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Abstract Medical image registration is commonly used in clinical diagnosis, treatment,
quality assurance, evaluation of curative efficacy and so on. In this paper, the edges of the
original reference and floating images are detected by the B-spline gradient operator and then
the binarization images are acquired. By computing the binarization image moments, the
centroids are obtained. Also, according to the binarization image coordinates, the rotation
angles of the reference and floating images are computed respectively, on the foundation of
which the initial values for registering the images are produced. When searching the optimal
geometric transformation parameters, the modified peak signal-to-noise ratio (MPSNR) is
viewed as the similarity metric between the reference and floating images. At the same time,
the simplex method is chosen as multi-parameter optimization one. The experimental results
show that, this proposed method has a fairly simple implementation, a low computational load,
a fast registration and good registration accuracy. It also can effectively avoid trapping in the
local optimum and is adapted to both mono-modality and multi-modality image registrations.
Also, the improved iterative closest point algorithm based on acquiring the initial values for
registration from the least square method (LICP) is introduced. The experiments reveal that the
measure acquiring the initial values for registration from image moments and the least square
method (LSM) is feasible and resultful strategy.

Keywords Image moment . Improved PSNR .Medical image . Image registration . Least
square method

1 Introduction

Along with the wide and in-depth applications of medical imaging technologies, to clinical
medicine such as disease diagnosis, surgical exploration, radiation therapy, assessment of
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healing efficacy and so on, the research about registering the medical images generated by
various imaging devices, becomes a hot field which has been drawing more and more
attention over the years.

Medical image registration, as a important image processing technology, denotes that the use
of the spatial geometric transformation to align two or more images sampling from a different
time, from a different scene or from a different modality, enables the pixels (voxels) represent-
ing the same structure to achieve the space correspondence [5,12,13,15,16,23,30]. Over the past
several decades, medical image registration methods have made great progress, and researchers
around the world have introduced many practical methods, which are divided into two broad
categories: feature-based and intensity-based medical image registration methods [17]. As for
the former, by searching the common, obvious and significant features between the registering
images, it obtains the optimal transformation parameters. This is a simple and fast method, but
its registration accuracy heavily depends on whether the image feature points can be exactly
extracted [6,11]. Due to the complexity of medical images, it is difficult to automatically extract
the useful feature points; thus it is necessary to interactively pick out them. Therefore, its poor
adaptability needs to be further improved. With respect to the intensity-based image registra-
tion, it needn’t capture the feature points and only uses the gray level similarity between two
images as the registration metric. Due to the full use of image gray information, it has fairly
higher registration accuracy. Among intensity-based methods published, the mutual informa-
tion (MI) technology has become one of the most prevalent methods because it is more flexible
and accurate than any other methods in the global information context [6,11,17,21]. In the
process of the image registration, it employs MI as similarity metric, and can automatically,
directly and accurately align two or more images without any prior segmentation or other
preprocessing, which makes it to be popular and to be very suitable for clinical applications. In
the literature [20], an alignment method maximizing mutual information of medical images was
proposed to obtain the parameters for the translation and rotation needed to register by Paul et
al. Since the mutual information function contains many local maxima, it easily gets into the
local optimum. Therefore, the transformation parameters are not the global optimum ones. Fei
et al. [8], Slomka et al. [26] and Radau et al. [22], by using multi-parameters optimizations of
Powell and simplex methods, obtained the parameters for the translation and rotation. The MI
technology, however, has the following inherent limitations. First, due to the fact that it only
considers the gray information instead of or regardless of spatial information, it often traps in
the local optimum and even fails to register images. Second, although MI reflects the informa-
tion of the overlapping region between two images, it cannot directly embody the gray
discrepancy between two registering images. That is, it cannot be reckoned as the criterion
for objectively judging the quality of the registered image. In addition, it has a heavily
computational load, time-consuming process and low registration efficiency. Because of these
reasons above, Pan et al. [18] proposed medical image registration based on singular value
decomposition and modified peak signal-to-noise ratio. In this paper, the medical image
moments are calculated to get the centroid, and the rotation angles of the reference and floating
images are computed respectively based on the rotational invariance of the singular values of
the matrix of the medical image coordinates, on the basis of which the initial values for
registering the images are produced. When searching the optimal geometric transformation
parameters, the modified peak signal-to-noise ratio is selected as the similarity measure, and the
simplex method as multi-parameter optimization. The experimental results show that, this
proposed method is fairly simple to implement and has a low computation load and good
registration accuracy. It also can effectively avoid trapping in the local optimum.

Inspired by [18], in order to address the above problems, on the basis of a comprehensive
and thorough research into image moments, the least square method (LSM) and peak signal-
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to-noise ratio (PSNR), we introduce another registration method, i.e. medical image regis-
tration based on LSM and modified PSNR (MPSNR). In this paper, the binarization images
are acquired after the B-spline gradient operator (BSGO) is used to detect the edges of the
reference and floating images. Based on computing the moments of the binarization images,
the centroids are obtained respectively, and then according to the binarization image
coordinates and LSM, the rotation angles of the reference and floating images are calculated
respectively, on the foundation of which the initial values for registration are acquired.
MPSNR, as a similarity metric between two images, incorporating with the simplex method,
is applied to explore the optimal transformation parameters. This proposed method can cater
to both mono-modality and multi-modality image registrations. In addition, the method
acquiring the initial values from image moments and LSM is adopted for the iterative closest
point (ICP) algorithm, and also can advance the performance of ICP.

2 Imperfection of the image registration based on MI

Suppose that reference image R and floating image F are both ofM × N pixels with the upper
left pixel being (1,1) and the gray level being represented by L, and the gray values at point
(x, y) are r (x, y) and f (x, y) respectively. For any image I, its entropy is given by the
expression [15]

HðIÞ ¼ �
XL�1

k¼0

pðkÞlog2pðkÞ ð1Þ

where p(k) represents the probability function that gray value k appears.
MI, as an important concept in the field of information theory, is a prevalent entropy-

based similarity metric extensively used in medical image registration. This metric is
superior to most other intensity-based ones in multi-modality registrations because it only
assumes a statistical dependence between two images. MI is a measure of the degree of
dependence of two images. In the process of aligning two or more images, when each point
in the floating image is mapped onto its corresponding point in the reference image,
registration is achieved by maximizing the gray information, that is, in this case, the
information that the floating image can represent the reference image is the richest, which
is so-called MI expressed by:

MI R;Fð Þ ¼ H Rð Þ þ H Fð Þ � H R;Fð Þ ð2Þ
where H(R) and H(F), are the entropies of reference image R and floating image F
respectively, and H(R, F) is the joint entropy of R and F. Summarily speaking, the MI-
based registration (MIR) is described:

Toptimal ¼ argmax
T

MI R; T Fð Þð Þ ð3Þ

That is, finding an optimal transformation Toptimal maximizes the MI. Generally, 2-D
medical image rigid registration, in essence, includes translation and rotation transforma-
tions, namely

T ¼
1 0 0
0 1 0
Δx Δy 1

2
4

3
5 cosϕ sinϕ 0

� sinϕ cosϕ 0
0 0 1

2
4

3
5 ð4Þ
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where Δx and Δy, express vertical and horizontal displacements respectively, and ϕ denotes
the rotation angle. From this, exploring the optimal transformation Toptimal is essentially a
multi-parameter optimization process as well.

Among the methods of solving the multi-parameter optimization, simplex, pattern search
and Powell methods, as unconstrained optimization ones, are commonly used for registering
two images [4]. In the literatures [8,20,22,26], by the selection of the MI as similarity metric,
authors adopted Powell, pattern search, and simplex methods to get the translation and
rotation transformation parameters. Since involving a lot of local optima in the MI function,
these methods mentioned above easily get into the local optima. In the process of seeking the
optimal solution, these methods have to recursively and iteratively explore the solution
space, and consequently their computational loads are very heavy. Moreover, whether these
optimization methods successfully can get the optimal parameters strongly depends on the
initial values selected. If they are ill-suited, then the registration process needs more
searching time and even fail to register the images.

3 Medical image registration based on LSM and MPSNR

In order to advance registration efficiency and reduce the possibility of failing to register
images, this proposed method first acquires the initial values for registering the images to
curtail the time for searching the parameter space and to avoid getting into the local
optimum, and then selecting MPSNR as similarity metric further reduces the time for
registering the images.

3.1 Edge detection and extraction of feature points

B-spline, as a curve and surface fitting function in computer graphics, is used increasingly in
the field of image processing. Unser [31] comprehensively and thoroughly investigated into
the combination with the spline functions and image processing, and the applications of the
B-spline function were discussed in detail. Hereafter, many new methods were proposed to
be adopted for image processing, such as a spline-based image registration [29], a fast
parametric elastic image registration based on B-spline function [13], a 3-D medical image
reconstruction based on B-spline function interpolation [3], a new medical image registra-
tion based on B-spline rigid-elastic transformation [28], a color image segmentation based
on B-spline model [25], a magnetic resonance image segmentation based on B-spline snakes
[27] and so on.

In this paper, in order to get the rotation angle of and extract the feature points from an
original image, we propose an edge detection method based on cubic B-spline function.

Definition 1 The B-spline of order n is defined as follows[32,33]:

BnðxÞ ¼
Pnþ1

j¼0

�1ð Þj
n! Cj

nþ1 xþ nþ1
2 � j

� �n
μ xþ nþ1

2 � j
� �

x 2 Rð Þ ð5Þ

where μðxÞ ¼ 0; x < 0
1; x � 0

�
is the unit step function, and Cj

nþ1 is a combinatorial formula.

According to the properties of BnðxÞ [32], it satisfies the requirement of the smoothing
function. As introduced in the literatures [32,33], the smoothness and approximation of a
smoothing function are mutually contradictory. In essence, the smoothness of BnðxÞ is equal
to a low-pass filter. With n increasing, the smoothing performance of BnðxÞ is strengthened
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and its filtering effect is improved as well, but its processing time correspondingly increases.
Conversely, when n reduces, the approximation performance of BnðxÞ is improved, its edge
protection ability is enhanced and the details are well retained, but the low-pass effect
decreases. In this paper, in order to counterbalance the smoothness and the approximation,
let n03, namely, cubic B-spline function B3ðxÞ , which is defined by Eq. (6) as follows:

B3ðxÞ ¼ 1

6

0; xj j > 2
� xj j þ 2ð Þ3; 1 < xj j � 2

� xj j þ 2ð Þ3 � 4 � xj j þ 1ð Þ3; 0 � xj j � 1

8<
: ð6Þ

The medical image f (x,y) can be regarded as a uniform sampling for a surface; therefore
we use the B-spline function to smooth it. The medical image is approximately expressed by
a surface as follows [14]:

S x; yð Þ ¼
X

i;jð Þ2N
k;l

x;yð Þ
f i; jð ÞBk�l x� i; y� jð Þ ð7Þ

Bk�l x� i; y� jð Þ ¼ Bk x� ið ÞBl y� jð Þ ð8Þ
From Eqs. (7) and (8), the surface S(x,y) is referred to as the result from the discrete

convolution among the image f (x,y), k-order and l-order B-spline functions. Here, let k ¼
l ¼ 3 . When x and y are integers, Nk;l x; yð Þ is the 3×3 neighborhood around the pixel (x, y).
From Eq. (7), the surface S(x,y) has second-order continuous differentiability, that is, S(x,y)
is a smooth one. According to the local properties of B-spline function, Eqs. (7) and (8), the
following Eq. (9) is deduced:

S x; yð Þ ¼
Xxþ k�1

2½ �

i¼x� k�1
2½ �

Xyþ l�1
2½ �

j¼y� l�1
2½ �
f i; jð ÞBk x� ið ÞBl y� jð Þ ð9Þ

From Eq. (9), the x and y directional derivative are shown as follow:

@f x; yð Þ
@x

¼
Xxþ k�1

2½ �

i¼x� k�1
2½ �

Xyþ l�1
2½ �

j¼y� l�1
2½ �
f i; jð ÞB0

k x� ið ÞBl y� jð Þ ð10Þ

@f x; yð Þ
@y

¼
Xxþ k�1

2½ �

i¼x� k�1
2½ �

Xyþ l�1
2½ �

j¼y� l�1
2½ �
f i; jð ÞBk x� ið ÞB0

l y� jð Þ ð11Þ

By Eqs. (9), (10) and (11), we can calculate the directional derivative convolution
template along x and y of the surface fitting by cubic B-spline function respectively:

Bx ¼ 1
12

�1 �4 �1
0 0 0
1 4 1

2
4

3
5 By ¼ 1

12

�1 0 1
�4 0 4
�1 0 1

2
4

3
5 ð12Þ

A gradient operator is often used to detect potential object boundaries or edges. The
gradient operator applied to a continuous function generates a vector at each point whose
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direction indicates the direction of the maximum change of the function at that point, and
whose magnitude denotes the magnitude of this maximum change. For an image, its edge
generally lies in the sudden change areas of the gray values, and the gradient is most
commonly-used differential method in the image edge detection, namely the sudden change
point of signal is in correspondence with the maximum module value of the first derivative.
Regarding the image F, the gradient at point (x, y) is defined as the vector:

G f x; yð Þ½ � ¼
@f x;yð Þ
@x

@f x;yð Þ
@y

" #
ð13Þ

The module (amplitude) of G f x; yð Þ½ � is:

G f x; yð Þ½ �j j ¼ @f x; yð Þ
@x

� �2

þ @f x; yð Þ
@y

� �2
" #1

2

ð14Þ

The argument of G f x; yð Þ½ � is:

θG ¼ arctan
@f x; yð Þ

@x

@f x; yð Þ
@y

�� 	
ð15Þ

From a perspective of edge detection, Bx and By denote the vertical and horizontal edge
convolution kernel so-called B-spline gradient operator (BSGO) in this paper. In edge
detection, the gradient ∇f at point (x, y) can be computed by the following expression:

rfk k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bx*fð Þ2 þ By*f

� �2q
ð16Þ

We first derive the gradient image from the original tilt image by BSGO, compute the
mean value of the gradient image (i.e. the mean gradient value) used as the gradient
threshold value to binarize the gradient image. Therefore the results of edge detection
acquired by BSGO represent the image contours, which are selected as the feature points
to explore the initial values for registration in this paper. Therefore, the edges of reference
image R and floating image F are detected by BSGO and then the binarization images BR

and BF are acquired respectively. Here, BR and BF, essentially denote the feature points.

3.2 Computation of the centroid of the medical image

Definition 2 For a 2-D discrete function g(x, y), the moment of order (p + q) is defined as [10]

Mp;q ¼
PM
x¼1

PN
y¼1

xpyqgðx; yÞ p; q ¼ 0; 1; 2; � � � ð17Þ

where parameter (p + q) is the order of the moment;M andN represent the numbers of sampling
points in space.

Definition 3 The zeroth is expressed as [10]

M 0;0 ¼
XM
x¼1

XN
y¼1

g x; yð Þ ð18Þ

All the first- and higher-order moments divided by M0,0 is independent of the gray level
of an object.
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Definition 4 When p01 and q00, and, p00 and q01[10],

x ¼ M 1;0

M 0;0
; y ¼ M0;1

M0;0
; ð19Þ

where (x ,y ) is defined as the centroid coordinates of the object.
When registering the images, according to Eqs. (17), (18) and (19), the zeroth and first-

order moments of the image BR and image BF, are computed respectively, and then the
centroids (xR ,yR ) and (xF ,yF ) are procured.

3.3 Acquisition of the rotation angle of the medical image

In the process of engineering design and experimental statistics, upon analysis and process-
ing of a batch of data, the data are often fitted to a curve. LSM is a widely-used fitting
method. If we use a smooth curve y 0 f(x) to fit a set of data xi; yið Þ i ¼ 1; 2; � � � ; nð Þ , then in
principle, the deviation between the data and the curve should be minimized. The deviation
"i ¼ f xið Þ � yi is usually called residue. LSM enables the sum of "2

i
to achieve the

minimum. Here, we use a straight line to fit the data. Let the linear equation be expressed
as y ¼ a0xþ a1 , the objective function Q:

Q ¼
Xn
i¼1

"2
i
¼

Xn
i¼1

a0xi þ a1 � yið Þ2 ð20Þ

Table 1 Transformation parameters of mono-modality floating images

Parameter Floating image

CT1 CT2 MR1 MR2 PET1 PET2

Δxs/Pixel −80 68 60 −20 −19 20

Δys/Pixel 110 −89 70 −20 27 −10
Δϕs/º 15.8 −12.5 13.5 −17.7 18.5 12.5

Table 2 Performance of Initial transformation parameters acquired by image moments and LSM

Images Parameter Error

Δx/Pixel Δy/Pixel Δϕ/º Time/S ρx ρy ρϕ ρ

CT1 −76.677 112.063 14.5993 1.0470 0.0415 0.0188 0.0760 0.1363

CT2 64.5421 −90.0934 −11.0696 1.0470 0.0509 0.0123 0.1144 0.1776

MR1 60.496 67.4383 11.6736 0.3280 0.0083 0.0366 0.1353 0.1802

MR2 −19.5953 −16.7419 −15.7953 0.3280 0.0202 0.1630 0.1076 0.2908

PET1 −17.5485 26.1177 15.3989 0.1410 0.0764 0.0327 0.1676 0.2767

PET2 20.9313 −10.5142 10.1283 0.1410 0.0466 0.0514 0.1897 0.2877
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The matrix form of Eq. (20) is shown as follows:

Q ¼ XA� Yð ÞT XA� Yð Þ ð21Þ

where A ¼ a0 a1½ �T , X ¼ x1 x2 � � � xn
1 1 1 1

� 	T
, and Y ¼ y1 y2 � � � yn½ �T .

From Eq. (21), the partial derivative of A is obtained:

@Q

@A
¼ 2XT XA� Yð Þ ¼ 0 ð22Þ

The above equation is solved and A is obtained:

A ¼ XTX
� ��1

XTY ð23Þ

14

18
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26
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X Translation(Pixel)
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N

R
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Rotation Angle
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N

R

(a) X Translation  (b) Y Translation (c) Rotation

Fig. 2 Change curves of PSNR

Fig. 1 Reference image
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Namely:

a0 ¼
n
Pn
i¼1

yixi �
Pn
i¼1

xi
Pn
i¼1

yi

n
Pn
i¼1

x2i �
Pn
i¼1

xi

� �2

a1 ¼
Pn
i¼1

yi
Pn
i¼1

x2i �
Pn
i¼1

xi
Pn
i¼1

xiyi

n
Pn
i¼1

x2i �
Pn
i¼1

xi

� �2

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð24Þ

For a straight line, apparently, its tilt angle ϕ

f ¼ arctan a0*
180

p
ð25Þ

In general, the method obtaining the rotation angle of the reference image R is delineated
as follows:

Step 1 According to Eqs. (17), (18) and (19), the centroid ( xR , yR ) of the binarization
image BR is computed;

Step 2 The tilt matrix PR 2 R2� M�Nð Þ is built, which denotes a 2-D matrix of coordinates
(x,y) in the image BR:

PR 1; i� 1ð Þ � N þ jð Þ ¼ i� xRð Þ � BR i; jð Þ
PR 2; i� 1ð Þ � N þ jð Þ ¼ j� yRð Þ � BR i; jð Þ

�
ð26Þ

where i ¼ 1; 2; � � � ;M ; j ¼ 1; 2; � � � ;N .
Step 3 Let n 0 M × N, put PR into Eq. (24) and α0 is obtained;
Step 4 According to Eq. (25), the rotation angle ϕR is derived.

Getting the rotation angle of floating image F has the same process as that of reference
image R.
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Fig. 3 Change curves of MPSNR
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3.4 Similarity metric between two images

From the perspective of image restoration, medical image registration is to restore the
floating image with geometric distortion to the reference image. Therefore, there must
be a criterion to be used for objectively evaluating the quality of the restored image.
Although the MI well reflects the information of the overlapping region between two
images, it cannot directly and globally exemplify the gray difference between the
images. At the same time, it has a heavily computational load and a time-consuming
operation (See Table 1 in Reference [18]).

Since PSNR can represent the distinction between images, so far it is an
extensively-used criterion that gauges the quality of a restored image. Generally
speaking, the greater the value PSNR, the smaller the difference between images,
the more similar two images, and the better the quality of the restored image;
contrarily, with a smaller value, the difference is greater, two images are more
different, and the quality is poorer. PSNR is defined as

PSNR ¼ 10log10
M � N � L� 1ð Þ2PM

x¼1

PN
y¼1

r x; yð Þ � f x; yð Þð Þ2

0
BBB@

1
CCCA ð27Þ

(a) CT image (b) MR image  (c) PET image

Fig. 4 Experimental reference images

(a) CT1 (b) CT2

Fig. 5 CT floating images
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Compared with MI, PSNR enjoys a better time advantage (See Table 2 in Reference
[18]). Therefore, we use PSNR as the similarity metric between the reference and floating
images in this paper. Herein Eq. (3) is rewritten

Toptimal ¼ argmax
T

PSNR R; T Fð Þð Þ ð28Þ

That is, searching an optimal transformation Toptimal maximizes the PSNR of the regis-

tered floating image. In the actual image registration, generally,
PM
x¼1

PN
y¼1

r x; yð Þ � f x; yð Þð Þ2 ¼

0 is almost impossible in Eq. (27). However, theoretically,
PM
x¼1

PN
y¼1

r x; yð Þ � f x; yð Þð Þ2 ¼ 0 is

possible in the process of the image self-registration. For instance, Fig. 1 is a reference
image. We impose the self-registration on the image in Fig. 1 by applying the X, Y
coordinate translations and image rotation, respectively, and the three change curves of
PSNR are shown in Fig. 2.

As shown in Fig. 2, we can see clearly the breaks in the change curves of PSNR at the

zero-crossing point of the horizontal axis, which results from
PM
x¼1

PN
y¼1

r x; yð Þ � f x; yð Þð Þ2 ¼ 0

and then PSNR ¼ 1 in the process of the image self-registration. Equation (27), therefore,

(a) MR1 (b) MR2

Fig. 6 MR floating images

(a) PET1 (b) PET2 

Fig. 7 PET floating images
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must be modified with a complementary value. Then we get the MPSNR according to
Reference [18] as follows

MPSNR ¼ 10log10
M � N � L� 1ð Þ2PM

x¼1

PN
y¼1

r x; yð Þ � f x; yð Þð Þ2 þ L�1ð Þ2
10

0
BBB@

1
CCCA ð29Þ

According to Eq. (29), applying the image self-registration to Fig. 1 gets the change
curves of MPSNR, shown in Fig. 3. According to the Fig. 3, due to the presence of the

Table 3 Performance of Initial transformation parameters acquired by image moments and SVD

Images Parameter Error

Δx/Pixel Δy/Pixel Δϕ/º Time/S ρx ρy ρϕ ρ

CT1 −76.4013 111.2847 15.7378 0.3910 0.0450 0.0117 0.0039 0.0606

CT2 65.0300 −89.2143 −12.4805 0.1090 0.0437 0.0024 0.0016 0.0477

MR1 60.1865 68.0979 13.4872 0.0310 0.0031 0.0272 0.0009 0.0312

MR2 −19.7001 −17.4095 −17.7541 0.0160 0.0150 0.1295 0.0031 0.1476

PET1 −17.5459 26.6633 18.4501 0.0160 0.0765 0.0125 0.0027 0.0917

PET2 21.0144 −10.3099 12.5792 0.0160 0.0507 0.0310 0.0063 0.088

(a) CT1 (b) CT2 (c) MR1

(d)MR2 (e)PET1 (f)PET2

Fig. 8 Result figures of registering the mono-modality images using RLM
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complementary value L�1ð Þ2
10 , there exist no breaks in the change curves of MPSNR and each

curve is smooth and continuous.

3.5 Procedure of medical image registration based on LSM and MPSNR

As mentioned before, medical image registration based on LSM and MPSNR (RLM) is
detailedly depicted as follows:

Step 1 According to BSGO, the binarization images BR and image BF are acquired.
Step 2 According to Eqs. (17), (18) and (19), images BR and BF, the centroids ( xR ,

yR ) and (xF ,yF ) of reference imageR and floating imageF, are computed respectively.
Step 3 According to LSM, images BR and BF, the rotation angles ϕR and ϕF of reference

image R and floating image F, are obtained respectively.
Step 4 The initial values for registering the images are calculated, namely, Δx0 ¼ xF � xR ,

Δy0 ¼ yF � yR , Δϕ0 ¼ ϕF � ϕR .
Step 5 Choosing MPSNR as the similarity metric, and the simplex method as a multi-

parameter optimizing method, is applied to get the translation and rotation
parameters.

Step 6 The optimization process ends and the optimal transformation Toptimal is procured.

Now, we discuss the difference between RLM and RSMP in Reference [18]. They are
two different approaches to obtaining the initial values for image registration. The proposed
method in this paper uses BSGO to detect the edges of the original reference and floating

(a) CT1 (b) CT2 (c) MR1

(d)MR2 (e)PET1 (f)PET2

Fig. 9 Result figures of registering the mono-modality images using MIR
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images and then the binarization images are acquired. By computing the binarization image
moments, the centroids are obtained. Also, according to the binarization image coordinates,
the rotation angles of the reference and floating images are computed respectively, on the
foundation of which the initial values for registering the images are produced. As for RSMP,
it computes the original medical image moments to obtain the centroid, and according to the
rotational invariance of the singular values of the matrix of the medical image coordinates,
the rotation angles of the reference and floating images are computed respectively, on the
foundation of which the initial values for registering the images are generated.

4 Experiments and results

In this paper, all the experimental images are extracted from the brain image database built
by Retrospective Registration Evaluation Projection, which is affiliated to Vanderbilt Uni-
versity, USA. RLM and MIR are implemented in MATLAB 7.1 on PC with a Pentium IV
2.6 GHz and 1,024 MB RAM, running Windows XP. In order to validate the features that
RLM has a fast implementation, a high registration precision and a strong robustness, we use
the simplex method as multi-parameter optimizing one, and compare the results from the
MIR.

In the following sections, we choose No.25 CT, No.24 MR_T1_rectified and No.10
PET brain images of the patient_001 as the reference images, whose sizes are 512×
512, 256×256 and 128×128, respectively, and gray levels are all represented by 256,
shown in Fig. 4a, b, and c.

(a) CT1 (b) CT2 (c) MR1

(d)MR2 (e)PET1 (f)PET2

Fig. 10 Result figures of registering the mono-modality images using RSMP
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To compare the accuracy of the image registration, we define error ρi [18]

ρi ¼ Δi�Δisj j
Δisj j i ¼ x; y;ϕð Þ ð30Þ

where Δis denotes the standard transformation parameter aligning the floating image with the
reference image, and Δi represents the actual transformation parameter acquired by the
registration method mentioned in this paper. Further, we define total error ρ [18]

ρ ¼
X

i¼ x;y;ϕf g
ρi ð31Þ

(a) CT (b) MR1 (c) MR2

Fig. 11 First group of images

Table 4 Performance of registering the mono-modality images using RLM, RSMP and MIR

Images Registration
method

Parameter Error

Δx/Pixel Δy/Pixel Δϕ/º Time/S ρx ρy ρϕ ρ

CT CT1 RLM −80.8648 109.122 15.8470 24.9370 0.0108 0.008 0.003 0.0218

MIR −80.4458 109.530 15.8035 37.9840 0.0056 0.0043 0.0002 0.0101

RSMP −80.1811 109.5840 15.8350 24.4380 0.0023 0.0038 0.0022 0.0083

CT CT2 RLM 67.5724 −89.0808 −12.5095 24.2810 0.0063 0.0009 0.0008 0.0080

MIR 67.6279 −89.7510 −12.537 40.6880 0.0055 0.0084 0.003 0.0169

RSMP 67.7657 −89.3060 −12.3597 21.2030 0.0034 0.0034 0.0112 0.0181

MR MR1 RLM 59.5401 69.5257 13.6137 6.3590 0.0077 0.0068 0.0084 0.0229

MIR 59.4040 69.4263 13.6027 9.6560 0.0099 0.0082 0.0076 0.0257

RSMP 59.7628 69.7215 13.6141 5.2500 0.0040 0.0040 0.0085 0.0164

MR MR2 RLM −20.0275 −19.0038 −16.6098 7.8130 0.0014 0.0498 0.0616 0.1128

MIR −20.0915 −20.0229 −17.7969 9.2340 0.0046 0.0011 0.0055 0.0112

RSMP −20.1180 −19.2475 −16.1613 5.6250 0.0059 0.0376 0.0869 0.1305

PET PET1 RLM −19.8564 26.2026 18.3238 1.8750 0.0451 0.0295 0.0095 0.0841

MIR −18.1113 26.6279 16.4855 2.3750 0.0468 0.0138 0.1089 0.1695

RSMP −19.4111 26.5544 18.0857 1.4850 0.0216 0.0165 0.0224 0.0605

PET PET2 RLM 19.5571 −10.0111 12.4961 1.5000 0.0221 0.0011 0.0003 0.0235

MIR 19.9866 −10.7805 10.7167 1.8900 0.0007 0.0780 0.1427 0.2214

RSMP 19.6235 −10.5085 12.6501 1.3130 0.0188 0.0509 0.0120 0.0817
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4.1 Mono-modality medical image registration

In the section, we choose No.25 CT, No.24 MR_T1 and No.10 PET brain images of the
patient_001 as the reference images, shown in Fig. 4a, b, and c, respectively. Each reference
image is transformed into the corresponding floating image according to the parameters in
Table 1, shown in Fig. 5a and b, Fig. 6a and b, and, Fig. 7a and b. In the following registered
images, the red and green landmarks denote the results from extracting the edges of the
reference and floating images by Canny operator respectively, and the yellow landmarks
denote the overlapping region of two registered images.

By Applying image moments and LSM Δx0, Δy0 and ϕ0 are excavated to be used for the
initial values of the simplex method shown in Table 2, and then RLM and MIR are
performed. In order to compare the proposed method, Δx0, Δy0 and ϕ0 are obtained by
image moments and the singular value decomposition (SVD) in Reference [18] shown in
Table 3, and then RSMP is implemented. The experimental results are listed in Figs. 8, 9 and
10 and Table 4.

From Table 2, the initial values derived from images moments and LSM are approximate
to the transformation parameters in Table 1 and the time cost is also very low, but the
accuracies need to be further promoted, which lay on a solid foundation for image registra-
tion. In addition, it should be noted at this point that, the initial values in Table 3 generated
by images moments and SVD are superior to those by images moments and LSM, the

(a) MR (b) PET1 (c) PET2

Fig. 13 Third group of images

(a) CT (b) PET1 (c) PET2
Fig. 12 Second group of images
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calculation load is much lower, and the accuracies are also higher. Therefore, images
moments and SVD can provide the more outstanding initial values in the mono-modality
medical image registration.

According to the data in Table 4, the registration speed of RLM is obviously superior to
that of the MIR, especially for the larger image, but is inferior but closer to that of RSMP.
According to Eqs. (30) and (31), we also compute the registration accuracies of RLM, MIR
and RSMP, and the errors are shown in Table 4. The results reveal that, the registration
accuracy of RLM, on the whole, achieves that of MIR or even better. As compared with
RSMP, the accuracy of RLM has no advantage, but their discrepancy is tinier. As stated
above, selecting MPSNR as the similarity metric is a better and more effective strategy. In
addition, we also can find, since the initial values generated by image moments and LSM are
close to the standard transformation parameters in Table 1, RLM and MIR can quickly and
exactly obtain the final transformation parameters. Therefore, as images moments and SVD,
images moments and LSM used for acquiring initial values before registration is also a good
preprocess.

4.2 Multi-modality medical image registration

In the section, we still use No.25 CT, No.24 MR_T1 and No.10 PET brain images of the
patient_001 as the reference images. The experimental images are divided into the following
three groups. The first is to select CT image as the reference one and, MR1 and MR2 as the
floating images, whose sizes are of 256×256 pixels, shown in Fig. 11. The second is to
select CT image as the reference one and, PET1 and PET2 as the floating images, whose
sizes are of 128×128 pixels, shown in Fig. 12. And the last is to select MR image as the
reference one and, PET1 and PET2 as the floating images, whose sizes are of 128×128

Table 6 Performance of Initial transformation parameters acquired by image moments and LSM

Images Parameter Error

Δx/Pixel Δy/Pixel Δϕ/º Time/S ρx ρy ρϕ ρ

First Group MR1 −20.5012 29.0078 12.7512 0.3280 0.1635 0.0154 0.074 0.2529

MR2 30.5529 −27.7623 −9.3598 0.3280 0.0224 0.0147 0.05 0.0871

Second Group PET1 −21.1324 14.8249 −8.2483 0.1410 0.1597 0.0103 0.0762 0.2462

PET2 15.7669 −14.2771 11.4125 0.1410 0.0451 0.0118 0.0205 0.0774

Third Group PET1 −14.1784 11.2134 −9.8660 0.1410 0.0673 0.04 0.0324 0.1397

PET2 22.7209 −17.8886 9.7948 0.1410 0.0126 0.0157 0.0272 0.0555

Table 5 Transformation parameters of multi-modality floating images

Parameter Floating image

The first group The second group The third group

MR1 MR2 PET1 PET2 PET1 PET2

Δxs/Pixel −24.5077 29.8840 −18.2223 16.5123 −13.2844 22.4384

Δys/Pixel 28.5666 −28.1755 14.9787 −14.4474 10.7823 −18.1742
Δϕs(º) 11.8726 −9.8528 −8.9288 11.6513 −10.1968 9.5355
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pixels, shown in Fig. 13. In the experiments, RLM, MIR and RSMP are applied to register
the multi-modality images respectively, and we still use the simplex method to search the
optimal registering parameters. Also, we list the relatively accurate transformation parame-
ters in Table 5, which are taken as Δis in Eq. (30).

Δx0, Δy0 and ϕ0 acquired by applying image moments and LSM, are still used for the
initial values of the simplex method, shown in Table 6. In order to compare the proposed
method, Δx0, Δy0 and ϕ0 are obtained by image moments and SVD in Reference [18] shown
in Table 7, and then RSMP is implemented. The experimental results based on RLM, MIR
and RSMP are shown in Figs. 14, 15 and 16 and Table 8, respectively.

(a) CT&MR1 (b) CT&MR2 (c) CT&PET1

(d) CT&PET2 (e) MR&PET1 (f) MR&PET2

Fig. 14 Result figures of registering the multi-modality images using RLM

Table 7 Performance of Initial transformation parameters acquired by image moments and SVD

Images Parameter Error

Δx/Pixel Δy/Pixel Δϕ/º Time/S ρx ρy ρϕ ρ

First Group MR1 −19.0053 28.4582 13.3624 0.0160 0.2245 0.0038 0.1255 0.3538

MR2 30.4000 −29.4261 −11.2324 0.0320 0.0173 0.0444 0.1400 0.2017

Second Group PET1 −17.9485 14.8030 −9.0239 0.0160 0.0150 0.0117 0.0107 0.0374

PET2 18.4121 −14.2744 12.4122 0.0150 0.1151 0.0120 0.0653 0.1923

Third Group PET1 −13.3599 11.2072 −9.9690 0.0150 0.0057 0.0394 0.0223 0.0674

PET2 22.9949 −17.8622 10.5588 0.0160 0.0248 0.0172 0.1073 0.1493
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From Tables 6 and 7 we can know, the use of image moments and LSM is still an efficient
strategy acquiring the initial values for registration, and its calculation load is inferior to that
of RSMP. Surprisingly, on the whole, in the multi-modality medical image registration,
image moments and LSM can provide the more outstanding initial values than images
moments and SVD.

According to the registering results from Table 8, the registering speed of RLM has is still
considerably superior to that of MIR, especially for the larger image, and is inferior but
closer to that of RSMP. According to Eqs. (30) and (31), we obtain the registration errors of
RLM, MIR and RSMP, listed in Table 8. The results indicate that, the registration accuracy
of RLM, overall, achieves that of MIR or even better. As compared with RSMP, the accuracy
of RLM has some advantage. Therefore, selecting MPSNR as the similarity metric in the
multi-modality image registration is the same effective criterion as MI. In addition, the
method getting the initial values is devoted to RLM and MIR, and reduces a considerable
amount of time.

5 Discussions

As illustrated above, RLM has an excellent registration performance, which is derived from
both getting the initial values for registration by image moments and LSM, and selecting the
MPSNR as the similarity metric. The former can advance the performance not only of the
intensity-based but also of the feature-based registration methods according to the

(a) CT&MR1 (b) CT&MR2 (c) CT&PET1

(d) CT&PET2 (e) MR&PET1 (f) MR&PET2

Fig. 15 Result figures of the multi-modality images using MIR

Multimed Tools Appl (2014) 70:1585–1615 1603



experimental results. Among the feature-based registration methods, the ICP algorithm
pioneered by Besl and Mckay [2] in 1992, is one well known approach and extensively
used for the registration on point sets. It can register the point sets without any prior and
explicit segmentation or other preprocessing of object features, which makes it to be
prevalent and very well adapted for point set registration. In the past twenty years, the
ICP algorithm has made significant progress, and has further been complemented and
perfected. Chen, Medioni [7] and Bergevin et al. [1] proposed a precise registration method
that finds the closest points based on point-to-plane distances. Rusinkiewicz and Levoy [24]
introduced a fast registration method that searches the closet points using point-to-projection
metric. Park and Subbarao [19] developed a registration approach that explores the closest
points based on contractive-projection-point metric. In addition, Gelfand et al. [9] analyzed
the quality of registration for point cloud data.

Although ICP algorithm is widely used for image registration, it has following
three key problems: 1) It has heavily computational load in the process of searching
the corresponding closest points; 2) Whether it successfully gets the optimal registra-
tion parameters strongly depends on the initial rotation and translation matrixes
selected. When they are ill-suited, the registration process needs more searching time,
easily gets into the local optima, and even fails to register images; And 3) it is very
difficult to automatically acquire the crucial feature points in image registration. In
this paper, the ICP algorithm incorporating with the method acquiring the initial
values, an improved iterative closest point algorithm based on acquiring the initial
values for registration from the least square method (LICP) is introduced. LICP first
utilizes BSGO to detect image edges, and then produces a binarization image to

(a) CT&MR1 (b) CT&MR2 (c) CT&PET1

(d) CT&PET2 (e) MR&PET1 (f) MR&PET2

Fig. 16 Result figures of registering the multi-modality images using RSMP
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Table 8 Performance of registering the multi-modality images using RLM, RSMP and MIR

Images Registration method Parameter Error

Δx/Pixel Δy/Pixel Δϕ/º Time/S ρx ρy ρϕ ρ

CT MR1 RLM −23.8040 28.4553 11.6885 6.0470 0.0287 0.0039 0.0155 0.0481

MIR −23.6171 28.2214 12.1727 7.2350 0.0363 0.0121 0.0253 0.0737

RSMP −19.1676 28.8444 12.6310 4.6880 0.2179 0.0097 0.0639 0.2915

CT MR2 RLM 29.8205 −28.5303 −9.6057 4.8440 0.0021 0.0126 0.0251 0.0398

MIR 29.3663 −28.4886 −10.1194 7.8280 0.0173 0.0111 0.0271 0.0555

RSMP 30.0026 −28.0122 −11.1054 3.4026 0.0040 0.0058 0.1271 0.1369

CT PET1 RLM −18.6649 14.4414 −8.8345 1.6250 0.0243 0.0359 0.0106 0.0708

MIR −18.5356 14.3275 −8.9401 2.1090 0.0172 0.0435 0.0013 0.0620

RSMP −18.0380 14.9630 −9.0874 1.1250 0.0101 0.0010 0.0178 0.0289

CT PET2 RLM 16.3694 −14.1385 11.5334 1.3600 0.0087 0.0214 0.0101 0.0402

MIR 16.3342 −14.5524 12.7173 1.9370 0.0108 0.0073 0.0915 0.1096

RSMP 16.2472 −14.6732 12.9635 1.3590 0.0161 0.0156 0.1126 0.1443

MR PET1 RLM −14.5246 10.8329 −10.3008 1.3750 0.0934 0.0047 0.0102 0.1083

MIR −13.4770 10.4384 −10.8645 2.1410 0.0145 0.0319 0.0655 0.1119

RSMP −13.2374 10.6492 −10.3425 1.3280 0.0035 0.0123 0.0143 0.0302

MR PET2 RLM 22.7210 −18.2816 9.5005 1.5790 0.0126 0.0059 0.0037 0.0222

MIR 22.0074 −17.8640 9.4588 2.2030 0.0192 0.0171 0.008 0.0443

RSMP 22.0190 −17.7295 10.0781 1.3440 0.0187 0.0245 0.0569 0.1001

(a) CT1 (b) CT2 (c) MR1

(d) MR2 (e) PET1 (f) PET2

Fig. 17 Result figures of registering the mono-modality images using the ICP algorithm

Multimed Tools Appl (2014) 70:1585–1615 1605



automatically acquire the feature points, finally uses image moments and LSM to
obtain the centroids and rotation angles of the reference and floating images respec-
tively. As stated above, LICP is delineated in detail as follows:

Step 1 According to BSGO, the binarization images BR and image BF are acquired.
Step 2 According to Eqs. (17), (18) and (19), images BR and BF, the centroids ( xR ,

yR ) and ( xF , yF ) of the reference image R and the floating image F, are
computed respectively.

Step 3 According to LSM, images BR and BF, the rotation angles ϕR and ϕF of the
reference image R and floating image F, are obtained respectively.

Step 4 The initial values for registering the images are calculated, namely, Δx0 ¼ xF � xR ,
Δy0 ¼ yF � yR , Δϕ0 ¼ ϕF � ϕR .

Step 5 Δx0, Δy0 and Δϕ0 are used as the initial translation and rotation parameters for the
ICP algorithm, namely

R0 ¼ cos Δϕ0ð Þ � sin Δϕ0ð Þ
sin Δϕ0ð Þ cos Δϕ0ð Þ

� 	
;T0 ¼ Δx0 Δy0½ �T

Step 6 Two sets of coordinates representing all the pixels with gray values being 1 or 255
in the images BR and BF respectively, are obtained, and they are selected as the
reference and floating point sets in the ICP algorithm.

Step 7 The ICP algorithm is performed and the final rotation matrix R0 and translation T0
are derived.

(a) CT1 (b) CT2 (c) MR1

(d) MR2 (e) PET1 (f) PET2

Fig. 18 Result figures of registering the mono-modality images using LICP
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(a) CT1 (b) CT2 (c) MR1

(d) MR2 (e) PET1 (f) PET2

Fig. 19 Result figures of registering the mono-modality images using IICP

Table 9 Performance of registering the mono-modality images using ICP, LICP and IICP

Images Registration method Parameter Error

Δx/Pixel Δy/Pixel Δϕ/º Time/S ρx ρy ρϕ ρ

CT CT1 ICP −26.7440 81.4421 8.7297 48.4530 0.6657 0.2596 0.4475 1.3728

LICP −83.5778 112.462 15.7386 19.7500 0.0447 0.0224 0.0039 0.071

IICP −81.0743 110.3681 15.7329 3.8290 0.0134 0.0033 0.0042 0.0210

CT CT2 ICP 42.2839 −44.8608 −7.6255 46.2030 0.3782 0.4959 0.39 1.2641

LICP 71.9683 −93.4913 −12.3825 15.4060 0.0584 0.0505 0.0094 0.1183

IICP 66.9834 −88.8092 −12.4882 3.7970 0.0150 0.0021 0.0009 0.0180

MR MR1 ICP 82.8472 44.1774 7.2907 18.3910 0.3808 0.3689 0.4599 1.2096

LICP 58.1750 71.3524 13.6923 9.6250 0.0304 0.0193 0.0142 0.0639

IICP 59.2300 69.3208 13.4809 1.8910 0.0128 0.0097 0.0014 0.0240

MR MR2 ICP −20.9759 −15.3244 −0.4837 5.2660 0.0488 0.2338 0.9727 1.2553

LICP −20.0035 −20.2150 −17.4108 5.0620 0.0002 0.0107 0.0163 0.0272

IICP −19.7768 −20.4699 −17.7517 1.8900 0.0112 0.0235 0.0029 0.0376

PET PET1 ICP −17.2883 25.8496 0.3807 0.7500 0.0901 0.0426 0.9794 1.1121

LICP −20.3149 27.3431 18.3738 0.9220 0.0692 0.0127 0.0068 0.0887

IICP −19.4980 27.3329 18.4775 0.5620 0.0262 0.0123 0.0012 0.0398

PET PET2 ICP 29.7818 −29.5501 12.4645 0.6100 0.4891 1.9550 0.0028 2.4469

LICP 20.3351 −10.5382 12.3220 1.0630 0.0168 0.0538 0.0142 0.0848

IICP 18.9114 −9.8338 12.2817 0.5630 0.0544 0.0166 0.0175 0.0885
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5.1 Mono-modality medical image registration

In the section, we still use the experimental images in Section 4.1. The ICP algorithm,
LICP and IICP [18] are applied to register the mono-modality medical images,
respectively, and the experimental results are shown in Figs. 17, 18 and 19 and
Table 9.

From Table 9, the registration speed of LICP is obviously superior to that of the ICP,
especially for the larger image, but is far inferior to that of IICP. From Figs. 17, 18 and 19,
the ICP algorithm fails to register the images, while LICP and IICP register all the images
successfully, and the registration accuracy of IICP is superior to that of LICP in the mono-
modality registration, which are in accordance with the errors shown in Table 9. As seen
above, the use of acquiring initial translation and rotation parameters for the ICP algorithm is
also a good and effective approach.

5.2 Multi-modality medical image registration

In the section, we still use the experimental images in Section 4.2. The ICP algorithm, LICP
and IICP are applied to register the multi-modality medical images, respectively, and the
experimental results are shown in Figs. 20, 21 and 22 and Table 10.

From Table 10, the registration speeds of LICP and IICP are relatively superior to
that of the ICP, especially for the larger image. From Figs. 20, 21 and 22, the ICP
algorithm fails to register the images; IICP fails to align PET1 with CT and PET2

(a) CT&MR1 (b) CT&MR2 (c) CT&PET1

(d) CT&PET2 (e) MR&PET1 (f) MR&PET2

Fig. 20 Result figures of registering the multi-modality images using the ICP algorithm
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with CT, while LICP is successful in registering all the images, which are in
accordance with the errors in Table 10. However, we also can find, the accuracy of
IICP is inferior to that of LICP in the multi-modality registration. As stated above, the
use of the method generating initial values is still an effective measure.

5.3 Comparisons of RLM and LICP

RLM and LICP, as explained above, due to the use of obtaining the initial values for
registration by image moments and LSM, their registration accuracies are greatly
advanced and processing times are significantly reduced. In addition, RLM also
benefits from the new, fast similarity metric, and LICP also takes advantage of the
automatic feature point extraction by BSGO. However, RLM and LICP are still
obvious differences in the performance.

In the mono-modality image registration, both RLM and LICP can successfully register
all the images. With respect to the registration accuracy, RLM outperforms LICP except in
the case of aligning MR2 with MR. Considering the processing time, LICP is superior to
RLM in addition to the alignment of MR1 with MR. Especially for registering larger images,
the difference between the processing times is more considerable. In the multi-modality
image registration, RLM and LICP can successfully register all the images. As for the
registration accuracy, RLM is a more excellent method compared with LICP, while LICP has
a relatively greater errors and its accuracy needs to be further increased. Concerning the
processing time, LICP is still superior to RLM.

(a) CT&MR1 (b) CT&MR2 (c) CT&PET1

(d) CT&PET2 (e) MR&PET1 (f) MR&PET2

Fig. 21 Result figures of the multi-modality images using LICP
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Table 10 Performance of registering the multi-modality images using ICP and LICP

Images Registration method Parameter Error

Δx/Pixel Δy/Pixel Δϕ/º Time/S ρx ρy ρϕ ρ

CT MR1 ICP −2.4458 11.3784 8.3956 18.5150 0.9002 0.6017 0.2929 1.7948

LICP −22.7330 28.4394 12.7319 2.1100 0.0724 0.0045 0.0724 0.1493

IICP −27.9535 30.0513 12.8068 8.0780 0.1406 0.0520 0.0787 0.2713

CT MR2 ICP 16.8283 −11.7323 −5.9809 18.3590 0.4369 0.5836 0.393 1.4135

LICP 31.0082 −28.2938 −9.5022 4.3130 0.0376 0.0042 0.0356 0.0774

IICP 26.6511 −28.2993 −11.2026 7.3750 0.1082 0.0044 0.1370 0.2496

CT PET1 ICP −28.7251 20.3829 −7.8661 2.5940 0.5764 0.3608 0.119 1.0562

LICP −18.6104 15.8291 −8.8370 1.0930 0.0213 0.0568 0.0103 0.0884

IICP −22.0749 17.6841 −11.9963 1.5930 0.2114 0.1806 0.3436 0.7356

CT PET2 ICP 22.2831 −22.5613 5.4359 1.6410 0.3495 0.5616 0.5335 1.4446

LICP 15.9455 −14.9513 11.3933 1.3590 0.0343 0.0349 0.0221 0.0913

IICP 14.0902 −12.5022 10.5624 1.3910 0.1467 0.1346 0.0935 0.3748

MR PET1 ICP −14.0473 11.1661 −0.0130 0.6250 0.0574 0.0356 0.9987 1.0917

LICP −14.1318 10.0061 −9.8362 0.6720 0.0638 0.072 0.0354 0.1712

IICP −14.1603 9.3351 −9.8783 0.6100 0.0659 0.1342 0.0312 0.2314

MR PET2 ICP 23.0180 −18.2027 0.2135 0.6720 0.0258 0.0016 0.9776 1.005

LICP 22.6485 −18.0090 9.8588 0.6720 0.0094 0.0091 0.0339 0.0524

IICP 22.4032 −18.0708 11.6418 0.6090 0.0016 0.0057 0.2209 0.2281

(a) CT&MR1 (b) CT&MR2 (c) CT&PET1

(d) CT&PET2 (e) MR&PET1 (f) MR&PET2

Fig. 22 Result figures of the multi-modality images using IICP
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6 Conclusions

In order to solve the existed problems of registering the images based on MI, by using image
moments and LSM as the tool for getting the initial values for registration, MPSNR as the
similarity metric between the reference and floating images, and the simplex method as the
optimizing means, medical image registration based on LSM and MPSNR is introduced. The
experimental results reveal that, RLM has a simple logical structure, a short computation, a
fast registration and a high accuracy, and also overcomes the problem of easily getting into
the local optimum. It can be well suitable for both mono-modality and multi-modality image
registrations. In addition, the use of obtaining the initial values also can help the ICP
algorithm to enhance the performance. The research of employing RLM to the non-rigid
medical image registration will be our next focus.
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