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Abstract We investigate the use of structure learning in Bayesian networks for a
complex multimodal task of action detection in soccer videos. We illustrate that
classical score-oriented structure learning algorithms, such as the K2 one whose
usefulness has been demonstrated on simple tasks, fail in providing a good network
structure for classification tasks wheremany correlated observed variables are neces-
sary to make a decision. We then compare several structure learning objective func-
tions, which aim at finding out the structure that yields the best classification results,
extending existing solutions in the literature. Experimental results on a comprehen-
sive data set of 7 videos show that a discriminative objective function based on con-
ditional likelihood yields the best results, while augmented approaches offer a good
compromise between learning speed and classification accuracy.

Keywords Multimedia ·Video analysis ·Multimodal event detection ·
Bayesian networks ·Structure learning

1 Introduction

Automatic video analysis is one of the basic tools that enables the development
of applications such as multimedia information retrieval or novel TV services.
Understanding a video is a multifaceted objective that includes simple tasks like the
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recovery of the video structure or more complex ones such as the detection of specific
events. In this paper, we focus on this last case, i.e., on the ability to detect specific
extracts of a video that have a particular, and usually important, meaning for the
user. Event detection is particularly important when videos have a weak structure
since events are then the only anchors in the stream that allow non-linear browsing.

Events have no general definition and are in general specific to a particular context
and application.Most of the time, the application context calls for a high-level seman-
tic definition of an event (a goal in soccer, a dunk in basketball), but the definition
may be much fuzzier: An interesting moment, or a moment similar to a set of exam-
ples. This suggests two main approaches to build an event detection system. First, a
formal definition of the event can be given as a model which is then used for detec-
tion. Such approaches are usually based on rules that can be either defined by a hu-
man expert (see, e.g., [24, 32, 35, 38]) or inferred from examples as in Perlovsky [29].
Alternately, machine learning techniques can be used to train a system from
examples with the goal of deciding whether a video extract contains the event or
not. These approaches heavily rely on classification techniques, be they probabilistic
(see, e.g., [17, 25, 37]) or not (e.g., [1, 15, 33]). The goal of these classifiers is to
establish a relation between what can be extracted from the videos, i.e., low-level
multimodal features, and the event. Their performance is thus closely linked to their
ability in finding the best combination of features and to derive a decision rule that
allow discriminating the positive examples with an adequate level of generalization.

We focus here on probabilistic approaches to event detection which are, for the
most part, based on the Bayesian theory. One of the interests of statistical models is
that they allow to easily take into account the correlations between features and the
temporal aspect of the videos. The variety of statistical models used in multimedia
analysis includes naive Bayes classifiers, decision trees, Bayesian networks—often in
a naive Bayes way—and hidden Markov models (HMMs). In particular, HMMs and
their variants have been extensively used for event detection in videos, with a wide
range of applications from commercial detection [25], video genre classification [12]
to structure analysis in videos [20, 31]. Hidden Markov models are well adapted to
dense segmentation where every shot correspond to some well-defined event but
not particularly suited for sparse event detection. Moreover, the model assumes that
all observations are part of a single observation vector. This assumption is not well
adapted to videos, in which several modalities are combined. Multistream extensions
of the HMM framework have been proposed in audiovisual speech recognition, with
application to multimedia analysis [17, 20]. However, recent work on segmental
multistream HMMs for tennis video structuring [7] demonstrated the necessity of
modeling the dependencies between features. Unfortunately, knowing which depen-
dencies to model, and how, is not an easy task and requires a lot of human expertise,
if possible at all. This paper therefore focuses on the necessity for algorithms to
learn statistical dependencies between variables in a large set of variables, along
with the corresponding model.

In this regard, Bayesian networks (BN) define a general framework for probabi-
listic modeling which encompasses all of the above mentioned models, including
HMMs and segment models using so-called dynamic Bayesian networks [26]. A
Bayesian network, dynamic or not, is a directed acyclic graph (DAG) where nodes
represent random variables and links represent the causal relations between var-
iables, thus allowing for a wide variety of topologies and offering flexibility. More-
over, BNs have shown to be adapted to multimodal fusion in the framework of video
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analysis [18, 23] with application in event detection, for example in soccer videos [36]
or in Formula 1 car races [30].

Certainly one of the most appealing features of the Bayesian network theory is
the ability to learn the structure of the graph that links together all the variables
considered. In other words, one can learn the structure of the DAG in addition to the
parameters of the model, a fact never satisfactorily achieved with HMMs. The main
interest for structure learning is to avoid resorting to human expertise and heavy trial
and error experimental protocols to define the best statistical model, yet avoiding
unnecessary assumptions on the data such as the state conditional independence
assumption for HMMs.

Several algorithms for structure learning in BNs, such as the K2 algorithm [6], have
been proposed in the literature. In particular, score based approaches seek to maxi-
mize an objective function that reflects a trade-off between the best fit of the training
data and the generalization capabilities of the model. However, such algorithms are
seldom used in the multimedia area where naive networks predominate [27]. Note
however the work of Choudhury et al. [4], Friedman et al. [9] and Baghdadi et al. [2]
which investigate structure learning successfully on rather simple tasks.

In this paper, we investigate the use of structure learning algorithms for a rather
complex multimedia task which consists in detecting action shots in soccer videos
from multimodal input. To the best of our knowledge, this constitutes the first at-
tempt in the multimedia area to use BN structure learning algorithms on a large scale
complex task.We illustrate that classical score-oriented structure learning algorithms
such as the K2 one, whose usefulness has been demonstrated on simple tasks, fail at
providing a good network structure for classification tasks where many correlated
observed variables are necessary to make a decision. We then compare several
structure learning objective functions, which aim at finding out the structure that
yields the best classification results, extending existing solutions in the literature. All
structure learning algorithms are evaluated and compared on a realistic task, namely
action detection in soccer videos from multimodal input, using a comprehensive data
set of 7 games.

The paper is organized as follows. Section 2 defines Bayesian networks more
formally and present classical structure learning strategies. In Section 3, we exhibit
a case where the K2 algorithm performs poorly and discuss the reasons for this.
We then propose new objective functions oriented towards the classification goal
in Section 4 and provide an experimental comparative study in Section 5.

2 Bayesian networks and structure learning

A Bayesian network can be seen as a graphical representation of a probabilistic
distribution over a set of random variables, where the graphical representation
depicts the causal relations between the variables. As with any classification model,
using Bayesian networks faces two issues: inference and training. Inference aims at
making a decision (as to whether or not the event considered is present in our case)
based on the evidences, or observations, available, given a network. Training includes
two usually distinct phases, namely the design of the model and the estimation
of the parameters from examples given the structure. We first formally define
Bayesian network and briefly discuss the inference issue, before discussing model
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design issues and presenting the general principles of structure learning in Bayesian
networks.

2.1 Definition and inference

Formally, a Bayesian network is a statistical model of a set of random variables,
representing relations between variables such as conditional independence or causal-
ity. A network can be represented as a graphical model, i.e., a direct acyclic graph
(DAG) G where each node Xi is a random variable, arcs representing a relation of
conditional dependence between the two variables at stake. In other words, the arc
Xi → Xj indicates that Xj depends on Xi. Assuming random variable taking values
in a discrete observation space, a probability distribution table is associated to each
node Xi of the DAG to describe the probability of the random variable taking a
value conditionally on the value of the set Pi made of the parents of node Xi, i.e.
Pi = {Xj s.t. Xj → Xi}. Hence, the network encodes the relations within the set of
random variables considered, {Xi}, and can be used to factor the total probability of
the collection according to

P[X0, X1, . . . , Xn] =
n∏

i=0

P[Xi|Pi] , (1)

where Pi denote the set of variables corresponding to the parents for node i, i.e., the
set of random variables upon which Xi is dependent.

A simple example of a Bayesian network is illustrated in Fig. 1, where the three
variables X1, X2, X3 are all independent conditionally on the knowledge of X0. The
total probability can therefore be decomposed as

P[X0, X1, X2, X3] = P[X0]P[X1|X0]P[X2|X0]P[X3|X0] .

As can be seen, a Bayesian network over a given collection of random variables is
fully defined by its structure, i.e., the topology of the direct acyclic graph, and by the
conditional probability tables (CPT) at each node. In practice, Bayesian networks
are mostly used to make decisions based on the inference of the value of unobserved
variables given the observed ones. For example, in the framework of multimedia
content classification that we are studying, one is interested in inferring the class
value given observations. This can be done using so-called naive structures as the
one depicted in Fig. 1 where X0 represents the unknown class to be inferred—
here, a binary class stating whether an event is present or not—given observations
X1, X2, X3. Inference algorithms, such as Kim and Peal [21] and Jensen et al. [19],

Fig. 1 Example of a simple
Bayesian network with four
variables
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are the key to solving marginalization or posterior problems so as to find an optimal
configuration for unobserved variables.

2.2 Graphical model design

Apart from the inference issue, model design is a crucial step in implementing a
Bayesian network classifier. Model design can be seen as a two-step process where
the first step consists in defining the topology of the model while the second one
relates to the estimation of the conditional probability tables from training data.

Maximum likelihood approaches have been designed for parameter estimation
in a variety of networks, exploiting the factorization of the total probability in the
network [11, 16, 26]. For simple networks such as the ones considered in this study,
with discrete variables, all of them observable in the training data, maximum like-
lihood estimation boils down to estimating conditional probabilities with empirical
frequencies.

On the contrary, only a few algorithms have been proposed for the estimation
of an optimal graph topology given training data. Moreover, these algorithms are
seldom used in practice for real-life classification problems such as the one targeted
here. Approaches to structure learning can be grouped into two main approaches.
The first one consists in using statistical dependency tests to search for causalities
between variables, such as in the IC and SGS algorithms [28, 34]. The second family
groups methods targeting the optimization of a score that evaluates the quality
of a structure. Several scores have been proposed in the literature, along with
efficient—but suboptimal—strategies to review a large set of candidate structures to
choose from. For example, restricting the possible set of structures to trees, one can
search for the best tree structure using the maximum weight spanning tree (MWST)
algorithm [22], assuming the availability of a causality score between any two
variables [5, 16]. For structures more general than trees, most algorithms, including
the popular K2 algorithm [6] and its variants, imposes an ordering on the nodes such
that the set of possible parents for a given node is limited to those nodes with a higher
rank, thus drastically reducing the search space. Finally, greedy search heuristics were
also proposed in the literature for efficient exploration of the space of all possible
structures [3].

Most score-oriented structure learning algorithms exploit a score which seeks
for a trade-off between accurately modeling the training data and obtaining a low
complexity network. In particular, a popular score function which derives from a
simplification of the K2 algorithm, is the Bayesian information criterion (BIC) for
which the objective function to optimize is given for a graph G over N variables by

QBIC(G) = ln PG[X] − λ

2
C(G) ln(K)

=
N∑

i=0

(
ln P[Xi|Pi] − λ

2
Ci(G) ln(K)

)
(2)

where K is the number of training examples, X is the set of variables, C(G) is the
total number of free parameters in the network and Ci(G) is the number of free
parameters in node i. As explicitly shown in the above equations, the objective
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function is decomposable as a sum over all nodes of the network, thus limiting the
amount of computation to get a new score when the structure is changed.

However, this approach suffers from severe drawbacks in a complex classification
task, in particular because of the fact that the objective function is oriented to-
wards description of the data, rather than towards optimal prediction. Indeed, in
classification networks, the classification node, denoted Xc in the sequel, plays a
particular role and should be treated differently. Few criteria were proposed for the
purpose of classification. The tree augmented network (TAN) consists in augmenting
a naive network with a tree structure using a MWST algorithm [8, 10]. More
recently, Grossman and Domingo [14] proposed to use the conditional likelihood—
i.e., conditionally to the classification node—rather the likelihood in the objective
function.

In the next section, we study the use of the Bayesian information criterion as an
objective function to learn the structure for the task of event detection in soccer
videos and show the limitations of likelihood-based objective functions in this case.
A classification-oriented objective function is proposed in Section 4 and compared
to the TAN algorithm and to a K2 augmented network.

3 Limitations of K2 structure learning for soccer video indexing

In preliminary work, we demonstrated the benefit of using (2) as the objective
function for structure learning in the task of multimodal advertisement detection in
videos [2]. Elaborating on these results, the same structure learning paradigm is here
applied to a more complex task, where more variables are to be considered, namely
the detection of actions in soccer videos based on low-level audio and visual features.

We first describe the task and experimental protocol that is used throughout the
paper before presenting results which demonstrate that K2 fails at such a complex
classification task.

3.1 The action detection task in soccer videos

We consider the task of detecting actions in soccer videos, where an action is defined
as a period of time in the match when a player is about to shoot to score. Such
an action usually takes place near the goal mouth and comes with the cheering of
the crowd and an excitement of the speaker, thus requiring multimodal input. Some
replays of the action also usually follow. Action detection in soccer video is a complex
task which requires that multiple features be considered simultaneously, thus being
far more challenging for structure learning algorithms than previous case studies.
In particular, in comparison with advertisement detection, the number of features
required to accurately identify actions is greater and no straightforward features such
as monochrome frames are available.

In this work, detection is performed at the shot level, all videos being automati-
cally segmented into shots. From each shot, the following set of 8 binary audio and
visual features is automatically extracted, a value of one indicating the presence of
the feature:

i. crowd excitement: this feature usually is strongly related with a noticeable
event;
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ii. transition shot: some transition effects, classically detected by the shot segmen-
tation algorithm, are usually added to increase the attractiveness of an event;

iii. wide shot: a shot is classified as wide based on the detection of green as the
dominant color and on the detection of terraces in the background;

iv. lull scene: a lull scene, as opposed to a peak scene, corresponds to a game
sequence where nothing special is happening and for which directors usually
alternate between wide shots and other shots to maintain the dynamics of the
video. The detection of such scenes is mostly rule based, relying on the result
of the classification of shots into wide or not;

v. presence of face: shots containingmostly a face, as indicated by a face detection
algorithm, are likely to be close-up which are strongly related to action;

vi. green shot: shots where the green color is sufficiently present are marked as so
to indicate whether the field is visible or not;

vii. replay logo: this feature indicates the presence of a replay logo which indicates
the start or end of a replay sequence;

viii. goal mouth: this indicates whether the goal mouth is visible or not, thus acting
as an indicator of the action importance.

However, actions are mostly characterized by the temporal evolution of the fea-
tures and classification can hardly be performed on the base of a single shot. Hence,
the primary features of a shot are augmented with features from the neighboring
shots, taking 2 shots of context on the left and right side respectively. This amounts
to a total of 40 contextual features which are to be modeled using a Bayesian
network classifier. With respect to our previous study, it is important to note that
this constitutes a larger set of features. Moreover, features are highly correlated, in
particular due to the use of context shots. Finally, it should also be noted that not all
features are always directly relevant for the classification task.

Experiments are carried out on a data set of 7 games broadcasted during the 2006
World Cup, amounting to about 14 h of video. Automatic shot segmentation yielded
9,632 shots in total, among which 192 were labeled by a human expert as action
shots (about 2 % of the total number of shots). Table 1 provides details on a per
video basis. Due to the limited number of data available a cross-validation protocol
with 7 folds was adopted, retaining one match as test material for each fold. The
training set for each fold is used both for structure learning and maximum likelihood
parameter estimation, the two being performed jointly regardless of the structure
learning criterion used. Results are reported in terms of recall and precision on the
action shots, where a shot is deemed to be an action shot if the posterior probability

Table 1 Number of shots,
number of action shots and
total duration of the video per
game

Note that the
Germany–Portugal video was
truncated but kept as is

Game #Shots #Action Duration
shots of video

Germany–Argentina 1,983 20 2h52
Saudi Arabia–Ukraine 1,234 27 2h01
France–Brasil 1,736 30 2h10
Germany–Italy 1,490 38 2h33
Italy–Ukraine 1,181 23 1h52
Germany–Portugal 694 17 1h00
Brasil–Ghana 1,122 37 1h56
Total 9,440 192 14h24
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P(Xc/X1, X2, ...Xn) of the classification node is above a threshold. The threshold is
varied so as to achieve different trade-offs between recall and precision.

3.2 K2 structure learning for soccer videos

Following exactly the same methodology as in [2] where the K2 algorithm demon-
strated effectiveness for advertisement detection, the K2 algorithm using the score
function given in (2) was first used for event detection in soccer video. The struc-
ture was initialized using the MWST algorithm of Chow and Liu [5], taking the
classification node Xc as the root for the tree. Node ordering in the K2 algorithm
was derived from the tree structure obtained from the initialization step.

Results are reported in Fig. 2 and compared with a naive structure. Contrarily
to previous results on advertisement detection, the K2 structure fails at capturing
the complex relations between variables, resulting in poorer performance than the
naive structure. This result is counter-intuitive as one would expect the model to
benefit from taking into account the correlations that might exist between variables.
An example of a structure learned from the data is given in Fig. 3, where variables
were assigned arbitrary numbers, and illustrates two important points regarding the
behavior of the K2 algorithm. On the one hand, structure learning succeeds to some
extent in capturing the relations between variables, resulting in a network structure
rather different from the naive one. This structure nevertheless remains difficult
to interpret, even with some expert knowledge in soccer. But, most of all, it also
appears that only a few feature (observed) nodes are directly connected to the event
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Fig. 2 Recall vs. precision trade-off curves comparing the K2 (red) and naive (blue) structures
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Fig. 3 Structure obtained with K2 structure learning, where red links denote direct connections
between Xc (node 1 in the picture) and the observed variables

classification node (red links), contrary to the naive network where, by definition, all
features are connected to Xc.

This last observation is the key to understanding the poor results obtained with
structure learning when, contrarily to the advertisement detection use case, a large
number of variables is at stake. Indeed, for a graph structure G, the likelihood term
in the score function QBIC can be rewritten as

ln PG[X] = ln(PG[X1, ..., Xn])+ ln(PG[Xc|X1, ..., Xn]) . (3)

From this formulation, it can be seen that as the number n of observed variables
increases, the first term on the right hand side of the equality decreases rapidly. Since
the second term does not depend on n, structure learning with a large number of
variables is dominated by the maximization of the term ln(PG[X1, ..., Xn]), regardless
of the class node Xc. The result is a structure that represents the relationships
between the observed variables, regardless of their impact on the classification task
considered.

These preliminary results show that for classification tasks with a large number of
observed variables, structure learning algorithms searching for a trade-off between
the best fit of the data and the complexity of the resulting model are not suited. A
solution to skirt this issue is feature selection so as to limit the number of observed
variables, a solution that has proven experimentally valid. However, feature selection
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might result in information loss. An alternate solution consists in using objective
functions for structure learning that account for the specificity of classification tasks,
paying special attention to the peculiarity of Xc.

4 Classification-oriented structure learning algorithms

Two main strategies can be envisioned to learn the structure of a Bayesian network
for classification. The first one consists in forcing relations between the observed
variables and the classification node, leaving structure learning to the sole relations
between observed variables. The second one consists in explicitly accounting for
classification issues in the objective function. The first option benefits from an easy
implementation but is suboptimal, while the second one is optimal but difficult to
implement because most classification-oriented objective functions are not decom-
posable.

For each of the two strategies, an efficient algorithm for Bayesian network
structure learning in the framework of classification is proposed. Firstly, pursuing the
philosophy of the tree augmented network structure learning algorithm of Friedman
et al. [8], we impose constraints on the optimal structure, forcing all observed vari-
ables to be directly related to the classification node. This strategy yields a K2 aug-
mented network structure which is still learned based on the likelihood-complexity
trade-off. Secondly, a discriminative objective function [14] is used in replacement
of the K2 likelihood based one. Unfortunately, this new objective function is not de-
composable over the set of nodes in the network and we resort to genetic algorithms
for greedy optimization.

4.1 K2 augmented structure

As naive networks have proven successful for classification tasks on many an
occasion, Friedman et al. [8] proposed to augment the naive structure by adding arcs
between observed variables using a MWST algorithm to generate a tree structure
between the observed nodes. A score based on the mutual information between each
pair of nodes, conditionally on Xc, was used as input to MWST computation. This
algorithm therefore results in a structure where each observed node has two parents:
the classification node and another feature node.

Restricting the search of the structure to the set of trees clearly limits the complex-
ity of the structure learning process. However, the relative simplicity of the resulting
structure has also some drawbacks. First the tree structure will not allow to have
connections between more than two features nodes, a fact that is likely to appear
when a large set of variables is used. This is particularly true in our case because
of the use of contextual features from the neighboring shots in the description of
each shot, likely to be highly correlated one to another. Additionally, accounting
for features not related to any other (i.e., a feature that should exhibit a unique
connection to Xc) is impossible.

As a workaround, we propose to augment the naive structure using K2 structure
learning with the BIC criterion, thus extending the tree augmented network philos-
ophy. Using K2 structure learning to augment the naive structure clearly enlarges
the set of possible structures, enabling more complex structures that do not suffer
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from the limitations stated. K2 augmented structure learning relies on a modified
version of the Bayesian information criterion which accounts for the compulsory
link between each feature and the event node. Formally, the objective function is
defined as

Q(c)
BIC(G) =

N∑

i=0

(
ln P(Xi|Pi, Xc)− λ

2
C(Xi,G) ln(K)

)
, (4)

and remains decomposable, thus making it possible to use the same efficient explo-
ration strategy based on node ordering as for the initial K2 algorithm described in
Section 3.

4.2 Discriminative objective function

Even if the classification goal is explicitly considered in (4), the rationale still consists
in finding the structure that best fits the training data, subject to the simplicity
of the structure. Given a large number of observed variables, this structure might
still be dominated by the search for a good explanation of the relations between
features rather than by the search for the structure that best classifies the data.
We therefore propose a new structure learning criterion with the goal of directly
maximizing the class conditional probability P[Xc|X1, ..., Xn] rather than the joint
probability P[Xc, X1, ...,Xn]. The use of the class conditional probability was intro-
duced in Greiner et al. [13] for parameter estimation and studied in Grossman and
Domingo [14] for structure learning using the BNC algorithm. We detail here a vari-
ant of the BNC algorithm using a genetic algorithm to explore the space of possible
network structures.

As in Grossman and Domingo [14], the objective function for structure selection
is defined as

QCLL =
N∑

i=1

ln PG[Xc|X1, ..., Xn] . (5)

Unfortunately, the discriminative score is not decomposable and cannot be written
as a sum of local scores calculated separately for each node. We therefore resort
to a genetic algorithm in order to explore the set of possible structures. Genetic
algorithms are iterative algorithms that require an initial structure as a starting point.
From this initial structure, a set of candidate structures is generated by adding,
reverting or deleting one single arc. The discriminative score is calculated for each
of the structures resulting from these mutations and the one that maximizes the
score—given maximum likelihood estimates of the parameters—is then chosen as
the starting point for the next iteration. The algorithm stops if none of the generated
structures increases the score. The choice of the initial structure is crucial and will be
discussed along with experimental results in the next section.

5 Experimental results

Recall vs. precision trade-off curves are plotted in Fig. 4 for the tree and K2
augmented networks as well as for the discriminant objective function. Performance
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Fig. 4 Recall precision trade-off curves for i) a naive Bayesian network (dark blue), ii) a tree
augmented network (green), iii) a network resulting from the K2 augmented technique (red) and,
iv) a discriminatively trained network (light blue)

for the naive network is also reported as a baseline. It should be noted that for the
K2 augmented network, λ was experimentally set to 3 in (4).

Results show that the two augmented approaches clearly improve over the naive
baseline network. Indeed, by forcing the classification node to be connected to all the
feature nodes, these techniques build a structure which benefits from the whole fea-
ture information, as with the naive Bayesian network, while also taking into account
correlations between the features themselves. Moreover, the K2 augmented method
provides better results than the TAN approach for the classification task, due to the
fact that the resulting network is less constrained in the K2 augmented case. This
allows for more flexibility to take into account the correlations between several fea-
tures when they exist, or on the contrary to avoid non-relevant connections between
features when this is not needed, a fact that is crucial in such a complex classification
task as the one we are targeting. Finally, the classification-oriented approach
based on a discriminative objective function actually outperforms all techniques. The
maximization of this new score, dedicated to the classification task, is one explanation
for these good results, the other being the absence of format restriction in the
choice of the final structure. The resulting network will therefore better describe
the correlations between the classification node and the features. An analysis of
the resulting structure with this classification-oriented scheme is proposed in the
following section.
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Fig. 5 Example of a structure resulting from the use of the discriminative objective function

An example of a structure obtained with the classification-oriented objective
function is shown in Fig. 5, where node 1 corresponds to the classification node.
An analysis of this structure highlights the few number of nodes used for the
classification process: 13 nodes are directly connected to the classification node (red
links) and 10 additional nodes are indirectly used. A total of 17 nodes was therefore
rejected from the final structure, as non relevant for the classification task at hand.
Connections with these nodes were indeed not increasing the discriminative score
and the algorithm therefore applies implicit feature selection. It is interesting to note
that implicit feature selection cannot, by construction, occur in augmented tech-
niques. This reduction of the structure size consequently results in a more reliable
parameter learning step, hence in an increased performance for the classification.

As mentioned previously, the choice of the initial point for the genetic exploration
of the set of possible structures for the conditional probability maximization is usually
of utmost importance. Three initial points were tested, namely naive, TAN and
K2 augmented networks. We observed no impact on performance after structure
learning. However, training time is significantly affected by the initialization point,
as reported in Table 2. The much reduced training time when starting from one of
the augmented structure highlights the quality of the latter, thus making good starting
point for the genetic algorithm.

Table 2 Impact of the initial
structure on the learning time
of the discriminative approach

Initial structure Learning time

Naive 2 d : 4 h : 50 min
TAN 1 d : 6 h : 23 min
K2 augmented 1 d : 4 h : 37 min
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6 Conclusion

Taking action detection in soccer videos as a use case for multimodal event detection,
we have shown how structure learning in Bayesian networks, associated with the
adequate objective function, can efficiently detect complex multimodal events in
videos.We have demonstrated that, while using an information criterion for structure
learning in BNs suffers major drawbacks for complex classification tasks with a large
number of correlated observed variables, classification-oriented objective functions
can efficiently deal with such matter. In particular, we proposed a newK2 augmented
network structure and a genetic implementation of the conditional likelihood ob-
jective function which both turned to outperform state-of-the-art structure learning
methods. Experimental results however call for a few remarks and suggestions for
further work.

Firstly, we observed that the ability to select relevant variables, i.e., to decide that
some variable has no direct or indirect relation with the classification node, is crucial.
While the conditional likelihood criterion embeds feature selection, it is not the case
for the BIC and augmented approaches which might benefit from explicit feature
selection. However, we believe that embedding structure learning and feature se-
lection is better suited than performing feature selection as a required preliminary
step to structure learning.

Secondly, we considered that the observed variables directly contribute to the
classification if at all. In other terms, we only have two types of variables, the
observed ones and the classification node. For complex classification tasks, it appears
interesting to consider hidden variables which act as intermediate concepts between
the observation and the decision. We are convinced that training such networks will
help improve the structure inferred and thus classification by summarizing complex
information from the features in a few concepts. However, extensions of the existing
structure learning algorithms to handle hidden variables are required to do so.

Finally, the temporal dimension of videos was limited in this work to the use of
contextual features from the neighboring shots, classification being performed on a
per shot basis. As for shot-based classification, learning the temporal structure of
the video with a goal-oriented objective function is likely to improve classification
performance and requires further investigation. Directly learning the structure of a
dynamic BN is intractable, except in some rare cases. Combining BNs and segmental
HMMs appears like a plausible alternative, where the structure and parameter of
BNs are trained to predict the posterior probabilities required for Viterbi decoding
in segmental HMMs.
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