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Abstract Many gait recognition methods use silhouettes as a feature due to their simplicity and
effectiveness. However, silhouette-based gait recognition algorithms have the drawback of
performance degradation when the silhouette images are corrupted. To solve this problem, this
paper proposes a new gait representationmethod by emphasizing the noise-free silhouettes while
suppressing the corrupted ones. The probabilistic support vector machine (PSVM) is employed
to weigh the silhouette images according to quality and to construct a new gait representation for
robust recognition. Experiments are conducted with the CASIA and SOTON databases, and the
proposed method makes silhouette-based gait recognition as reliable biometrics.

Keywords Gait recognition . Silhouette-based gait recognition . PSVM . CASIA database .
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1 Introduction

Gait recognition is the identification of individuals based on personal walking motions [6].
The theoretic foundation of gait recognition is the 1964 work by Murray et al. [13], where it
was reported that every person has a unique gait. In general, a human’s gait can be perceived
at a distance [12], and gait recognition has the advantage of being noninvasive and a
noncontact process. Furthermore, gait recognition can be used even when the human subject
occupies too few image pixels for other biometrics to be perceivable. For this reason, the gait
recognition system is an attractive and interesting subject for researchers in the field of
computer vision and biometrics. Gait recognition can be roughly classified into two types:
model-based and silhouette-based approaches [20].

Model-based methods [2–4] represent the human body or motion by employing explicit
models which describe gait dynamics, such as stride dimensions and the kinematics of joint
angles. However, model-based approaches are limited by imperfect vision techniques in the
body structure/motion modeling and parameter recovery from a walking image sequence.
Furthermore, the precision of the model makes the model-based approaches computationally
expensive [11].
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In contrast, the silhouette-based methods [1, 8, 9, 16, 19] characterize body movement
using statistics of walking patterns, which capture both the static and dynamic properties of
body shape [10]. In these approaches, the representation method for human gait obviously
plays a critical part. Gait energy image (GEI) [8], head-torso-thigh image (HTI) [16], motion
silhouette image (MSI) [9], active energy image (AEI) [19], and gait entropy image (GEnI)
[1] are general and popular gait representations for silhouette-based methods. GEI is the
most popular representation method and is robust against segmental error [8]. HTI is actually
a part of GEI and is more robust against variations in walking speed than GEI [16]. MSI is a
gray level image which describes the spatiotemporal gait information with high discrimi-
nating power [9]. AEI is constructed by accumulating only the active regions of silhouette
images. It has the advantage of high quality human silhouettes and sufficient dynamic
characteristics [19]. GEnI selects the relevant gait features from each pair of gallery and
probe gait sequences by measuring the entropy to perform good recognition [1].

Unfortunately, however, when silhouettes are defective or corrupted, the gait representa-
tions are deformed, and the recognition performance is seriously degraded. To solve this
problem, the probabilistic support vector machine (PSVM) [5] is employed. PSVM can
evaluate the quality of the silhouette images since it yields probabilities of comparable
quality to the other methods while still retaining the sparseness of the SVM [14]. The PSVM
is trained to distinguish good silhouettes from bad ones and assigns the degree of goodness
to each silhouette. Based on the outputs of the PSVM, the robust gait representation image is
constructed by emphasizing the noise-free silhouettes while suppressing the corrupted
images.

This paper is organized as follows: In Section 2, we provide some background about
various gait representations and PSVM. In Section 3, the PSVM-based image-weighting
method is presented. In Section 4, the proposed method is applied to the CASIA and
SOTON databases to illustrate its performance. Conclusions are drawn in Section 5.

2 Background

2.1 Gait Energy Image (GEI)

GEI is an effective representation scheme with good discriminating power and robustness
against segmental errors [8]. Given the preprocessed binary gait silhouette images ft(x, y) at
time t in a sequence, GEI is computed by

GEI x; yð Þ ¼ 1

N

XN
t¼1

ft x; yð Þ; ð1Þ

where N is the number of frames in the complete gait sequence, and x and y are values in the
image coordinates. Figure 1 shows some examples of GEI. In comparison with the binary
silhouette sequence, GEI saves both storage space and computation time for recognition and is
less sensitive to noise in individual silhouette images. When a silhouette is deformed, however,
even GEI exhibits a degraded performance.

2.2 Head-Torso Image (HTI)

HTI [16], proposed by Tan et al., is a gait representation containing only the head and torso
part of GEI in order to focus on a more stable region during walking in which there is less
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movement. Furthermore, we often identify people by the profile of the head and torso. From
these observations, Tan et al. [16] use only the head-torso-thigh parts of human silhouettes to
represent the human gait and refer to it as HTI.

HTI can be viewed to some extent as a first-order-statistic-based description of human
gait from the structural perspective. HTI is defined as

HTI x; yð Þ ¼ 1

N

XN
t¼1

Ht x; yð Þ; ð2Þ

where Ht(x, y) is obtained by removing part of the crura from ft(x, y), and N is the number of
frames in one sequence. Figure 2 shows some examples of HTI.

2.3 Motion Silhouette Image (MSI)

MSI [9] is a gray level image which retains the critical spatiotemporal information. The
intensity of each pixel in an MSI is a function of its temporal history. MSI has high
discriminating power and remains the critical information source for gait recognition. MSI
is obtained by the following:

MSIt x; yð Þ ¼ 255 if ft x; yð Þ ¼ 1
max 0;MSIt�1 x; yð Þ � 1ð Þ otherswise:

�
ð3Þ

Figure 3 shows examples of MSI.

2.4 Active Energy Image (AEI)

Existing gait representation methods usually have defects related to both the low quality of
human silhouettes and insufficient dynamic characteristics. AEI [19] is constructed by

Fig. 1 Examples of GEI

Fig. 2 Examples of HTI
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accumulating only the active regions of silhouette images in order to make up for those
defects. Given a binary gait silhouette image ft(x, y), we can calculate the difference image
between two adjacent silhouettes as follows:

Dt x; yð Þ ¼ ft x; yð Þ t ¼ 1
ft x; yð Þ � ft�1 x; yð Þk k t > 1

�
; ð4Þ

where ║·║ is the Euclidean norm, and Dt(x, y) is the difference between ft(x, y) and ft-1(x, y),
i.e., Dt(x, y) is the active region at time t, and it is desirable to use the difference image to
extract the dynamic parts of the moving body. Accumulating the difference images, we can
obtain AEI as

AEI x; yð Þ ¼ 1

N

XN
t¼1

Dt x; yð Þ: ð5Þ

Figure 4 shows some examples of AEI.

2.5 Gait Entropy Image (GEnI)

GEnI [1] is proposed to distinguish the dynamic and static areas of a GEI by measuring the
Shannon entropy at each pixel location. The gait cycle consists of a sequence of human
silhouettes, and the intensity value of the silhouettes at a fixed pixel location can be
considered as a discrete random variable. The Shannon entropy measures the uncertainty

Fig. 3 Examples of MSI

Fig. 4 Examples of MSI
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associated with the random variable over a complete gait cycle. To obtain the information
content of the gait sequence proportional to the entropy value, GEnI is defined as

GEnI x; yð Þ ¼ �
XK
k¼0

pk x; yð Þlog2 pk x; yð Þ; ð6Þ

where pk(x, y) is the probability that a pixel (x, y) has the value k. Since ft(x, y) is a binary gait
silhouette image with either 0 or 1, we set K01. The probability that the pixel has a value of

1 is p1 x; yð Þ ¼ 1
T

PT
t¼1

ft x; yð Þ (i.e., the GEI), and the probability that the pixel has a value of 0

is p0 x; yð Þ ¼ 1� p1 x; yð Þ . Figure 5 shows some examples of GEnI.

2.6 Probabilistic Support Vector Machine (PSVM)

A posterior probability is very important in practical classification problems. SVM [17],
however, cannot produce posterior probability but only a binary decision value. PSVM [5]
maps the output SVM to the interval [0, 1] using a sigmoid function

P w ¼ þ1;�1f gjfð Þ ¼ 1

1þ exp �dðf Þð Þ ð7Þ

and determines the probability at which a data point belongs to a class where f is a data point;ω
denotes its binary class with {+1,−1}, and d(f) is the unthresholded output of SVM defined as

dð f Þ ¼ wT � f þ b; ð8Þ
where w and b denote a weight for f and the bias, respectively, in the SVM.

3 Probailistic image weighting scheme

In this section, we describe a new image-weighting scheme for robust silhouette-based gait
recognition. An SVM classifier is trained to distinguish noise-free images from corrupted ones.
The logistic sigmoid function is then employed to map the output of the SVM classifier to a
probability interval [0, 1], assigning the probability to each test input image as a weight. Finally,
a new gait representation is constructed using the previous methods such as GEI, HTI, MSI,
etc., with the only exception being that the weights computed by the PSVM are used to
represent the “goodness” of the silhouettes. For this reason, our methods can be combined

Fig. 5 Examples of GEnI
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with various silhouette-based gait-recognition systems to suppress the silhouette noise and
improve the quality of the gait features. Figure 6 shows an overview of the proposed method.

3.1 Construction of the decision boundary

Both noise-free and corrupted images are used to train the SVM. For corrupted images, two
kinds of rectangular noise are used: one is a black box noise, as shown in Fig. 7(b), and the
other is a complement box noise which inverts the original color, as shown in Fig. 7(c). SVM
is trained to separate the noise-free gait silhouettes from the corrupted ones. After training,
when a new silhouette f is presented, the probability that the silhouette is noise-free is
computed by

P w ¼ noise�freef gjfð Þ ¼ 1

1þ exp �dðf Þð Þ ¼
1

1þ exp �wT � f � bð Þ ; ð9Þ

where w and b denote the weight for f and the bias in the SVM, respectively.

3.2 Probabilistic image weighting

SVM is an empirically optimal discriminant model which provides a deterministic binary
decision on an input data point. In this paper, a scaled logistic sigmoid is employed to map
the distance between the image and the decision boundary to the goodness of the image.
Figure 8 shows the decision boundary of the SVM classifier and the normal or noisy images.
In Fig. 8, d( f )1 denotes the distance between the image and decision boundary and is defined
in (8). In addition, ξ is a small positive value used to define the range of the uncertain region
in the SVM learning.

As shown in Fig. 8, images near the decision boundary are difficult to classify as normal or noisy,
while images at a distance greater thanξ from the decision boundary can be classified.We design the
weight scheme using a sigmoid function to efficiently use barely classified images in the construction
of a silhouette-based image. The image weight using the sigmoid function is represented by

wðf Þ ¼ 1

1þ exp � 5=xð Þ � dðf Þð Þ : ð10Þ

Figure 9 shows the weight function. When d(f)>ξ, the silhouette is noise-free, and the full
image is used in the gait representation method. Similarly, when d(f)<–ξ, the silhouette is
completely corrupted and should be excluded. When ξ≥d(f)≥–ξ, the silhouette is moder-
ately corrupted and should be weighted according to the degree of corruption. The weighting
scheme can then be expressed as

ð11Þ

Fig. 6 Overview of the proposed method

1 We assign the classes of clear and noisy images to “+1” and “−1” respectively. Therefore the positive
direction of the normal vector in the decision boundary points to the set of noise-free silhouettes.
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where f(x, y) is the original silhouette image, w(f) is the output value of the PSVM, and
is the weighted silhouette image. Finally, the gait representation image is represented
by . Table 1 shows how the new gait representations are computed using

3.3 Consideration

In this subsection, the performance of the proposed method is analyzed based on a simplified
gait silhouette model. The model used herein is similar to the one in [8]. For the sake of
simplicity and easy understanding, a single pixel model is used as a gait silhouette. That is,

b ¼ f þ η: ð12Þ

Fig. 7 Normal and noisy images: a normal image, b black box noise, c complement box noise

Fig. 8 Decision boundary and normal or noisy images
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where f∈{0, 1} and η∈{−1, 0, 1} denote the noise-free silhouette and noise, respectively, and
b∈{0, 1} denotes the noisy silhouette. Even though many features such as GEI, HTI, MSI,
AEI and GEnI were considered, only GEI is used for mathematical consideration. First of
all, let us assume that the probabilities of silhouette image f being 0 is and 1 are q and (1– q),
respectively:

Pðf Þ ¼ P f ¼ 0ð Þ ¼ q
P f ¼ 1ð Þ ¼ 1� q:

�
ð13Þ

We further assume that the probability of silhouette image f being flipped by noise η is
silhouette image p, thus

P η fjð Þ ¼
P η ¼ �1 f ¼ 1jð Þ ¼ p
P η ¼ 0 f ¼ 1jð Þ ¼ 1� p
P η ¼ 1 f ¼ 0jð Þ ¼ p
P η ¼ 0 f ¼ 0jð Þ ¼ 1� p:

8>><
>>:

ð14Þ

Using our weighting scheme, (12) can be represented as

wb ¼ wf þ wη ð15Þ
where w0w(f). For simplification, if the silhouette image is considered as a normal image
(positive), then assign a positive number u forw and otherwise, we assign (1–u) forw as follows:

w ¼ u if dð f Þ > 0
1� u otherwise

�
ð16Þ

where d(f) is the unthresholded output of SVM. In this case, w can be regarded as random
variable according to SVM output, and it satisfies the following distribution:

P wjη; fð Þ ¼

P w ¼ ujη ¼ 0; f ¼ 1ð Þ ¼ a
P w ¼ 1� ujη ¼ 0; f ¼ 1ð Þ ¼ 1� a
P w ¼ ujη ¼ �1; f ¼ 1ð Þ ¼ 1� b
P w ¼ 1� ujη ¼ �1; f ¼ 1ð Þ ¼ b
P w ¼ ujη ¼ 0; f ¼ 0ð Þ ¼ a
P w ¼ 1� ujη ¼ 0; f ¼ 0ð Þ ¼ 1� a
P w ¼ ujη ¼ 1; f ¼ 0ð Þ ¼ 1� b
P w ¼ 1� ujη ¼ 1; f ¼ 0ð Þ ¼ b

8>>>>>>>>>><
>>>>>>>>>>:

ð17Þ

Fig. 9 Sigmoid weight function
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where α and β are the performance of SVM. Using true positive (TP), true negative (TN), false
positive (FP), and false negative (FN), we can obtain

a ¼ TP

TP þ FN
1� a ¼ FN

TP þ FN

� �
: ð18Þ

Table 1 Preparation of a new gait representation image
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and

b ¼ TN

TN þ FP
1� b ¼ FP

TN þ FP

� �
: ð19Þ

Table 1 (continued)
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Therefore, we have

P wfð Þ ¼

P wf ¼ uð Þ ¼ a 1� pð Þ 1� qð Þ when η ¼ 0; f ¼ 1
P wf ¼ 1� uð Þ ¼ 1� að Þ 1� pð Þ 1� qð Þ when η ¼ 0; f ¼ 1
P wf ¼ uð Þ ¼ 1� bð Þp 1� qð Þ when η ¼ �1; f ¼ 1
P wf ¼ 1� uð Þ ¼ bp 1� qð Þ when η ¼ �1; f ¼ 1
P wf ¼ 0ð Þ ¼ a 1� pð Þq when η ¼ 0; f ¼ 0
P wf ¼ 0ð Þ ¼ 1� að Þ 1� pð Þq when η ¼ 0; f ¼ 0
P wf ¼ 0ð Þ ¼ 1� bð Þpq when η ¼ 1; f ¼ 0
P wf ¼ 0ð Þ ¼ bpq when η ¼ 1; f ¼ 0

8>>>>>>>>>><
>>>>>>>>>>:

ð20Þ

Table 1 (continued)
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Fig. 11 NSRs of the conventional and proposed methods: α00.9 and p00.7

Fig. 10 NSRs of the conventional and proposed methods: α0β00.9
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and

P wηð Þ ¼

P wη ¼ 0ð Þ ¼ a 1� pð Þ 1� qð Þ when η ¼ 0; f ¼ 1
P wη ¼ 0ð Þ ¼ 1� að Þ 1� pð Þ 1� qð Þ when η ¼ 0; f ¼ 1
P wη ¼ �uð Þ ¼ 1� bð Þp 1� qð Þ when η ¼ �1; f ¼ 1
P wη ¼ � 1� uð Þð Þ ¼ bp 1� qð Þ when η ¼ �1; f ¼ 1
P wη ¼ 0ð Þ ¼ a 1� pð Þq when η ¼ 0; f ¼ 0
P wη ¼ 0ð Þ ¼ 1� að Þ 1� pð Þq when η ¼ 0; f ¼ 0
P wη ¼ uð Þ ¼ 1� bð Þpq when η ¼ 1; f ¼ 0
P wη ¼ 1� uð Þð Þ ¼ bpq when η ¼ 1; f ¼ 0

8>>>>>>>>>><
>>>>>>>>>>:

ð21Þ

In order to see the effect of weight w, the noise-to-signal ratios (NSRs) of the conven-
tional and proposed methods are compared. If NSR of the proposed method is lower than
that of the conventional method, we can conclude that the effect of noise is relatively
decreased by using our method. Given a walking cycle with N frames, NSR of GEI is
defined as

Var 1
N

PN
i¼1

ηi

� �

Var 1
N

PN
i¼1

fi

� � ¼ Var ηð Þ
Varð f Þ : ð22Þ

Table 2 Comparison of
performance: GEI Noise rate (%) GEI (%) PSVM+GEI (%) IMP (%)

0 83.33 81.67 −1.66
10 78.00 81.67 3.67

15 80.00 83.00 3.00

20 80.00 81.67 1.67

25 76.67 85.00 8.33

30 75.00 80.00 5.00

35 71.67 83.33 11.66

40 65.00 85.00 20.00

Average 76.21 82.67 6.46

Table 3 Comparison of
performance: HTI Noise rate (%) HTI (%) PSVM+HTI (%) IMP (%)

0 90.00 88.33 −1.67
10 90.00 90.00 0.00

15 81.67 86.67 5.00

20 86.67 90.00 3.33

25 75.00 86.67 11.67

30 78.33 88.33 10.00

35 75.00 88.33 13.33

40 63.33 86.67 23.34

Average 80.00 88.13 8.13
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From (13) to (14), Var(η) and Var(f) can be represented in terms of p, q as

Var ηð Þ ¼ p 1� pð Þ ð23Þ

Varð f Þ ¼ q 1� qð Þ ð24Þ
Thus,

Var 1
N

PN
t¼1

ηt

� �

Var 1
N

PN
t¼1

ft

� � ¼ Var ηð Þ
Varð f Þ ¼

p 1� pð Þ
q 1� qð Þ : ð25Þ

In similar, NSR of the GEI combined by the proposed method is defined as

Var 1
N

PN
t¼1

wtηt

� �

Var 1
N

PN
t¼1

wtft

� � ¼ Var wηð Þ
Var wfð Þ ¼

E w2η2ð Þ � E wηð Þð Þ2
E w2f 2
� �� E wfð Þð Þ2 : ð26Þ

Table 4 Comparison of perfor-
mance: MSI Noise rate (%) MSI (%) PSVM+MSI (%) IMP (%)

0 61.67 66.67 5.00

10 15.00 63.00 48.00

15 28.00 63.00 35.00

20 18.33 58.33 40.00

25 26.67 60.00 33.33

30 25.00 58.33 23.33

35 25.00 56.67 31.67

40 21.00 63.00 42.00

Average 27.58 61.13 32.29

Table 5 Comparison of perfor-
mance: AEI Noise rate (%) AEI (%) PSVM+AEI (%) IMP (%)

0 78.33 81.67 3.34

10 53.33 83.33 30.00

15 36.37 81.67 45.00

20 31.67 80.00 48.33

25 18.33 83.33 65.00

30 16.67 85.00 68.33

35 23.33 71.67 48.34

40 20.00 70.00 50.00

Average 34.75 79.58 44.79
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From (20), E(wη) and E(w2η2) are

E wηð Þ ¼ �u 1� bð Þp 1� qð Þ � 1� uð Þbp 1� qð Þ þ u 1� bð Þpqþ 1� uð Þbpq
¼ u 1� bð Þp 2q� 1ð Þ þ 1� uð Þbp 2q� 1ð Þ
¼ p 2q� 1ð Þ u 1� bð Þ þ 1� uð Þbf g

ð27Þ

and

E w2η2ð Þ ¼ u2 1� bð Þp 1� qð Þ þ 1� uð Þ2bp 1� qð Þ þ u 2 1� bð Þpqþ 1� uð Þ2bpq
¼ u2 1� bð Þpþ 1� uð Þ2bp
¼ p u2 1� bð Þ þ 1� uð Þ2b

n o
:

ð28Þ

In the same way, E(wf ) and E(w2f 2) are

E wfð Þ ¼ ua 1� pð Þ 1� qð Þ þ 1� uð Þ 1� að Þ 1� pð Þ 1� qð Þ
þu 1� bð Þp 1� qð Þ þ 1� uð Þbp 1� qð Þ

¼ ua þ 1� uð Þ 1� að Þf g 1� pð Þ 1� qð Þ þ u 1� bð Þ þ 1� uð Þbf gp 1� qð Þ
ð29Þ

Table 6 Comparison of perfor-
mance: GEnI Noise rate (%) GEnI (%) PSVM+GEnI (%) IMP (%)

0 86.67 85.00 −1.67
10 71.67 88.33 16.66

15 70.00 88.33 18.33

20 73.00 85.00 12.00

25 63.33 88.33 25.00

30 51.07 85.00 34.33

35 60.00 85.00 25.00

40 40.00 81.67 41.67

Average 64.47 85.83 21.42

Fig. 12 Improvement rate according to noise rate

Multimed Tools Appl (2014) 70:1399–1419 1413



and

E w2f 2
� � ¼ u2a 1� pð Þ 1� qð Þ þ 1� uð Þ2 1� að Þ 1� pð Þ 1� qð Þ

þu2 1� bð Þp 1� qð Þ þ 1� uð Þ2bp 1� qð Þ
¼ u2a þ 1� uð Þ2 1� að Þ

n o
1� pð Þ 1� qð Þ þ u2 1� bð Þ þ 1� uð Þ2b

n o
p 1� qð Þ:

ð30Þ

Finally, the NSRs of the conventional and proposed methods are compared. Let us assume
that q00.5 and u00.9.

1) Let α0β00.9 and let us compare the NSRs while varying the probability p
that the silhouette image is contaminated. In Fig. 10, two NSRs are compared.
It is worth noting that when the probability of noise p is less than around 0.75,
the proposed method exhibits lower NSR than that of the GEI. This figure
explains why the proposed method outperforms the GEI in terms of recognition
accuracy.

Fig. 13 Silhouette-based representation images using the corrupted dataset (noise rate: 25 %) a GEI, b HTI, c
MSI, d AEI, e GEnI, (left: conventional method, right: proposed method)
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2) Let α00.9 and p00.7 and let us compare the NSRs while varying the TRR (true
rejection rate) β of the SVM. Two NSRs are compared in Fig. 11.

As expected, when TRR β is higher than around 0.83, noisy silhouettes are reliably
rejected and the proposed method demonstrates better NSR than the plain GEI. Figures 10
and 11 explain why the proposed method outperforms the GEI in terms of recognition
accuracy.

4 Experimental results

4.1 CASIA database

In this section, we apply the proposed method to the CASIA database [18] and show a
significant performance improvement in a noisy environment. This database is widely used
to benchmark algorithms in gait recognition, and it is also known as the NLPR gait database.
The database includes 20 subjects, each of which has four sequences: two sequences for one
walking direction, and two for the reverse walking direction.

For the sake of simplicity, the nearest neighbor (NN) [7] is used as the classifier in our
experiment. We use one sequence as a training set for PSVM, two sequences as a training set
for NN, and the other sequence as a testing set to evaluate the performance of the proposed
method. The proposed weighting scheme is combined with previous silhouette-based

Table 8 Comparison of perfor-
mance: HTI Noise rate (%) HTI (%) PSVM+HTI (%) IMP (%)

0 98.23 98.23 0

10 97.64 97.35 -0.29

15 96.76 97.64 0.88

20 96.46 97.94 1.48

25 93.51 97.94 4.43

30 93.22 97.64 4.42

35 91.45 97.64 6.19

40 90.56 95.58 5.02

Average 94.73 97.50 2.84

Table 7 Comparison of perfor-
mance: GEI Noise rate (%) GEI (%) PSVM+GEI (%) IMP (%)

0 98.23 98.23 0

10 97.64 97.35 −0.29
15 96.75 97.64 0.89

20 96.46 97.94 1.48

25 93.51 97.24 3.73

30 93.21 97.64 4.43

35 91.44 97.64 6.20

40 90.56 95.58 5.02

Average 94.73 97.41 2.68
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approaches, and their correct classification rates (CCR) are compared with one other and the
previous methods. The simulation is repeated while the probability of noise in the gait
silhouette database is changed from 0 to 0.4. Three-fold validation is used, and the
experimental results of each silhouette-based method are shown in Tables 2, 3, 4, 5 and 6.
In the tables, IMP denotes the improved rate and is defined as

IMP ¼ Cp � Cs; ð31Þ
where Cs denotes the CCR from only silhouette-based gait recognition in a noisy environ-
ment, while Cp represents the CCR when the proposed method is applied to silhouette-based
gait recognition in a noisy environment.

Figure 12 shows the improvement rate according to noise rate for each silhouette-based
representation image. From Fig. 12, we can observe that our proposed method degrades the
performances of GEI by −1.66 % and HTI, GEnI by −1.67 % at a noise rate of 0 %.
However, all silhouette-based methods for the general case having noisy silhouette images
are improved using the proposed method. As mentioned above, the representation images
are critical parts in gait recognition. The proposed method can exclude severe noisy images
and decrease the influence of noisy images when constructing the gait representation image.
This is the reason for such high performance. Figure 13 compares several silhouette-based
representations with and without the proposed method in the corrupted CASIA database,
where the probability of noise is 0.25.

Table 10 Comparison of perfor-
mance: AEI Noise rate (%) AEI (%) PSVM+AEI (%) IMP (%)

0 98.82 98.82 0

10 55.16 98.53 43.37

15 46.31 99.12 52.81

20 29.20 97.44 78.24

25 24.78 97.05 72.27

30 15.63 95.58 79.95

35 15.34 95.28 79.94

40 12.68 92.33 79.65

Average 37.24 96.77 60.78

Table 9 Comparison of perfor-
mance: MSI Noise rate (%) MSI (%) PSVM+MSI (%) IMP (%)

0 88.20 88.50 0.30

10 13.27 88.79 75.52

15 13.27 87.02 73.75

20 15.34 87.31 71.97

25 23.89 86.72 62.83

30 17.99 84.07 66.08

35 18.58 83.18 64.60

40 22.42 82.59 60.17

Average 26.62 86.02 59.40
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4.2 SOTON database

To make a generalized statement of our proposed method, we employ the larger SOTON
database [15] for the second example. The SOTON database was created by Shutler et al. at the
University of Southampton. It consists of more than 100 subjects. Similar to the experiment
with the CASIA database, we use one sequence as a training set for the image weighting, two
sequences as training for NN, and the other sequence as the testing set. Tables 7, 8, 9, 10 and 11
show the experimental results of each silhouette-based representation image.

Figure 14 shows the improvement rate according to noise rate. It can be observed from
Tables 6, 7, 8, 9, 10 and 11 that the proposed method degrades the performances of GEI and
HTI by 0.29 % at a noise rate of 10 %. Except for these two cases, however, the proposed
method shows a significant improvement in performance for the corrupted SOTON database
compared to the various silhouette-based gait recognition methods.

Fig. 14 Improvement rate according to noise rate: SOTON database

Table 11 Comparison of perfor-
mance: GEnI Noise rate (%) GEnI (%) PSVM+GEnI (%) IMP (%)

0 97.05 97.05 0

10 86.14 97.05 10.91

15 83.19 94.35 11.16

20 74.04 97.35 23.31

25 71.39 97.05 25.66

30 70.50 97.05 26.55

35 63.13 96.46 33.33

40 59.29 94.99 35.70

Average 75.59 96.42 20.83
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5 Conclusions

Gait representations for silhouette-based approaches are obviously important for recogni-
tion. However, corrupted and noisy silhouette images are deformed and negatively affect the
performance of gait recognition systems. In this paper, we employ PSVM, which outputs an
adequate weight for an individual silhouette image according to its clarity, to successfully
improve the quality of gait representations. The proposed method is tested with the CASIA
and SOTON databases, and shows a significant performance improvement from the general
silhouette-based gait recognitions in a noisy environment, thereby increasing the reliability
of the gait recognition system.
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