques, which will retain in the video
just enough information required for intended application (e.g. surveillance), without
compromising the privacy of the people under surveillance.

References

1. Aggarwal J, Cai Q (1997) Human motion analysis: a review. In: Proc. of IEEE nonrigid and
articulated motion workshop, pp 90–102

2. Akyildiz I, Su W, Sankarasubramaniam Y, Cayirci E (2002) A survey on sensor networks. IEEE
Commun Mag 40(8):102–114

3. Atrey P, Kankanhalli M, Jain R (2006) Information assimilation framework for event detection
in multimedia surveillance systems. Multimedia Syst 12(3):239–253

4. Boyle M, Edwards C, Greenberg S (2000) The effects of filtered video on awareness and privacy.
In: The ACM conference on computer supported cooperative work, pp 1–10

5. Carrillo P, Kalva H, Magliveras S (2008) Compression independent object encryption for ensur-
ing privacy in video surveillance. In: IEEE international conference on multimedia and expo,
pp 273–276

6. Chinomi K, Nitta N, Ito Y, Babaguchi N (2008) Prisurv: privacy protected video surveillance
system using adaptive visual abstraction. In: Proceedings of the international conference on
advances in multimedia modeling, pp 144–154



Multimed Tools Appl (2014) 68:135–158 155

7. Chong C, Kumar S (2003) Sensor networks: evolution, opportunities, and challenges. Proc IEEE
91(8):1247–1256

8. Doulamis A, van Gool L, Nixon M, Varvarigou T, Doulamis N (2008) First ACM international
workshop on analysis and retrieval of events, actions and workflows in video streams. In: ACM
international conference on multimedia, pp 1147–1148

9. Dwork C (2006) Differential privacy. In: International colloquium on automata, languages and
programming, pp 1–12

10. Fernández C, Baiget P, Roca FX, Gonzílez J (2011) Determining the best suited semantic events
for cognitive surveillance. Expert Syst Appl 38(4):4068–4079

11. Ferrucci D (2010) Build watson: an overview of deepqa for the jeopardy! challenge. In: Interna-
tional conference on parallel architectures and compilation techniques, pp 1–2

12. Fidaleo D, Nguyen H, Trivedi M (2004) The networked sensor tapestry (nest): a privacy en-
hanced software architecture for interactive analysis of data in video-sensor networks. In: ACM
iternational workshop on video surveill ance & sensor networks, pp 46–53

13. Fung B, Wang K, Chen R, Yu P (2010) Privacy-preserving data publishing: a survey on recent
developments. In: ACM computing surveys, vol 42

14. Hayes-Roth F, Waterman D, Lenat D (1984) Building expert systems. Addison-Wesley,
Reading, MA

15. Koshimizu T, Toriyama T, Babaguchi N (2006) Factors on the sense of privacy in video surveil-
lance. In: ACM workshop on continuous archival and retrival of personal experences, pp 35–44

16. Langheinrich M (2001) Privacy by design - principles of privacy-aware ubiquitous systems.
In: International conference on ubiquitous computing. Springer, pp 273–291

17. Lu Y, Ga W, Wu F (2002) Automatic video segmentation using a novel background model.
In: The IEEE international symposium on circuits and systems, pp 807–810

18. McBratney A, Whelan B, Ancev T, Bouma J (2005) Future directions of precision agriculture.
Precis Agric 6(1):7–23

19. Moncrieff S, Venkatesh S, West G (2008) Dynamic privacy assessment in a smart house environ-
ment using multimodal sensing. ACM Trans Multimed Comput Commun Appl 5(2): 1–29

20. Paruchuri JK, Cheung S, Hail MW (2009) Video data hiding for managing privacy information
in surveillance systems. In: SPIE newsroom

21. Piciarelli C, Foresti G (2011) Surveillance-oriented event detection in video streams. In: IEEE
intelligent systems, pp 32–41

22. Poppe R (2010) A survey on vision-based human action recognition. Image Vis Comput
28(6):976–990

23. Qureshi FZ (2009) Object-video streams for preserving privacy in video surveillance. In: Inter-
national conference on advanced video and signal based surveillance, pp 442–447

24. Saini M, Atrey P, Mehrotra S, Emmanuel S, Kankanhalli M (2010) Privacy modeling in video
data publication. In: IEEE international conference on multimedia and expo, pp 60–65

25. Senior A, Pankanti S, Hampapur A, Brown L, Tian YL, Ekin A, Connell J, Shu CF, Lu M (2005)
Enabling video rivacy through computer vision. IEEE Secur Priv 3(3):50–57

26. Septian H, Tao J, Tan YP (2006) People counting by video segmentation and tracking.
In: International conference on control, automation, robotics and vision, pp 1–4

27. Spindler T, Wartmann C, Hovestadt L, Roth D, Van Gool L, Steffen A (2006) Privacy in video
surveilled areas. In: The ACM international conference on privacy, security and trust, pp 1–10

28. Sweeney L (2002) k-anonymity: a model for protecting privacy. Int J Uncertain Fuzziness Knowl-
Based Syst 10(5):557–570

29. Thuraisingham B, Lavee G, Bertino E, Fan J, Khan L (2006) Access control, confidentiality
and privacy for video surveillance databases. In: ACM symposium on access control models and
technologies, pp 1–10

30. Turaga P, Chellappa R, Subrahmanian V, Udrea O (2008) Machine recognition of human
activities: a survey. IEEE Trans Circuits Syst Video Technol 18(11):1473–1488

31. Van Harmelen F, Lifschitz V, Porter B (2008) Handbook of knowledge representation. Elsevier
Science Ltd

32. Westermann U, JainR (2007) Toward a common event model for multimedia applications. IEEE
Multimed 14(1):19–29

33. Wickramasuriya J, Datt M, Mehrotra S, Venkatasubramanian N (2004) Privacy protecting data
collection in media spaces. In: International conference on multimedia, pp 48–55

34. Wiles R, Hirvonen D, Hsu S, Kumar R, Lehman W, Matei B, Zhao W (2001) Video georeg-
istration: algorithm and quantitative evaluation. In: Proc. of IEEE international conference on
computer vision, vol 2, pp 343–350



156 Multimed Tools Appl (2014) 68:135–158

35. Zhu Z, Oskiper T, Samarasekera S, Kumar R, Sawhney H (2007) Ten-fold improvement in visual
odometry using landmarkmatching. In: Proc. IEEE international conference on computer vision,
pp 1–8

36. Zhu Z, Oskiper T, Samarasekera S, Kumar R, Sawhney H (2008) Real-time global localization
with a pre-built visual landmark database. In: Proc. of IEEE conference on computer vision and
pattern recognition, pp 1–8

Mukesh Saini is a research fellow at School of Computing, National University of Singapore
(NUS). He obtained his Master of Technology (M. Tech.) in Electronics Design and Technology
from Indian Institute of Science (IISc), Bangalore, in 2006 and his PhD in Computer Science from
School of Computing, National University of Singapore, Singapore in 2012 respectively. During
his PhD stint, he visited University of Winnipeg for six months (Sep 2009 to Feb 2010) under the
Canadian Commonwealth Exchange Program. His PhD dissertation is on the cutting-edge topic
“Privacy-aware multimedia surveillance”. His other research interests include generic architecture
for observation systems and system level performance evaluation of multimedia systems. He has
played roles of Reviewer, TPC member, Tutorial organizer, and Panelist for various reputed
conferences and journals.

Pradeep K. Atrey is an Associate Professor and a Senator at the University of Winnipeg, Canada.
He received his PhD in Computer Science from National University of Singapore, M.S. in Software
Systems and B.Tech. in Computer Science and Engineering from India. He was a Postdoctoral Re-
searcher at the Multimedia Communications Research Laboratory, University of Ottawa, Canada.



Multimed Tools Appl (2014) 68:135–158 157

His current research interests are in the area of Multimedia Computing with a focus on Multimedia
Surveillance and Privacy, Image/Video Security, and Web. He has authored/co-authored over 55
research articles at reputed ACM, IEEE, and Springer journals and conferences. Dr. Atrey is on
the editorial board of ETRI Journal and Journal of Convergence (Web and Multimedia). He is
actively involved in his research community and he has been associated with over 20 international
conferences in various roles such as General Chair, Program Chair, Publicity Chair, Web Chair, and
TPC Member. Dr. Atrey was recipient of the ETRI Journal Best Reviewer Award (2009) and the
University of Winnipeg Merit Award for Exceptional Performance (2010). He was also recognized
as “‘ICME 2011 - Quality Reviewer”.

Sharad Mehrotra is a Professor in the School of Information and Computer Science at University
of California, Irvine (UCI) and Director of the Center for Emergency Response Technologies
(CERT) at UCI. Mehrotra’s research expertise is in data management and distributed systems areas
in which he has made many pioneering contributions. Two such contributions include the concept
of “database as a service” and “use of information retrieval techniques, particularly relevance
feedback, in multimedia search”. Mehrotra is a recipient of numerous best paper nominations and
awards including SIGMOD Best Paper award (2001), Best of VLDB submissions (1994), and best
paper award in DASFAA (2004). Mehrotra’s current research focuses on building sentient spaces
using multimodal sensors, data privacy, and data quality. Mehrotra’s recent research, particularly,
in the context of CERT has focused on situational awareness from multimodal input including
conversational speech data. Many of his research contributions have been incorporated into software
artifacts which are now in use at various first responder partner sites. He holds a patent on privacy
protection of data collection in pervasive environments.



158 Multimed Tools Appl (2014) 68:135–158

Mohan Kankanhalli is a Professor at the Department of Computer Science of the National
University of Singapore. He is also the Associate Provost for Graduate Education at NUS. Before
that, he was the Vice-Dean for Academic Affairs and Graduate Studies at the NUS School of
Computing during 2008–2010 and Vice-Dean for Research during 2001–2007. Mohan obtained his
BTech (Eletrical Eng.) from the Indian Institute of Technology, Kharagpur, in 1986 and his MS
and PhD (Computer Systems Eng.) from the Rensselaer Polytechnic Institute in 1998 and 1990,
respectively. He was a researcher at the Institute of Systems Science at NUS during 1990–1997.
He then became a faculty member at the Department of Electrical Engineering of the Indian
Institute of Science, Bangalore during 1997–1998 after which he joined NUS again. He visited the
University of California at Berkeley during Jan–Jun 2004. He is actively involved in the Multimedia
Systems community and he is currently the Director of Conferences for ACM SIG Multimedia.
He is on the editorial boards of several journals including the ACM Transactions on Multimedia
Computing, Communications, and Applications, Springer Multimedia Systems Journal, Pattern
Recognition Journal and Multimedia Tools & Applications. His current research interests are in
Multimedia Systems (content processing, retrieval) and Multimedia Security (surveillance, digital
rights management and privacy).


	W3-privacy: understanding what, when, and where inference channels in multi-camera surveillance video
	Abstract
	Introduction
	Related work
	Proposed work
	Definitions
	Identity leakage
	Video segmentation
	Evidence detection
	Proposition generation
	Identity leakage from individual events
	Identity leakage through multiple event patterns

	Sensitivity index
	Privacy loss
	Remarks

	Experimental results
	Experiment 1: identity leakage vs privacy loss
	Experiment 2: event based identity leakage
	Experiment 3: privacy loss from multiple cameras
	Discussion and practical considerations

	Conclusions & future work
	References



