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Abstract Image hash functions find extensive applications in content authentication, data-
base search. This paper develops a novel algorithm for generating a secure and robust image
hash based on compressive sensing and Fourier-Mellin transform. Firstly, we incorporate
Fourier-Mellin transform into our method to improve its performance under rotation, scale,
transition attacks. Secondly, we exploit the property of dimension reduction inherent in
compressive sensing for hash design. The statistic structure and sparse of the wavelet
coefficients assure efficient compression in situation of including maximum the image
features. The hashing method is computationally secure without additional randomization
process. Such a combined approach is capable of tackling all types of attacks and thus can
yield a better overall performance in multimedia identification. To demonstrate the superior
performance of the proposed schemes, receiver operating characteristics analysis over a
large image database is performed. Experimental results show that the proposed image
hashing is robust to a wide range of distortions and attacks. When compared with the
current state-of-the-art methods, the proposed method yields better identification perform-
ances under geometric attacks such as rotation attacks and brightness changes.

Keywords Compressive sensing . Fourier-Mellin transform . Image hashing . Image
identification

1 Introduction

Digital media has profoundly changed our daily life during the past decades. However, the
massive proliferation and extensive use of media data arising from its easy-to-copy nature
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also pose new challenges to effectively manage such abundance of data (e.g., fast media
searching, indexing) and protection of intellectual property of multimedia data. Among the
various techniques proposed to address these challenges, image hashing has been proven to
be an efficient tool because of its robustness and security.

An image hash is a compact and exclusive feature descriptor for a specific image. There
are two important design criteria for image hash functions, namely, robustness and security
[20, 27]. By robustness, we mean that when the same key is used, perceptually similar
images should produce similar hashes. Here, the similarity of hashes is measured in terms of
some distance metric, such as the Euclidean or Hamming distance. We consider two images
to be similar if one image can be obtained from the other through a set of content-preserving
manipulations. This set of manipulations includes moderate levels of additive noise, JPEG
compression, filtering operations, geometric distortions, and watermark embedding. The
security of image hash functions is introduced by incorporating a secret key in generating the
hash. Without the knowledge of the key, the hash values should not be easily forged or
estimated. Additionally, some design criteria for generic data hash also apply to image hash
functions, namely, the one-way and collision-free properties. Although some generic data
hash functions, such as MD5, satisfy these criteria [18], they are highly dependent on every
bit (or pixel) of the input data rather than on the content. Hence, most of the them are not
suitable for the emerging multimedia applications and the need for building robust and
secure image hash is paramount.

A number of media-specific hash functions have been proposed for multimedia
authentication. In addition to content authentication, multimedia hashes are used in
content-based retrieval from databases [15] and image and video watermarking [6,
19]. It is worth mentioning that different applications may impose different require-
ments in a hashing design. For the purpose of image authentication, it is required that
minor unmalicious modifications which do not alter the content of the data should
preserve the authenticity of the data [29]. The robustness of image hash assures its
capability to authenticate the content by ignoring the effect of minor unmalicious
modifications on the original data. The desirable hash method can achieve not only
tampering detection but also tampering localization. It increases the hash length for
including the mount of information about original image. For the management of large
image databases [14], image hashing allows efficient media indexing, identification,
and retrieval by avoiding exhaustively searching through all the entries, thus reducing
computational complexity of similarity measurements. The desirable hash method is
computationally effective. The hash length is short for storage with the original data
in the form of a lookup table. In this paper, we are particularly interested in image
identification and indexing and explore how to design image hashing in this direction.

The procedure of deriving an image hash has two steps. The first step extracts a
feature vector from the image, whereas the second stage compresses this feature
vector to a final hash value. In the feature extraction step, the 2-D image is mapped
to a 1-D feature vector. This feature vector must capture the perceptual qualities of
the image. That is, two images that appear identical to the human visual system
should have feature vectors that are close in some distance metric. Likewise, two
images that are clearly distinct in appearance must have feature vectors that differ by
a large distance. At the same time, using such features alone makes the system
susceptible to forgery attacks, which may be carried out by an attacker that creates
a new image with different visual content but with the same feature values. Thus,
security mechanisms [25] must be combined into the feature extraction stage, e.g., by
introducing some pseudorandom key in the hashing system.
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2 Literature review

Various approaches have been proposed in literatures for constructing image hashes, al-
though there is no universal hashing approach that is robust against all types of attacks.
Swaminathan’s hashing scheme [25] incorporates pseudo randomization into Fourier-Mellin
transform to achieve better robustness to geometric operations. However, it suffers from
some classical signal processing operations such as noising. It was also proposed in [21] to
generate the hash by detecting invariant feature points, though the expensive searching and
removal of feature points by malicious attacks such as cropping and blurring limit its
performance in practice. Kozat proposed using low-rank matrix approximations obtained
via the well-known singular value decomposition (SVD) for image hashing [12]. While the
SVD-based hashing scheme exhibits good geometric attack robustness, it does so at the
expense of significantly increasing misclassification. Monga introduced nonnegative matrix
factorization (NMF) into their new hashing algorithm [22]. The major benefit of NMF
hashing is the structure of the basis resulting from its nonnegative constraints, which lead to
a parts-based representation. In contrast to the global representation obtained by SVD, the
non-negativity constraints result in a basis of interesting local features [13]. Based on the
results in [22], the NMF hashing possesses excellent robustness under a large class of
perceptually insignificant attacks, while it significantly reduces misclassification for percep-
tually distinct images. It was shown to provide the best performance among NMF based
hashing schemes investigated in [22], simply as NMF hashing in this paper. Other content-
preserving features based on image statistics [9], wavelet transform [1, 7], DCT transform
[10], Radon transform[24, 30], Fast Johnson-Lindenstrauss Transform [16, 17] have also
contributed to the development of image hashing and enlightened some novel directions.

In this paper, we propose a hashing technique based on compressive sensing principles
and Fourier-Mellin transform, which is robust legitimate content-preserving manipulations
such as moderate affine transform, filtering, cropping and secure against malicious forgeries.
According to the sampling theory and the Nyquist- Shannon sample theorem, exact recon-
struction of a continuous-time signal from its samples is possible if the signal is band-limited
and the sampling rate is more than twice the signal bandwidth. In recent years, a new theory
Compressive Sensing (CS) also referred as Compressive Sensing or Compressive Sampling,
has been proposed as a more efficient sampling scheme. The theoretical framework of CS
was developed by Candes et al. [3] and Donoho [5]. The CS principle claims that a sparse
signal can be recovered from a small number of random linear measurements. The CS theory
provides a great reduction of sampling rate, power consumption and computational com-
plexity to acquire and represent a sparse signal. In [26], an image authentication scheme
based on CS and distributed source coding (DSC) was proposed, where the image hash is
derived from the DSC-encoded quantized random projection coefficients of an image. To
perform authentication, a DSC decoder decodes the received hash bits with the test image
serving as the side information, where the authenticity depends on the success/fail of the
DSC decoding. But the method has very long hash length and is computational complex so
that it is limited in application. Kang presents a compressive sensing-based image hashing
[11]. The method introduces visual information fidelity for hash comparison. Based on hash
comparison, the distortion and visual quality of query image can be estimated. But the
comparison process consumes so much time as to impact image retrieval efficiency. Our
scheme is low complexity in hash extraction and comparison. It has short hash length that is
suitable in image identification and indexing.

In the experiments, we study the performance of our algorithm under the attacks of
rotation, scaling, shifting, luminance adjustment, filtering, additive Gaussian white
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noise. The results show that our algorithm achieves a good balance between robust-
ness and discrimination. The experimental results of NMF hashing [22] and CS
hashing [11] are compared with ours on the same dataset, our algorithm outperforms
under most of attacks.

The rest of this paper is organized as follows. We first introduce the background and
theoretic details about Fourier-Mellin transform and Compressive Sensing in Section 3. We
propose the geometric invariant hashing methods by combining the Fourier-Mellin trans-
form and CS to achieve better geometric robustness in Section 4. The analytical and
experimental results are exhibited in Section 5 to demonstrate the superior performance of
the proposed schemes. The conclusion and suggestions for future work are given in
Section 6.

3 Theoretical background

In this section, we provide a brief summary of two topics that play a central role in the
proposed method. In Section 3.1 we discuss Fourier-Mellin transform, which has been
shown to be invariant to two-dimensional (2-D) affine transformations. In Section 3.2 we
illustrate the foundations of compressive sensing, that is employed in order to efficient
dimension reduction from a limited number of random projections.

3.1 Fourier-Mellin transform

Various translation, rotation and scale invariant methods such as integral transforms, mo-
ment invariants and Neural Network approaches have been proposed . These techniques
provide good invariance theories but suffer from the presence of noise, computation
complexity or accuracy problem [28]. Fourier-Mellin transform (FMT) performs well under
noise and can be applied efficiently by using Fast Fourier Transform. FMT is translation
invariant and represents rotation and scaling as translations along the corresponding axes in
parameter space.

Consider an image f2 x; yð Þ that is a rotated, scaled and translated replica of f1 x; yð Þ ;
f2 x; yð Þ ¼ f1 σ x cos a þ y sinað Þ � x0;σ �x sina þ y cos að Þ � y0½ � ð1Þ

where α is the rotation angle, σ the uniform scale factor, and x0 and y0 are translational
offsets. The Fourier Transform of f1 x; yð Þ and f2 x; yð Þ are related by

F2 u; vð Þ ¼ e�jΦs u;vð Þσ�2 F1 σ�1 u cos a þ v sin að Þ;σ�1 �u sin a þ v cosað Þ� �� � ð2Þ
where Φs u; vð Þ is the spectra phase of the image f2 x; yð Þ . This phase depends on the
translation, scaling and rotation, but the spectral magnitude

F2 u; vð Þj j ¼ σ�2 F1 σ�1 u cosa þ v sin að Þ;σ�1 �u sin a þ v cosað Þ� �� ��� �� ð3Þ
is translation invariant.

Equation (3) shows that a rotation of the image rotates the spectral magnitude by the same
angle, and that a scaling by σ scales the spectral magnitude by σ−1: Rotation and scaling can
be decoupled by defining the spectral magnitudes of f1 and f2 in the polar coordinates θ; rð Þ ;

f2p θ; rð Þ ¼ F2 r cos θ; r sin θð Þj j; f1p θ; rð Þ ¼ F1 r cos θ; r sin θð Þj j ð4Þ
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The (2) can be written using polar coordinates as

f2p θ; rð Þ ¼ σ�2f1p θ� a; r=σð Þ ð5Þ
Hence an image rotation shifts the function f1p θ; rð Þ along the angular axis. A scaling is

reduced to a scaling of the radial coordinate and to a magnification of the intensity by a
constant factor σ2: Scaling can be further reduced to a translation by using a logarithmic
scale for the radial coordinate, thus

f2pl θ; lð Þ ¼ f2p θ; rð Þ ¼ σ�2f1pl θ� a; r � ηð Þ ð6Þ
Where l ¼ logðrÞ and η ¼ log σð Þ . In this polar-logarithmic representation, both rotation

and scaling are reduced to translation. By Fourier transforming the polar-logarithm repre-
sentations, Eqs. (5) and (6),

F2pl ς; xð Þ ¼ σ�2e�j2p ςηþxlð ÞF1pl ς; xð Þ ð7Þ
thereby rotation and scaling now appear as phase shifts. The Fourier magnitude of the two
LPM mappings is related by

F2pl ς; xð Þ�� �� ¼ σj j�2 F1pl ς; xð Þ�� �� ð8Þ
Equation (8) demonstrates that the amplitude of Fourier–Mellin spectrum is scaled by

σj j�2 caused by scaling transform, and is invariant to rotation and translation. σj j�2 will
cause no problem at all if we use image resizing in advance, so the Fourier– Mellin
transform is truly invariant to RST.

3.2 Compressive sensing

Compressive sensing theory asserts that it is possible to perfectly recover a signal from a
limited number of incoherent nonadaptive linear measurements, provided that the signal can
be represented by a small number of nonzero coefficients in some basis expansion.

Let x 2 Rn denote the signal of interest and y 2 Rm , m < n , a number of linear random
projections (measurements) obtained as y ¼ Ax . The measurement matrix must be chosen in
such a way that it satisfies a restricted isometry property (RIP) of order k [4], which says that all
subsets of k columns taken from A are in fact nearly orthogonal or, equivalently, that linear
measurements taken withA approximately preserve the Euclidean length of k sparse signals. The
entries of A 2 Rm�n the measurement matrix can be random samples from a given statistical
distribution, e.g., Gaussian or Bernoulli. At first, let us assume that x is k sparse, i.e., there are
exactly k << n nonzero components. The goal is to reconstruct x given themeasurements y and
the knowledge that x is sparse. This can be formulated as the following optimization problem:

min xk k0s:t: y ¼ Ax ð9Þ
where the ℓ0 norm (represented as kk0 ) simply counts the number of nonzeros entries of x.
Unfortunately, an exact solution to this problem requires an exhaustive search over all the
possible k-sparse solutions and is, therefore, computationally intractable. Nonetheless, the recent
results of compressive sensing have shown that, if x is sufficiently sparse, an approximation of it
can be recovered by solving the following minimization problem:

min xk k1s:t: y ¼ Ax ð10Þ
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which can be immediately cast as a linear program. The solution of (10) is the same as (9)
provided that the number of measurements satisfiesm � C � klog2 n=kð Þ , whereC is some small
positive constant.

These results also hold when the signal is not sparse, but it has a sparse repre-
sentation in some orthonormal basis. Let Φ 2 Rn�n denote an orthonormal matrix,
whose columns are the basis vectors. Let us assume that we can write x ¼ Φθ , where
θ is k sparse. Given the measurements y ¼ Ax , the signal can be reconstructed by
solving the following problem:

min θk k1s:t: y ¼ AΦθ ð11Þ

For the case of noisy measurements, the signal model can be expressed as y ¼ Axþ z ,
where the noise amplitude is assumed to be bounded, i.e., zk k2 � " . This situation occurs
when the measurements are quantized. An approximation of the signal can be obtained by
solving the following problem:

min θk k1s:t: y� AΦθk k � " ð12Þ

In this work, the wavelet transform is adopted to make the original signal become sparse.
Recent research has demonstrated that if one exploits the structure in the transform coef-
ficients characteristic of typical data or imagery, one often may significantly reduce the
number of required CS measurements [2]. The structure associated with typical wavelet
coefficients has been utilized in a statistical setting, building on recent research on Bayesian
CS [8].

4 Proposed hashing algorithm

4.1 The performance of CS

Motivated by the hashing approaches based on SVD [12] and NMF [22], we believe that
dimension reduction is a significantly important way to capture the essential features that are
invariant under many image processing attacks. For CS, three benefits facilitate its applica-
tion in hashing. First, CS is a random projection, enhancing the security of the hashing
scheme. Second, CS’s low distortion guarantees its robustness to most routine degradations
and malicious attacks. The last one is its low computation cost when implemented in
practice.

We will study the capability of CS to capture image features by comparison of SVD,
NMF and CS. A sample case for the Lena image is illustrated in Fig. 1. Figure 1(a) shows the
Original 128×128 Lena image. Approximations to the Lena image with similar compression
ratio are shown in Fig. 1(b) (c) (d) by using SVD, NMF and CS, respectively. CS reconstruct
method use the wavelet-based Bayesian CS [8]. It may be seen that perceptually Fig. 1(b) (c)
(d) are of about the same quality.

We will test the stability and sensitivity of CS through L2 norm the difference
among the lena image, the man image and the lena JPEG version (QF010). The
image use Haar wavelet transform firstly and then m02,000 CS measurements. We
divide the sampling signal in 50 blocks and compute the average of each block.
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Finally, we get the feature vector of length 50. Figure 2 shows the L2 norm of the
component wise difference in features vector. The distinction between the different
image versus the distorted version is easily made because of CS’s inherent ability to
capture local image features. It make our method has good classification ability.

Fig. 1 Example of approximation of the Lena image via SVD, NMF and CS. The corresponding PSNR
values: Fig. (b) is 30.2 dB, Fig. (c) is 29.5 dB and Fig. (d) is 30.5 dB. a Original Lena image. b Low-rank
SVD approximation. c Low-rank NMF approximation. d CS approximation
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version after JPEG compression
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4.2 FMCS hashing method

In this section, we proposed FMCS hashing method based on FM transform and CS
principles. Figure 3 shows the framework of FMCS hashing method.

1) Image Preprocess: we let the original image X undergo a sequence of pre-processing,
including image re-sizing, color space conversion, Since the luminance plane contains
most of the geometric and visually significant information, for a color image we only
consider the luminance component. Image resizing changes the image into a standard
size N×N using bi-linear interpolation. This is done to ensure that the zgenerated image
hash is scale invariant.

2) Appling FM Transform: the FMT could be divided into three steps, which result in the
invariance to geometric attacks.

a) Fourier Transform. It converts the translation of original image in spatial
domain into the offset of angle in spectrum domain. The magnitude is
translation invariant.

b) Cartesian to Log-Polar Coordinates. It converts the scaling and rotation in
Cartesian coordinates into the vertical and horizontal offsets in Log-Polar
Coordinates.

c) Mellin Transform. It is another Fourier transform in Log-Polar coordinates and
converts the vertical and horizontal offsets into the offsets of angles in spectrum
domain.

The final magnitude matrix F 2 RN�N is invariant to translation, rotation, and scaling.

3) Matrix Decimation: The magnitude matrix F is partitioned into blocks of size B×B. The
average of the component of each block is computed and stored in a vector v 2 Rn ,
where n denotes the number of blocks in the image, i.e., n ¼ N 2=B2 .

4) Discrete Wavelet Transform: Appling wavelet transform to the vector v get
wavelet coefficients feature vector w 2 Rn . The feature vector is sparse and
satisfied to CS requirement. These papers demonstrate that one may achieve
accurate CS inversions with substantially fewer projection measurements

Original 

image 

Image preprocess 

(resizing, color 

conversion) 

FM transform 

Matrix Decimation (Dividing matrix and 

computer the mean of each block 

Harr wavelet 

transform 

Random 

Projections

Quantization 

and encoding 

Final hash 

Fig. 3 The framework of FMCS
hashing method
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(smaller) if known properties of the structure of are exploited properly. The utility
of exploiting prior knowledge about the structure of the wavelet coefficients is
particularly valuable to represent feature vector with a small number of CS
measurement.

5) Random Projections: A number of linear random projections p 2 Rm;m < n is
produced as p ¼ Aw . The entries of the matrix A 2 Rm�n are sampled from a
Gaussian distribution, generated using a random seed S, which will be sent as
part of the hash to the user. The random seed S works as a sort of secret key to
guarantee computational security against malicious attacks which may exploit the
knowledge of the nullspace of the projection matrix A to break the system. The
choice of the number of random projections depends on the expected sparsity and
the structure of the vector w.

6) Post Processing: We quantize the resulting vector p and apply gray coding to obtain the
binary hash sequence h. Furthermore, we can enhance the security using randomly
permuted according to a permutation table generated using the key.

5 Analytical and experimental results

5.1 Performance evaluation

Let S ¼ sif g be the set of original images in the tested database and define a space H Sð Þ ¼
H sið Þf g as the set of corresponding hash vectors. We use Hamming distance as the
performance metric to measure the robustness against content preserving manipulations
and discriminating capability between two hash vectors, defined as

HD ¼
Xn
i¼1

hi s1ð Þ � hi s2ð Þj j ð13Þ

where H sið Þ ¼ h1 sið Þ; h2 sið Þ; � � � ; hn sið Þf g means the corresponding hash vector with length
n of the image si. Given a tested image s, we first calculate its hash H(S) and then obtain its
distances to each original image in the hash space H(S). Intuitively, the query image s is

identified as the bi th original image which yields the minimum corresponding distance,
expressed as

bi ¼ argmin HðsÞ � H sið Þk k2
� �

; i ¼ 1; � � � ;N ð14Þ
Except investigating robustness and identification accuracy, we also study the receiver

operating characteristics (ROC) curve to visualize the performance of different hashing
approaches, including NMF hashing, CS hashing and our method. The ROC curve depicts
the relative tradeoffs between benefits and cost of the identification and is an effective way
to compare the performances of different hashing approaches. To obtain ROC curves to
analyze the hashing algorithms, we may define the probability of true identification PT and
probability of false alarm PF as

PT ¼ Pr HðIÞ � H Isimið Þk k2 < T
� � ð15Þ

PF ¼ Pr HðIÞ � H Idiff
� �		 		

2
< T


 �
ð16Þ
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where T is the identification threshold. The images I and Idiff are two distinct original
images and the image Isimi is manipulated versions of the image I. Ideally, we hope
that the hashes of the original image I its manipulated version Isimi should be similar
and thus be identified accurately, while the distinct images I and Idiff should have
different hashes. In other words, given a certain threshold T, an efficient hashing
should provide a higher PT with a lower PF simultaneously. Consequently, when we
obtain all the distances between manipulated images and original images, we could
generate a ROC curve by sweeping the threshold T from the minimum value to the
maximum value, and further compare the performances of different hashing
approaches.

5.2 Identification results

In order to evaluate the performance of the proposed new hashing algorithms, we test
our method on a database of 100 000 images. In this database, there are 1,000
original color nature images, which are mainly selected from the ten sets of categories
in the content-based image retrieval database of the University of Washington [23].we
generate 99 similar versions by manipulating the original image according to a set of
content preserving operations (CPOs) listed in Table 1. All the operations are imple-
mented using Matlab.

We firstly test identification accuracy for the standard test images such as Baboon, Lena,
and Peppers. Here we will measure the proposed hashing on the new database. Ideally, it is
robust to all routine degradations and malicious attacks, no matter what content-preserving
manipulation is done, the image with any distortion should still be correctly classified into
the corresponding original image.

Following the algorithms designed in Section 4, we test our hashing with the
parameters chosen as as summarized in Table 2. Since the NMF-NMF-SQ hashing
has been shown to outperform the SVD-SVD and PR-SQ hashing algorithms having
the best known robustness properties in the existing literature. The CS hashing
exploits CS mechanism too. We Choose NMF-NMF-SQ hashing and CS hashing for

Table 1 Types and parameters of
CPOs Operations Parameters Number

Gaussian noise Sigma:0–0.1 10

Salt & pepper noise Sigma:0–0.1 10

Speckle noise Sigma:0–0.1 10

Gaussian blurring Size:3–21, sigma:5 10

Circular blurring Radius:1–10 10

Motion blurring Len:5–15 9

Rotation Degree:5–45 9

Cropping 5 %–35 % 6

Scaling 25 %–200 % 5

JPEG comprssion QF:5–50 10

Gamma correction Gamma:0.75–1.25 10
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comparing the performance of our proposed hashing algorithm. For the NMF ap-
proach, the parameters are set as m064, p010, r102, r201, and M040 according to
[22]. It is worth mentioning that, to be consistent with the FCMS approach, we chose
the same size of subimages and length of hash vector in NMF hashing. We first
examine the identification accuracy of both hashing algorithms under different attacks,
and the identification results are shown in Table 3. It is clearly noted that the
proposed hashing consistently yields a higher identification accuracy than that of
NMF hashing and CS hashing under different types of tested manipulations and
attacks.

5.3 ROC analysis

We then present a statistical comparison of the proposed FCMS and NMF hashing
algorithms by studying the corresponding ROC curves. We generate the overall ROC
curves for all types of tested manipulations when applying different hashing schemes,
and the resulting ROC curves are shown in Fig. 4. From Fig. 4, one major observa-
tion is that the proposed FCMS hashing outperforms NMF hashing and CS hashing in
various CPOs.

Table 2 Parameter setting
Parameter Value

Standard size N0256

Block size B08

Level of wavelet tansform 2

Length of projection m050

Length of gray code 6

Length of hash vector 300

Table 3 Identification accuracy
for FMCS,NMF and CS hashing Operations NMF CS FMCS

Gaussian noise 58.24 % 49.16 % 65.62 %

Salt & pepper noise 78.53 % 76.73 % 94.23 %

Speckle noise 76.81 % 77.40 % 96.28 %

Gaussian blurring 97.51 % 88.33 % 99.55 %

Circular blurring 97.12 % 95.72 % 99.26 %

Motion blurring 98.23 % 95.57 % 99.82 %

Rotation 17.16 % 47.38 % 55.34 %

Cropping 15.28 % 37.29 % 87.34 %

Scaling 98.78 % 99.38 % 100 %

JPEG comprssion 98.70 % 96.82 % 100 %

Gamma correction 7.34 % 23.57 % 67.45 %
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5.4 Security analysis

Collision occurs if the Hamming distance between two hash values of visually distinct
images is sufficiently small, say, less than a given threshold T. In order to find the collision
probability, we generated hashes of 1,000 different color images from the image
database of Washington University. Assume the Hamming distances follow one of
the common distributions, i.e., Poisson, lognormal, and normal distributions. We apply
chi-square test to determine which is the closest. Parameters of these distributions are
obtained based on the maximal likelihood estimation, and the probability density
functions (PDF) are computed at the values ranging from 0 to the hash length L.
Figure 5 gives comparison between the actual distribution and the ideal normal
distribution. We can identify the distribution of Hamming distances as the normal

Fig. 4 The overall ROC curves
of NMF hashing, CS hashing
and FCMS hashing under all types
of tested operations
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Fig. 5 Distribution of Hamming
distances between different
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distribution with its mean and standard deviation being μ ¼ 146:8 and σ ¼ 15:7 ,
respectively. Given a threshold T, the collision probability can be obtained as

P HD � Tð Þ ¼ 1ffiffiffiffiffi
2p

p
σ

Z T

0
e�

x�μð Þ2
2σ2

dx ¼ 1

2
erfc � T � μffiffiffi

2
p

σ


 �
ð27Þ

Then, a very low collision probability 3:52� 10�14 is achieved when T030.

5.5 CPU time cost

Compared with NMF hashing and CS hashing, which use prefixed regions of interest
determined by a secret key for feature extraction and CS random projection and reconstruc-
tion, the major and additional computation cost of the proposed FMCS hashing lies in the
FM and wavelet transform. Therefore, the computation cost of the proposed FMCS hashing
is higher than NMF hashing and CS hashing. As an example, we test these approaches on 50
images using a desktop computer with CPU 3.0 G and 2 G RAM and report the average
computational time in Table 4. After the hash is formed offline, the FMCS hashing has faster
hash compassion speed than CS hashing. It is suitable to image identification and indexing.

6 Conclusion

In this paper, we develop new image hashing algorithms using compressive sensing princi-
ple. We have incorporated Fourier-Mellin transform to our hashing against rotation, scaling,
and transition attacks and exploited the property of dimension reduction inherent in com-
pressive sensing for hash design. The advantage of CS, relative to conventional compress
approaches, is that the number of (projection) Measurements may be significantly smaller
than the number of measurements in traditional sampling methods. The statistic structure
and sparse of the wavelet coefficients assure efficient compression in situation of including
maximum the image features. Based on our experimental results, it is noted that the FMCS-
based hashing is robust to a large class of routine distortions and geometric attacks.
Compared with the NMF hashing and the CS hashing, the proposed FMCS hashing can
achieve comparable, sometimes better, performances than that of NMF, while requiring less
computational cost. The random projection and low distortion properties of FMCS make it
more suitable for hashing in practice than the NMF approach.

Furthermore, we plan to explore the CS-based hashing in image authentication
application. Most of hash-based image authentication methods don’t localize the
tampering area. We will exploit inversion reconstruction of CS procedure to obtain
the estimate of the image tampering. Another concern that is of great importance in
practice but is rarely discussed in the context of image hashing is automation.
Automatic estimation/choice of design parameters removes the subjectivity from the
design procedure and can yield better performances. We will study some optimization
algorithms for automatic estimation of parameters of the FMCS hashing using could
improve the identification performance.

Table 4 The average CPU times
of NMF,CS and FMCS hashing Computational cost NMF CS FMCS

Time(s) 0.92 0.82 2.31
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