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Abstract Recently, several cryptosystems based on chaos have been proposed. Neverthe-
less, most of them hinder the system performance, security, and suffer from the small key
space problem. This paper introduces an efficient symmetric encryption scheme for secure
digital images based on a cyclic elliptic curve and chaotic system that can overcome these
disadvantages. The cipher encrypts 256-bit of plainimage to 256-bit of cipherimage within
eight 32-bit registers. The scheme generates pseudorandom bit sequences for round keys
based on a piecewise nonlinear chaotic map. Then, the generated sequences are mixed with
the key sequences derived from the cyclic elliptic curve points. Results of statistical and
differential analysis demonstrate that the proposed algorithm has adequate security for the
confidentiality of digital images. Furthermore, it has key sensitivity together with a large key
space and the encryption is fast compared to other competitive algorithms.

Keywords Image encryption . Chaotic system . Cryptographic primitive operations . Cyclic
elliptic curve

1 Introduction

Along with the rapid development of Internet and universal application of multimedia
technology, media data has been transmitted over insecure channels. In particular, the use
of images is an ascending need because it is the main data information provided by most of
the advanced sensors of today like infrared cameras, optical cameras, millimeter wave
cameras, radar imagers, x-ray imagers, etc.

Image encryption is the process of realigning the original image into an incom-
prehensible or unintelligible one that is non-recognizable in appearance, disorderly and
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unsystematic [8, 17]. In recent years, various encryption algorithms have been proposed and
widely used, such as DES, IDEA or AES. However, these encryption schemes have been
invented to text encryption and appear not to be ideal for image applications due to some
intrinsic features of images such as bulk data capacity, high correlation between pixels and high
redundancy, which are troublesome for traditional encryption [15]. Recently, chaos theory has
received ever increasing research interests from cryptographers. Based on chaotic systems
several image encryption algorithms have been studied, which can be classified into two types,
i.e., stream cipher and block cipher. The first one is carried out by applying the same
transformation on individual data bits and using chaos to generate pseudorandom sequences
[17]. The security of stream ciphers depends on the sequences’ randomness. It is noted,
however, that the real random sequence is still difficult to generate in practice, which restricts
their applications. The second one makes use of chaotic system properties to encrypt the media
data block by block. The security of block ciphers depends on their computing complexity,
which is determined by the confusion and diffusion criteria [30].

A short overview of the main recently proposed chaos-based cipher schemes are given
hereafter. In [5], Chen et al. have proposed an image encryption algorithm in which a two-
dimensional chaotic map is generalized to three-dimension for designing a real-time secure
image encryption scheme. This approach used the three-dimensional cat map to shuffle the
position of the image pixels and uses another chaotic map to confuse the relationship
between the original and encrypted images. Further, Mao et al. [18] extended the same idea
with the 3D chaotic baker’s map at the substitution stage instead of the 3D cat map. Guan et
al. [10] used the 2D cat map to shuffle the position of the image pixels in the spatial domain
and the output of a discretized Chen’s system is used to mask the pixel values. In [20],
Pareek et al. have proposed an approach for image encryption based on chaotic logistic
maps. An external secret key of 80-bit length and two chaotic logistic maps are employed.
The initial conditions for the logistic maps are derived by using the external secret key. Eight
different operation-types are used to encrypt the image pixels. In [9] Gao et al. have
presented an image encryption scheme, which used an image total shuffling matrix to
shuffle the position of image pixels and then utilized a hyper-chaotic system to confuse
the relationship between the plainimage and the cipherimage. Recently, Lian [16] has
proposed an encryption scheme for images based on spatio-temporal chaos system. The
spatiotemporal lattices are used to generate pseudorandom sequences. Then, the sequences
are used to encrypt the selected parameters in each image block.

More recently, Patidar et al. [22] (hereafter referred as PPS09) proposed a lossless image
cipher based on substitution–diffusion architecture using chaotic standard and logistic maps.
It is specifically designed for colour images. They used three processes to encrypt the colour
images, confusion-diffusion-confusion. Two kinds of confusion are used: confusion using
the secret key (via XORing keys) and confusion using the chaotic standard and logistic
maps. Soon after the proposal of PPS09, its algebraic description was analyzed and a
drawback of its structure was shown by Rhouma et al. [26]. After that, Patidar et al. [21]
modified the original scheme and claimed that the modified scheme is secure against
Rhouma et al.’s attack [26]. Very recently, Li et al. [14] found that Patidar et al.’s scheme
[21] is still insecure against a known/chosen-plaintext attack, which can break the original
scheme in [22]. In addition, extra security weaknesses of both the original and the modified
image encryption schemes are reported: insufficient randomness of pseudo randomness and
insufficient sensitivity with respect to a change of the plainimage.

Summarily, most of these schemes encounter some problems such as the lack of effi-
ciency and security [13, 24, 25, 33]. This is mainly due to the fact that, poor diffusion
operation leads to weaknesses against a differential attack, analytical floating-point
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computation and small key space leading to slow performance speed, which makes it
difficult to promote these chaotic encryptions into practical service. Table 1 gives a brief
overview on some chaotic-based image encryption schemes and their properties as well as
their weaknesses. Accordingly, designing a good cryptosystem needs further improvement
to enhance their security. In this paper, a new image encryption scheme based on the cyclic
elliptic curve and chaotic system is introduced. The new algorithm generates pseudorandom
bit sequences for round keys based on adopting the chaotic system XORed with the key
sequence derived from cyclic elliptic curve points. This, in turn, will increase the nonline-
arity and the randomness of the round keys used for encryption/decryption. The philosophy
of the well-known block cipher RC6 is to exploit operations (such as rotations and integer
multiplication) that are efficiently implemented in modern processors. The proposed algo-
rithm continues this trend as well as performing four rotations per round rather than the two
found in RC6 and use more bits of data to determine the rotation amounts per round.
Simulation results and analysis confirm that the proposed scheme has more superior
performance than other algorithms such as RC5, RC6 and other competitive algorithms.
In addition, it has high enough key space to resist any brute force attack.

This paper is organized as follows. In Section 2, we present some preliminaries about
designing the keystream for encryption/decryption. The proposed algorithm is described in
Section 3. Performance and security analysis are reported in Section 4. Section 5 summarizes
the most important findings of this paper and the conclusion is drawn in Section 6.

2 Preliminaries

In most cryptosystems, the cryptographic key is a significant part. No matter how strong and
how well designed the encryption algorithm might be, if the key is poorly chosen or the key
space is too small, the cryptosystem will be easily broken. Due to this principle, a chaotic
system and the cyclic elliptic curve are chosen because of their properties and easy

Table 1 Chaotic based- image encryption schemes and their properties

Algorithm Strengths Weakness and known attacks

Mao et al.’s [18] Adequate key space,
good key sensitivity

Insensitivity to changes in
plaintext and key stream,
poor diffusion function. [33]

Pareek et al.’s [20] Good confusion and diffusion Weaknesses in the key. Weak
to chosen and known
plaintext attacks. [13]

Gao et al.’s [9] Adequate key space Weak to chosen and known
plaintext attacks. [24]

Lian’s [16] Unapparent change in the
compression ratio and less
increase in computational
cost compared with video
compression.

Weaknesses in the key. Weak to
chosen and known plaintext
attacks . [25]

Patidar et al.’s [22] Simple mixing and diffusing
operations

Weak to chosen and known
plaintext attacks. [26]

Patidar et al.’s [21] Good confusion and diffusion Weak to chosen and known
plaintext attacks. [14]
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implementation. In what follows, there are some preliminaries about designing the proposed
round keys for encryption and decryption.

2.1 Cyclic elliptic curve based pseudorandom bit generator

Elliptic curves, which are not directly related to ellipses, are cubic equations in two
variables, x and y, with coefficients from Galois finite field GF (2m) satisfying certain
conditions [6]. The general equation of an elliptic curve is

y2 þ xy ¼ x3 þ ax2 þ b ; a; b 2 GF 2mð Þ where 4ax3 þ 27b2 6¼ 0 ð1Þ
In the above equation, each value of α and β gives a different elliptic curve. All

points (P with co-ordinates (xp, yp)) which satisfies the above equation plus a point at
infinity O lies on the elliptic curve. The total number of points on the elliptic curve
along with the point at infinity O (x0∞; y0∞) is called the order of the elliptic curve
denoted by M. Least integer N for which NP is equal to point at infinity O (NP0O)
is called the order of point P such that N≤M. Then, P, 2P … (N−1)P are distinct
points on the elliptic curve. For a certain choice of α and β it is possible to choose a
base point P of highest order N0M which is square free (square root of M is not an
integer) [7]. Further, P, 2P, 3P …MP are the M points of the elliptic curve, where MP
is the point at infinity. Such an elliptic curve is called a cyclic elliptic curve [19]. For
the property of easy implementation and good statistical properties, a Linear Feedback
Shift Register (LFSR) is used for generating a sequence of integers {ki} modulo p
where p is a prime and p≥M. Every element in the sequence {ki} is mapped to kiP
that is a point of the cyclic elliptic curve with co-ordinates say (xi, yi) as shown in
Fig. 1. The sequence {kiP} is a random sequence of elliptic curve points. From the
sequence (xi, yi) several binary and non-binary sequences can be derived and their
randomness properties are investigated in [28]. Choosing a linear feedback with
connection polynomial primitive over GF(p), can generate periodic sequence with
maximum period [11, 28]. For any choice of n-stages >1, an appropriate feedback
connection can be obtained by using an n−th degree primitive polynomial over GF
(p). It can be shown under this condition; the sequence {ki} is periodic (with all
initial values kn−1, kn−2…k1, k0 not zero) and is of period pn−1. If the cyclic elliptic
curve is chosen, the random sequence {kiP} covers all points in the elliptic curve and
can be used for encryption and decryption [29].

Kernel k1
First cycle only

pseudorandom bit sequence
{ki p}={(xi,yi)}

Random binary sequence
over GF(p)

ki

{ki}

Sequence
Generator

p

Fig. 1 Pseudorandom bit genera-
tor of the cyclic elliptic curve
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2.2 Chaotic system

In our proposed encryption scheme, we use 2-D piecewise nonlinear chaotic map described
as Eq. (2). The researches have shown that it has a uniform distribution (see Refs. [1, 12] for
the detail)

fð2Þ2 x1; l1ð Þ ) x1 nþ 1ð Þ ¼ 2l12 0:5� jx1ðnÞ � 0:5jð Þ
1þ 2 l12 � 1

� �
0:5� jx1ðnÞ � 0:5jð Þ ; ð2Þ

Where λ1 and x1 are system parameters. The map fð2Þ2 x1; l1ð Þ is reduced to tent map if
λ101.

3 The proposed algorithm

Here, we propose a new symmetric image encryption algorithm based on a cyclic elliptic
curve and piecewise nonlinear chaotic map. In this algorithm, we incorporate the merits of
the cyclic elliptic curve with the chaotic system as well as the cryptographic primitive
operations to strengthen the round keys for encryption and to enlarge the key space required
to resist brute force attacks. Furthermore, we strengthen the rate of diffusion process by
simple steps during the round: rotation, integer multiplication, the quadratic function, and
fixed bit shifting by five bits, which is a secure way against both linear and differential
attacks. In turn, the diffusion achieved per round is significantly increased.

The proposed scheme is a fully parameterized family of encryption algorithms. A version
of the proposed encryption algorithm is more accurately specified as (Block-based Image
Encryption Algorithm) BEA-w/r/b where the word size is w bits, encryption consists of
number of rounds r, and b denotes the length of the encryption key in bytes. These three
parameters are as in Table 2.

The proposed BEA-w/r/b works with eight w-bit words as input (plainimage) block size
and eight w-bit words as (cipherimage) output block size. It consists of three components: a
key expansion algorithm, an encryption algorithm, and a decryption algorithm. These
algorithms use primitive operations and it uses lg(x) to denote the base-two logarithm of x
as shown in Table 3.

3.1 Key expansion scheme

The key expansion consists of three algorithmic steps: conversion, initialization, and mixing
as shown in Fig. 2.

The conversion of the proposed scheme is practically identical to the conversion of RC6
[27], copy user’s secret key K [0…b-1] into an array L [0….c-1] with words c0[b/u], where
u0w/8 is the number of bytes/word. This operation is done in a natural manner, using u
consecutive key bytes of K to fill up each successive word in L, low-order byte to high-order

Table 2 Summery of BEA- w/r/b
parameters Parameters Definition Values

w Word size in bits 16,32,64

r Number of rounds 0,1,2,….,255

b No. of bytes in secret key 0,1,2,….,255
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byte. In the initialization, we adopt the chaotic map, Eq (2), to generate chaotic sequences
and then XORed it with the pseudorandom bits generated by the cyclic elliptic curve to
initialize the expanded key table, array S. Finally, the user’s secret key is mixed over the
array S and L.

We use two functionsMap1 (x) andMap2 (x).Map1 (x) maps a byte to [0, 1] interval,Map2
(x) maps the [0, 1] interval to a word, respectively. Namely, the function Map1 (x) maps an
integer between 0 and 255 in the key space domain into a real number in the interval [0, 1] in the
chaotic map domain. Then, the second Map2 (x) maps the domain of the chaotic map, the
interval [0, 1], back into [0, 255]. Further, we use chop (x) to return x with the integer part,
init_pad (K[b]) to calculate the initial pad from the user supplied secret key. Chaotic (x,
iterations) means to evaluate the chaotic map starting from x, iteration times and finally RSCEC
[i] is the random sequence of cyclic elliptic curve points. We note that, the key-expansion
function has a certain amount of “one-wayness” to make it not so easy to determineK from S. In
what follows, the key expansion algorithm is described as the following steps.

Table 3 Primitive operations of
the proposed algorithm Notation Meaning

X+Y Two’s complement addition of words

X−Y Two’s complement subtraction of words

X⊕ Y Bit-wise exclusive –OR of words

X<<<Y The cyclic rotation of word X left by Y bits

X >>>Y The cyclic rotation of word X right by Y bits

X* Y Multiplication modulo 2w

Elliptic curve 
based 

keystream
generator

words

K[b-
1]

...…...…..K[1]K[1]K[0]

User secret key:
 Key b byte

Convert the secret key 
from byte to word

K[b-1]

...…...…..L[2]L[1]L[0] L[c-1]

Mixing in the secret key

...…...…..S[2]S[1]S[0] S[t-1]

words...…...…..S[2]S[1]S[0] S[t-1]

+

{kip}=(xi,yi)

Sequence of integers {ki}  
modulo p

subkeys

r,w

w -bit round keys S[0 ….4r+7]]

PWNLCM

Map2

Map1

Initilize array s[t]

Fig. 2 The key expansion scheme
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Algorithm: key expansion (b, r, x1(0), λ1)
INPUT: user secret key (key b byte), number of rounds r, initial value x1(0), control

parameter λ1
OUTPUT: w-bit round keys S[0,…,4r+7]

Step 1 for (i0b−1,L[c−1]00;i!0−1;i−−)
L[i/u]← (L[i/u]<<<8)+K[i];

Step 2 for(IV [0]0 init_pad, i01;i<t;i++)
IV [i] ← Chaotic (chop (Map1 (K[subkey] +pad), K [next_subkey (Subkey)]) +IV
[i-1];
subkey ← next_subkey (subkey);
for(i00;i< t;i++)
C[i] ← Map2 (IV[i]);
S[i] ←C[i] ⊕ RSCEC[i];

Step 3 for(X0Y0i0 j0k00;k<t;k++,i0(i+1) mod t, j0(j+1) mod c)

X S i½ �  S i½ � þ Xþ Yð Þ <<< lg w;
X L j½ �  L j½ � þ Xþ Yð Þ <<< Xþ Yð Þ;

3.2 Encryption scheme

The proposed encryption consists of eight w-bit registers Pi (i01,2,…,8), which contain the
initial input plainimage as well as the output cipherimage at the end of the encryption
process. In the inner encryption process, the following quadratic function, Eq. (3), is used
four times within each round, which is different from RC6 that is used only two times:

f ðxÞ ¼ xð2xþ 1Þ ðmod2wÞ ð3Þ
The high-order bits of the above function are used to determine the rotation amounts used.

The particular choice of this transformation function is followed by a left rotation by lg(w) bit
positions (e.g. in the case of w032, lg(w)05). The transformed values of Pi (i02, 4, 6, 8) are
used to modify the registers Pi (i01, 3, 5, 7), increasing the nonlinearity of the algorithm while
not losing any entropy (since the transformation is a permutation). The fixed rotation by lg(w)
bits plays an important role in complicating both linear and differential cryptanalysis. The
proposed encryption is described below and an illustration is given in Fig. 3.

Algorithm: Encryption (P, r, S[0,…,4r+7])
INPUT: the plainimage P, number of rounds r, w-bit round keys S[0,…,4r+7]
OUTPUT: 256-bit cipherimage C stored in Pi (i01,2,…,8)

Step 1 P2←P2+S[0], P4←P4+S[1], P6←P6+S[2], P8←P8+S[3]
Step 2 for (i01;i<0r;i++)

a P2 2 P2 þ 1ð Þð Þ <<< lg w; b P4 2 P4 þ 1ð Þð Þ <<< lg w;
c P6 2 P6 þ 1ð Þð Þ <<< lg w; d P8 2 P8 þ 1ð Þð Þ <<< lg w;
P1  ðP1 � aÞ <<< bþ S 4i½ �; P3  ðP3 � bÞ <<< aþ S 4iþ 1½ �;
P5  ðP5 � cÞ <<< dþ S 4iþ 2½ �; P7  ðP7 � dÞ <<< cþ S 4iþ 3½ �;
temp←P1; P1←P2; P2←P3; P3←P4; P4←P5; P5←P6; P8←P8; P8←P7; P7←
temp;

Step 3 P1←P1+ S[4r+4]; P3←P3+S[4r+5]; P5←P5+S[4r+6]; P7←P7+S[4r+7]);
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3.3 Decryption scheme

Decryption is the converse of encryption. At the receiver side, using the same round
transformations and the same w, r, and b, the decryption can easily derive from the
encryption routine as shown in Fig. 4 and through the following steps:

Algorithm: Decryption (C, r, S[0,…,4r+7])
INPUT: the cipherimage C, number of rounds r, w-bit round keys S[0,…,4r+7]
OUTPUT: 256-bit plainimage P stored in Pi (i01,2,…,8)

Step 1 P1←P1- S[4r+4]; P3←P3 -S[4r+5]; P5←P5 -S[4r+6]; P7←P7 -S[4r+7];
Step 2 for (i0r;i>0;i−−)

temp←P7; P7←P8; P8←P6; P6←P5; P5←P4; P4←P3; P3←P2; P2←P1; P1←
temp;

a P2 2 P2 þ 1ð Þð Þ <<< lg w; b P4 2 P4 þ 1ð Þð Þ <<< lg w;
c P6 2 P6 þ 1ð Þð Þ <<< lg w; d P8 2 P8 þ 1ð Þð Þ <<< lg w;
P7  P7 � S 4iþ 3½ � >>> cð Þð � d; P5  P5 � S 4iþ 2½ � >>> dð Þ � c;
P3  P3 � S 4iþ 1½ � >>> að Þ � b; P1  P1 � S 4i½ � >>> bð Þ � a;

Step 3 P8←P8-S[3]; P6←P6-S[2]; P4←P4-S[1]; P2←P2-S[0];

One round
Mixer

+

+

+

+ S[4i+1]

P1

 <<<

+

+ S[4i]

S[0]

S[4r+4] + S[4r+5]

S[4i+3]+ S[4i+2]

S[4r+6] S[4r+7]

Swapper

w
ords

...
…

...
…

. .
S

[2
]

S
[1

]
S

[0
]

S
[ t- 1

]

w
 -bit round keys S

[0…
.4r+

7]]

256-bit plainimage

256-bit cipherimage

P2 P3 P8P7P6P5P4

K

P1 P2 P3 P8P7P6P5P4

<<<

K

+ S[1]

+

<<<

+ S[2]

K

+

+

+

<<<

+

+ S[3]

K

Final 
key 

addition

Initial 
key 

addition

Fig. 3 Diagram of the encryption scheme. Here, K Pi 2Pi þ 1ð Þð Þ <<< lg w
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4 Performance and security analysis

4.1 Visual testing

A number of images, from the USC-SIPI image database [32], are encrypted by the proposed
method, and a visual test is performed. Figures 5 and 6 show the application of the proposed
algorithm for digital images. By comparing the original and the encrypted images in Figs. 5 and
6, there is no visual information observed in the encrypted image, and the encrypted images are
non-recognizable in appearance, disorder, and are unsystematic. We cannot obtain any useful
information from it, which reveals the confidentiality of the proposed scheme for digital images.

In fact, visual inspection is not enough for judging the quality of encrypted images. Thus,
other measuring techniques, objective metrics, are considered to evaluate the degree of
encryption quantitatively. The following illustrates different objective metrics that are used
to show the performance of the proposed algorithm against competitive algorithms.

4.2 Key space analysis

The key space is the total number of different keys that can be used in the encryption. For a
secure image encryption, the key space should be large enough to make brute force attacks
infeasible [30]. The proposed algorithm is flexible, with a moderately large key space, which
is estimated from the following parameters:

S[4r+4]- - S[4r+5]

- S[4i]

>>>

+

- S[4i+1]

>>>

+

- S[0] - S[1]

S[4r+6]- - S[4r+7]

- S[4i+2]

S[2]

P1

256-bit cipherimage

P2 P3 P8P7P6P5P4

K

256-bit plainimage

P1 P2 P3 P8P7P6P5P4

K

>>>

+

- S[3]-

-

>>>

+

S[4i+3]

K

K

One round
Mixer

Swapper

Final key
subtraction

Initial key 
subtraction

w
ords

...
…

.. .
…

. .
S

[2
]

S
[1

]
S

[ 0
]

S
[t- 1

]

w
 -bit round keys S

[0…
.4r+

7]]

Fig. 4 Diagram of the decryption scheme. Here, K Pi 2Pi þ 1ð Þð Þ <<< lg w
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1. Number of stages in the shift register over GF(p),
2. Initial contents of shift registers,
3. Possible elliptic curves and base point,
4. The secret key of the chaotic map (if the precision is 10−14, the size of the key space for

initial condition and control parameter is 293),
5. The external secret user’s key of 256-bit.

a) Sailboat of size 512×512 b) Lena of size 512×512 

c) MRI of size 512×512 d) Married2 of size 512×512 

e) Barbara of size 512×512 f) Mandrill of size 512×512 

Fig. 5 Original plain images
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Thus, the key space KS is the total number of different keys which can be computed as in
Eq. (4).

KS ¼ 2256 � 293 � n� ðpn � 1Þ � ðaðpn � 1Þ=nÞ � 2ð2m � 1Þ � aðMÞ ð4Þ

a) Encrypted Sailboat of size 512×512 b) Encrypted Lena of size 512×512

c) Encrypted MRI of size 512×512 d) Encrypted Married2 of size 512×512

Barbara of size 512×512e) Encrypted f) Encrypted Mandrill of size 512×512

Fig. 6 Encrypted images using the proposed algorithm
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Where n is the number of stages of LFSR overGF (p), (pn−1) is the number of possible initial
values of the LFSR. (α(pn−1) n) is the number of possible feedback coefficients. 2(2m−1) is the
number of distinct elliptic curves over GF (2m). α(M) is the number of base points in the cyclic
elliptic curve having largest orderMwhereM is the order of the cyclic elliptic curve and α is the
Euler’s Totient Function.

For a given cyclic elliptic curve,

KS ¼ 2256 � 293 � n� pn � 1ð Þ � a pn � 1ð Þ n=ð Þ � aðMÞ ð5Þ
It is to be noted that unless all the above elements of the key space KS are known to the

attacker, decryption using brute force attack is difficult.
Table 4 shows the key space comparison between the proposed encryption algorithm and

the recent algorithms. It is worth noting that, the key space and desired key size can be
obtained by proper choice of ‘n’ depending on the level of security required. For example, if
we consider the number of shift register stages ‘n’ is 6, the proposed algorithm would be
approximately 2477 which implies a large key space.

4.3 Statistical analysis

It is well known that the statistical analysis on cipherimage is of crucial importance for any
encryption algorithm. Actually, an ideal cipher should frustrate powerful attacks based on
statistical analysis.

Statistical analysis has been performed to show the resistance of the proposed algorithm
against statistical attacks. This is shown by a test on the histograms of the cipherimages and
on the correlations of the adjacent pixels in the ciphered image.

4.3.1 Histogram analysis

An image histogram illustrates how pixels in an image are distributed by plotting the number
of pixels at each color intensity level [5, 9, 10, 16, 18, 20, 22]. A good image encryption
scheme should always generate a cipherimage of the uniform histogram for any plainimage.
We have calculated and analyzed the histograms of many encrypted images, Figs. 6 (a–f), as
well as each original image, Figs. 5 (a–f), that have widely different content.

The histograms of the cipherimages shown in Figs. 7 (a–f) are uniform, significantly
different from that of the original images shown in Figs. 8 (a–f), and bear no statistical
resemblance to the plainimage. It is clear that the histograms of the encrypted images are
fairly uniform and significantly different from the respective histograms of the original
images and hence does not provide any clue to employ any statistical attack on the proposed
image encryption algorithm.

Table 4 Key space size of the proposed algorithm compared to existing works

Encryption scheme key space size

Chen et al. [5] 2128

Pareek et al. [20] 280

Gao et al. [9] 2230

Sathyanarayana et al.[29] KS ¼ n� pn � 1ð Þ � a pn � 1ð Þ n=ð Þ � aðMÞ ≈2128
Proposed algorithm KS ¼ 2256 � 293 � n� pn � 1ð Þ � a pn � 1ð Þ n=ð Þ � aðMÞ ≈2477
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4.3.2 Correlation between adjacent pixels in plainimages and cipherimages

For an ordinary image having definite visual content, each pixel is highly correlated with its
adjacent pixels. An ideal encryption technique should produce the cipher images with no
such correlation in the adjacent pixels (correlation coefficient≈0) [5, 18]. The visual testing
of the correlation of adjacent pixels can be done by plotting the distribution of the adjacent
pixels in the plain image and its corresponding cipher image. The correlation coefficient
between two adjacent pixels in an image is determined as in Eq. (6).

a) b) 

c) d) 

e) f) 

Fig. 7 Histograms of the encrypted images
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gxy ¼
PN

i¼1 xi � meanðxÞð Þ yi � meanðyÞð Þ
� �

PN
i¼1 xi � meanðxÞð Þ2

� �1=2
*

PN
i¼1 yi � meanðyÞð Þ2

� �1=2
� � ð6Þ

where x and y are gray values of two adjacent pixels in the image. The correlation
coefficients of the adjacent pixels are calculated and listed in Table 5. The corresponding
distribution for the vertical, horizontal and diagonal directions are shown in Figs. 9, 10 and
11. These figures demonstrate that the encryption algorithm has covered up all the plain
image characters images and shows good performance with a balanced 0–1 ratio.

4.4 Entropy analysis

Entropy is a statistical measure of randomness in information theory. To measure the entropy
H (s) of a source S, we have:

a) b) 

c) d) 

e) f) 

Fig. 8 Histograms of the original images
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HðsÞ ¼ �
XM
i¼0

P sið Þ log 2 P sið Þ; ð7Þ

where M is the total number of symbols si ∈ S; p(si) is the probability of occurrence of
symbol si and log denote the base 2 logarithm so that the entropy is expressed in bits. Let us
suppose that the source emits 28 symbols with equal probability, i.e., m ¼
m0;m1; :::::;m255f g after evaluating Eq. (7), we obtain its entropy H (m)08, corresponding
to a truly random source. Actually, given that a practical information source seldom
generates random messages, in general its entropy value is smaller than the ideal one.
However, when the messages are encrypted, their entropy should ideally be 8. If the output
of such a cipher emits symbols with entropy less than 8, there exists a certain degree of
predictability, which threatens its security.

The entropy values for 100 plainimages of size 512×512 and corresponding cipherim-
ages are given in Fig. 12. The average entropy value for 100 cipherimages is 7.9997≈8 .
This implies that the information leakage in the proposed encryption process is negligible
and the encryption scheme is secure against the entropy-based attack.

4.5 Sensitivity analysis

A good image encryption procedure should be sensitive with respect to both the secret key
and plain image [3, 17]. The change of a single bit in either the secret key or plainimage
should produce a completely different encrypted image.

4.5.1 Key sensitivity

In the proposed algorithm, an incremental change in key; even of the order of (Δ0) 10−10,
result in a completely unrecognizable decrypted image. A typical key sensitivity test has
been performed using the following steps:

i. Original images of size 512×512 are encrypted by using the test user’s secret key1
“1234567890123456789012345678901234567890123456789012345678901230” and
with the control parameter λ101.97.

i i . T h e u s e r ’ s s e c r e t k e y i s c h a n g e d s l i g h t l y t o b e k e y 2
“1234567890123456789012345678901234567890123456789012345678901231”
and is used to encrypt the same image.

iii. The control parameter is changed slightly to be λ101.97 0000000001 and used to
encrypt the same image.

iv. The two cipherimages in ((i) and (ii)) are compared pixel-by-pixel.

The test results for key sensitivity are shown in Figs. 13, 14, 15 and 16. We can see that if
a tiny change in the key; even of the order of (Δ0) 10−10, results in a completely
unrecognizable image.

Table 5 Correlation coefficient of two adjacent pixels in plainimages and cipherimages on lena image of size
512×512

Test images Horizontal Vertical Diagonal

Original image 0.995810248 0.990848889 0.987584908

Encrypted image 0.000224045 0.006131844 0.000420505
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4.5.2 Plainimage sensitivity

To test the sensitivity to the plainimage, we modify the pixel value (PV) at grid (50, 50) of
the original image (d) by adding one, i.e.,

PV s
0
50;50

� �
¼ PV s50;50

� �� �þ 1
� �

mod 256 ð8Þ

The results of the plainimage sensitivity are given in Figs. 13, 14, 15 and 16 (f), which show the
encrypted image with key1 and control parameter λ101.97 when only one pixel changed in
Figs. 13, 14, 15 and 16 (a).

4.6 Differential attack

In general, the differential attack means finding out a meaningful relationship between the
plainimage and the cipherimage (chosen-plaintext attack) by making a minor change (e.g.,

(a)        (b)

Fig. 9 Two horizontally adjacent pixels correlation in original image/encrypted image, respectively

(a)             (b)

Fig. 10 Two vertically adjacent pixels correlation in original image/encrypted image, respectively
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modify only one pixel) in the encrypted image, and then observe the change of the result [2,
4, 23, 31, 34]. To resist the differential attack, a minor change in the plainimage should cause
a significant change in the cipherimage. To quantitatively test the influence of a one-pixel
change on a cipherimage, two common measures are used, i.e., number of pixels change rate
(NPCR) and unified average changing intensity (UACI), they can be defined as:

NPCR ¼

Pm
i¼1

Pn
j¼1

f i; jð Þ

m� n
� 100%; ð9Þ

(a)        (b)

Fig. 11 Two diagonally adjacent pixels correlation in original image/encrypted image, respectively

Fig. 12 Entropy value for 100 images of size 512×512 and corresponding cipherimages
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UACI ¼

Pm
i¼1

Pn
j¼1

f 0 i; jð Þ � f 00 i; jð Þj j
" #

225=

m� n
� 100% ð10Þ

where f′ and f′′ are two images with the same size m×n. m and n are width and height of the
image. Define a bipolar array, f, with the same size as images f′ and f′′. Then, f(i,j) is
determined by f′(i, j) and f′′(i, j), namely, if f′(i, j)0 f′′(i, j) then f(i,j)01; otherwise, f(i,j)00.

Here, we test NPCR and UACI for different images [32] as shown in Figs. 17 and 18. The
percentage of pixels changed in the encrypted image is grater than 99 % for NPCR and is
grater than 33 % for UACI even with one-bit difference in the plainimages. This result
shows that the proposed algorithm has a strong ability to resist a differential attack.

4.7 Computational complexity and speed performance

The running time of an encryption algorithm is determined by many factors such as
programming language, programming skill, execution environment, etc. In the following,
we discuss the efficiency of the proposed algorithm from both speed performance and the
computational complexity.

4.7.1 Speed performance

The running time of an encryption algorithm is determined by many factors such as
programming language, programming skill, execution environment, etc. In what follows,

(a)        (b) (c)

(d) (e) (f)

Fig. 13 Results of sensitivity experiment with respect to the key and the plainimage. (a) is the original
‘Pepper’ image, (b) is the encrypted image of (a) with key1 and control parameter λ101.97, (c) is the
encrypted image of (a) with key2, (d) is the encrypted image of (a) with slight change in the control parameter
λ01.970000000001, (e) difference image between the two cipherimages (Figs. 13(c) and (d)), (f) is the
encrypted image with key1 and control parameter λ101.97 when only one pixel changed in (a)
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we discuss the efficiency of the proposed algorithm from both encryption time and the
number of rounds.

Running time Here, we have implemented the proposed algorithm and other algorithms kept
at the same number of rounds r02, word size in bits w032 and key length in bytes b016. We
have used the Visual C++ compiler on a computer of Dual-Core CPU 2.7 GHz and 1.99 GB
of RAM. The operating system used is Windows XP SP2. Thus, as far as the running time is
concerned, our algorithm is acceptable, as shown in Table 6.

Encryption rounds Since the number of encryption rounds affects the computational com-
plexity and the speed of the encryption algorithm, performance evaluations should be
performed after each encryption round. The iterations stop only when all the performance
requirements are satisfied. For security purpose, NPCR and UACI should be greater than
99 % and 33 %, respectively. From Table 7, we can see that only two rounds of encryption is
enough to receive a perfect cipherimage with high performance for the proposed algorithm.

4.7.2 Encryption operations and inner loops

The proposed algorithm used familiar primitive operations that are efficiently implemented
on modern processors such as cyclic rotations, Bit-wise exclusive-OR, addition, subtraction,
and integer multiplication. As can be seen in Section 3, the inner loops of the encryption and
key expansion are simple and compact in terms of complexity. In addition, the complexity of
the derived sequence of cyclic elliptic curve points in the proposed algorithm depends on the

(a)        (b) (c)

(d) (e) (f)

Fig. 14 Results of sensitivity experiment with respect to the key and the plain image. (a) is the original
‘Mandrill’ image, (b) is the encrypted image of (a) with key1 and control parameter λ101.97, (c) is the
encrypted image of (a) with key2, (d) is the encrypted image of (a) with slight change in the control parameter
λ01.970000000001, (e) difference image between the two cipherimages (Figs. 14(c) and (d)), (f) is the
encrypted image with key1 and control parameter λ101.97 when only one pixel changed in (a)
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number of stages of the shift register ‘n’, which is linear and equal to n. However, the
complexity can be increased by increasing the number of stages of the shift register ‘n’. In
this paper, the number of shift register stages ‘n’ is 6.

5 Discussion and overall performance

In this section, we discuss the most important findings of the paper.

5.1 Confusion

The histogram and correlation analysis of adjacent pixels both indicate that the proposed
algorithm possesses a good property of confusion. This mainly results from the pseudo-
randomness of the cyclic elliptic curve and chaotic system as well as primitive operations in
the key schedule. They work together to introduce the random-like effect to the cipher
image.

5.2 Diffusion

The inner loop of the encryption and decryption is based on data-dependent rotations as well
as integer multiplication, which is very effective primitive “diffusion”. The diffusion effect is
increased due to the heavy dependence on rotations, the quadratic function that speed up the
avalanche of change between rounds, and fixed bit shifting by five bits, which complicates

(a)        (b) (c)

(d) (e) (f)

Fig. 15 Results of sensitivity experiment with respect to the key and the plain image. (a) is the original
‘Barbara’ image, (b) is the encrypted image of (a) with key1 and control parameter λ101.97, (c) is the
encrypted image of (a) with key2, (d) is the encrypted image of (a) with slight change in the control parameter
λ01.970000000001, (e) difference image between the two cipherimages (Figs. 15 (c) and (d)), (f) is the
encrypted image with key1 and control parameter λ101.97 when only one pixel changed in (a)
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(a)        (b) (c)

(d) (e) (f)

Fig. 16 Results of sensitivity experiment with respect to the key and the plain image. (a) is the original ‘MRI’
image, (b) is the encrypted image of (a) with key1 and control parameter λ101.97, (c) is the encrypted image of (a)
with key2, (d) is the encrypted image of (a) with slight change in the control parameter λ01.970000000001, (e)
difference image between the two cipherimages (Figs. 16 (c) and (d)), (f) is the encrypted image with key1 and
control parameter λ101.97 when only one pixel changed in (a)

Fig. 17 NPCR for 100 different images of size 256×256
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advanced cryptanalytic attacks. This allows the proposed algorithm to run with fewer rounds
of encryption and decryption at increased security.

5.3 Resistance to brute force attack

Regarding brute-force attack, the security of the proposed algorithm depends on the size of
the key space. As mentioned above, the total length of our key is 477 bits (suppose the
number of shift register stages n is 6), which is very safe for ordinary business applications.

5.4 Resistance to differential attacks

From aforementioned analysis and numerical experiments, the proposed algorithm has fairly
uniform histograms, and low correlation between pixels in cipherimages. In addition, the con-
ducted simulations demonstrated that the entropy, key sensitivity, number of pixel change rate
(NPCR), and unified average changing intensity (UACI) can satisfy the performance requirements
for the confidentiality of digital images. Thus, the proposed algorithm can perform outstandingly
well against differential attacks such as chosen-plaintext and known-plaintext attacks.

Fig. 18 UACI for 100 different images of size 256×256

Table 6 Test of the encryption speed of Lena testpat image of size 512×512 in pixels and 768 KB

Encryption scheme Speed System characteristics Platform

RC5 0.046 s Pentium (R) 2.7 GHz Visual C++

RC6 0.039 s Pentium (R) 2.7 GHz Visual C++

Ref. [2] 0.046 s Pentium (R) 2.7 GHz Visual C++

Ref. [3] 0.033 s Pentium (R) 2.7 GHz Visual C++

Proposed scheme 0.035 s Pentium (R) 2.7 GHz Visual C++
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5.5 Overall security and performance

The proposed algorithm possesses the following advantages:

& Incorporation of the cyclic elliptic curve with chaotic system as well as the cryptographic
primitive operations, which strengthen the round keys for encryption and enlarge the key
space required to resist the brute force attack.

& The proposed algorithm acts on 256-bit input/output blocks within eight 32-bit registers.
& Several simple steps in the round increase the rate of diffusion: integer multiplication,

the quadratic equation, and fixed bit shifting by five bits, which is a secure way against
both linear and differential attacks.

& Extensive use of data-dependent rotations that greatly increases the diffusion achieved
per round.

& The proposed algorithm runs with fewer rounds (2 rounds) at increased security and does
not use look-up tables during the encryption/decryption unlike other algorithms.

& The operations used during the encryption process are efficiently implemented on
modern processors.

& The proposed algorithm has high key and plainimage sensitivity together with a large
key space (> 2477, depend on the number of shift register stages), which is very safe for
ordinary business applications.

& The proposed algorithm is faster than competitive algorithms.
& Simple structure, which permits a compiler to produce well-optimized code, results in

better performance without hand-optimizations.
& Like RC5 and RC6 algorithms, the proposed algorithm provides a great amount of

flexibility with regards to the number of rounds r, the size of the encryption key b and
the word size of the basic computational unit w.

6 Concluding remarks

A new encryption algorithm for still visual data based on a cyclic elliptic curve and chaotic
system is introduced, which operates on 256-bit plainimage/cipherimage blocks. In the pro-
posed algorithm, random sequences of cyclic elliptic curve points are mixed with the chaotic
system as well as primitive operations to generate round keys for encryption. In the encryption
process, effective confusion and diffusion are introduced based on a quadratic transformation
function and cryptographic primitive operations, which made the encryption more secure with
less computation overhead. Experiments conducted show that the entropy, key and plainimage
sensitivity, number of pixel change rate (NPCR), and unified average changing intensity
(UACI) can satisfy the performance requirements for the confidentiality of digital images. In
addition, the proposed algorithm outperforms the competing algorithms in terms of speed
performance. In the future, we plan to consider the frequency domain-based encryption.

Table 7 Number of rounds to
achieve NPCR >0.996 and
UACI >0.334

Algorithm Number of rounds

Proposed algorithm 2

RC6 20

Ref. [34] 6

Ref. [35] 3
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