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Abstract For many applications in graphics, design and human computer interaction, it is
essential to reliably estimate the visual saliency of images. In this paper, we propose a visual
saliency detection method that combines the respective merits of color saliency boosting and
global region based contrast schemes to achieve more accurate saliency maps. Our method is
compared with existing saliency detection methods when evaluated using four public
available datasets. Experimental results show that our method consistently outperformed
current state-of-the-art methods on predicting human fixations. We also demonstrate how the
extracted saliency map can be used for image classification.

Keywords Visual saliency detection . Color boosted algorithm . Regional contrast .

Image classification

1 Introduction

Attempting to search for and recognize particular known object in a scene can be extremely
complex when one has to consider all possible views an object can take. Human vision
system employs attention to try to limit the amount of information that needs to be processed
in order to speed up search and recognition, and to interpret complex scenes in real time [46].
Predicting locations at where people are likely to look has many real-world applications.
Computational models can be applied to various computer vision tasks such as navigational
assistance [11], robot control [6], surveillance systems [18], object detection and recognition
[26], and scene understanding [23]. Such predictions also find applications in other areas
including adaptive image and video compression [10], pictorial database querying [7] and
content-aware image editing [41].
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Visual saliency originates from visual uniqueness, unpredictability, or rarity, and is often
contributed to variations in image features like color, gradient, edges and boundaries.
Although many factors may determine what image features are selected or discarded by
our attentional processes, visual saliency can generally be categorized into two groups:
bottom-up and top-down [9]. The former comprises data driven (instantaneous) processes
while the later comprises processes that are dependent of the organism’s internal state (such
as the visual task at hand or the subject’s background) [29].

Because bottom-up saliency is important for many practical applications, we focus on
bottom-up data driven saliency in this paper. The fast, parallel, pre-attentive, bottom-up
stage of human vision is thought to guide a serial (computationally intensive) attentive, top-
down stage. Among all features that contribute to image saliency, orientation and color are
thought to be the most significant ones [22, 40]. Consequently, most current computational
saliency models are based on color or orientation contrast (e.g. [8, 23, 39]). However, in
color science, chromaticity determines the quality of a color regardless of its luminance, and
it was reported in [35] that humans were more sensitive to chromaticity cues than to
luminance ones. Moreover, there exists evidence that the human visual system combines
low-level features in an early stage [2], and information theory can be used to compute the
saliency by combining chromaticity and contrast in an early stage.

Therefore, in this paper, we propose a method which computes image saliency from the
color saliency boosting version of original image. The method is based on the key observa-
tion that in natural images, color transitions of equal probability (i.e. isosalient transitions)
form ellipsoids in decorrelated color spaces [36]. The transformation that turns these
ellipsoidal surfaces into sphere ones (called the color saliency boosting function), ensures
that vectors of equal length have equal information content and thus equal impact on the
saliency function. In [36], the color boosted saliency map was computed by a simple
gradient-based scheme. In this paper, we further investigate how to achieve a more accurate
color boosted saliency map to predict human fixations.

It is widely believed that human cortical cells may be hard wired to preferentially respond
to high contrast stimulus in their receptive fields [31]. Computational saliency models have
been shown to successfully model human saliency by determining the contrast of image
regions to their surroundings [44], using feature attributes such as intensity, color [8], and
edges [1]. Inspired by currently released global contrast based visual saliency detection
method [8], we utilize region based dissimilarity to produce the final color boosted saliency
map. Similar to [8], the saliency value of a region is now calculated using a global contrast
score, measured by the region’s contrast and spatial distance to other region in the image.
The main difference between our method and global regional contrast based visual saliency
detection method [8] is that, we use the color boosted image instead of original image as an
input. In addition, for purpose of further improvement, we initialize the segmentation using a
modified version of graph-based image segmentation method [45], and contrive a spatial
weighting term to describe a bias to the center of image.

The main contribution of this paper is to combine the respective merits of color saliency
boosting and global region based contrast schemes to achieve more accurate saliency maps.
We also have extensively evaluated our method on four publicly available benchmark
datasets provided by Bruce et al. [5], Judd et al. [24], Linde et al. [37] and Achanta et al.
[1], and compared our method with eight state-of-the art saliency methods [1, 5, 8, 12, 19,
21, 23, 44]. The experiments showed consistent and improvements over previous methods
on all datasets, indicating the robustness and generality of proposed method.

The rest of the paper is organized as follows. Section 2 introduces the related works.
Section 3 outlines the color saliency boosting algorithm we used in this paper. The regional
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contrast based saliency detecting approach is presented in Section 4, and the comprehensive
experimental results are given in Section 5. Section 6 demonstrates how the extracted
saliency map can be used for image classification. Finally, the conclusions are outlined in
Section 7.

2 Related work

2.1 Color distinctiveness

Information theory has been successfully applied in modeling human visual from image
feature [25]. The theory declares that feature saliency is inversely related to feature occur-
rence, i.e. rare features are more informative and thereby more salient than features that
occur more frequently. Consequently, recent models for predicting human visual fixation
behavior suppose that saliency driven free viewing corresponds to maximizing information
sampling [14]. Such models have been successfully applied to model fixation behavior,
saliency asymmetries, and even to solve the classic computer vision problem such as
dynamic background subtraction [14].

Based on information context of color image derivatives, van de Weijer et al. [36]
proposed a so called color saliency boosting algorithm to exploit color distinctiveness of
image. The key observation behind their method was that in natural images, color transitions
of equal probability (i.e. isosalient transitions) form ellipsoids in decorrelated color spaces.
In their paper [36], color saliency boosting was subtly designed as a generic method that can
be easily adaptable to existing feature detectors. As a result, it had been successfully applied
to image retrieval [33] and image classification [27].

2.2 Contrast based visual saliency detection

We pay attention to relevant literature aiming at parallel, pre-attentive, bottom-up saliency
detection, which may be biologically motivated, or purely computational, or involve both
aspects. In general, we slice such methods into two groups: local and global schemes.

Local contrast based methods measure the rarity of image regions with respect to (small)
local neighborhoods. Among local contrast based models of saliency, the model of Itti et al.
[23] was one of the most influential, summing the scale-space center-surround excitation
responses of feature maps at different spatial frequencies and orientations and feeding the
results into a neural network to output the final saliency map. Seo & Milanfar [32] used a
self-resemblance mechanism to compute saliency, where a region with dissimilar curvature
compared to its surrounding was considered as being highly salient. Bruce & Tsotsos [5]
designated saliency at a location to be quantified by the self-information of the location with
respect to its surrounding context—either localized pixel regions, or even the entire image.
More recently, Goferman et al. [16] simultaneously modeled local low-level considerations
(such as color and contrast), global considerations, visual organizational rules, and high level
factors (e.g. humance faces) to detects the important parts of the scene. However, such local
contrast based methods have some obvious disadvantages: they tend to produce higher
saliency values near edges instead of uniformly highlighting salient object.

Global contrast based method compute the saliency values of an image region using its
contrast with respect to the entire image. This global rarity principle agrees better with
human intuition and has been implemented in different ways. Frequency based methods
perform analysis in the spectral domain [1]. Achanta et al. [1] proposed a frequency tuned
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method that directly computed pixel saliency using a pixel’s color difference from average
image color. In [28], low spatial variance of a feature was considered to indicate high
saliency, and this made an overly strict assumption that the background everywhere was
dissimilar to the object. Zhai and Shah [44] considered pixel saliency based on pixel’s
contrast to all other pixels. However, for efficiency, they utilized only luminance informa-
tion, thus ignoring distinctiveness clues in other channels. More recently, M. M. Chen et al.
[8] presented a simple but efficient algorithm that defined pixel-level saliency using global
contrast differences.

3 Color saliency boosting

We first provide a high level description of our model, with the implementation details given
in the following sections. To exploit color distinctiveness of image, our method begins by
boosting color saliency on the original input images. The corresponding saliency maps are
then extracted by using of global region based contrast schemes. A flow chart describing this
process is given in Fig. 1.

The color saliency boosting algorithm by van de Weijer et al. [36] has provided an
efficient method to exploit the saliency of color edges based on information theory. The
algorithm is inspired by the notion that a feature’s saliency reflects its information content as
follows.

Consider a color image f0(R,G,B). The information content, I, of first-order directional
derivative fd, according to information theory, is given by logarithm of its probability p:

I fdð Þ ¼ � log p fdð Þð Þ ð1Þ
where p( fd) is the probability of the spatial derivative and it can be calculated from a large
image database, e.g. the Corel database which consists of 40,000 images. Therefore, color
image derivatives which are equally frequent, from now on named iso-salient derivatives,
have equal information content.

In [36], the authors concluded that the color saliency boosting function g(.) which maps
iso-salient derivatives to equal saliency is required. It is our goal to model the surface of iso-
salient derivatives with an ellipsoid. We note that the same influence of luminance changes
on the chromatic changes in the image is reflected not only in the derivatives of first order,
but also in higher order. Therefore, we use the color tensor [43] to estimate the parameter of
the ellipsoid as:

G ¼ R2
x þ G2

x þ B2
x RxRy þ GxGy þ BxBy

RxRy þ GxGy þ BxBy R2
y þ G2

y þ B2
y

� �
ð2Þ

where Rx, Ry, Gx, Gy, Bx and By are first-order of R, G, B channel along horizontal or vertical
direction respectively. This definition can be seen as a simple extension of the second

color saliency
boosting

region based 
contrast

Fig. 1 A high-level overview of the proposed method
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Fig. 2 Comparison for edge detection using canny detector. From top to bottom: Original images, RGB color
edges, color boosted edges based on [36] and color boosted edges based on our method
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moment matrix to color, and it has been successfully used to extend first order operators to
color.

Applying the singular value decomposition [38], this matrix G can be decomposed into
G0UΛVT, where U is the left singular vectors of G and then gives the color saliency
boosting function g:

gð f Þ ¼ UΛ�1=2VT f ð3Þ

Note that due to its linearity, the color saliency boosting function g can be directly applied to
the original image as a preprocessing operation, shown in Fig. 1. To evaluate the impact of
our method, we conducted edge detection experiments based on three different inputs, i.e.
the original image, the color boosted image using [36] and the color boosted image using our
method. Figure 2 illustrates three examples from dataset [1] for edge detection using canny
detector. It is obvious that RGB edges are more biased by luminance and color boosted
edges based on our method are more visually apparent than edges based on [36]. Moreover,
the standard quantitative evaluation is given in Table 5. Please see Table 5 for more details.

4 Region based contrast

Humans tend to focus on those image regions that contrast strongly with their neighboring
regions [43]. Similar to [8], there are two factors which are considered for evaluating region
based saliency: the dissimilarity between image regions, and their spatial distance. With the
increasing of the spatial distance between two regions, the influence of the dissimilarity
between them is decreasing. Furthermore, the distance of each region with respect to the
center of an image is introduced in the spatially weighted term because of central bias [34]
that was ignored in [8]. In this paper, we first segment the entire image into regions, then
calculate color contrast at the region level, and measure saliency for each region as weighted
sum of the region’s contrast to all other regions in the image. For each region, its
corresponding spatially weighting term is contrived to include three factors: the size of this
region, spatial distances between this region and all other regions, and the center bias of this
region.

Due to its simplicity and efficiency, we first initialize the segmentation using the modified
version of graph-based image segmentation [45] to overcome some drawbacks in [13]
according to following formulas:

TðCÞ ¼ Wmax �Wminð Þ Cj j=ð Þ � Numc k=ð Þ ð4Þ

IntðCÞ ¼ 1 N= �
X

e2MST C;Eð Þ W ðeÞ ð5Þ

where T(C) represents threshold function,Wmax is the largest edge weight in theweighted graph
while Wmin is the smallest edge weight, |C| is the size of component C in pixels, Numc is the
number of components in the image, parameter k can be regarded as the expected number of
components and larger k produces more components, Int(C) denotes the internal difference,
MST(C,E) denotes the minimal spanning tree of C,W(e) represents the edge weight inMST (C,
E) andN is the number of edges inMST (C,E). We quickly review this segmentation algorithm.
Initially, a graph is constructed over the entire image, with each pixel p being its own unique
component. Subsequently, components are merged by traversing the edges in a sorted order by
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increasing weight and evaluating whether the edge weight is smaller than the internal difference
of both components incident to the edge. If true, the components are merged and the internal
difference of the compound component is updated.

After segmentation, we then calculate region contrast by color histogram comparison. To
build this color histogram while consider efficiency, we take the sparse color histogram
representation proposed in [8]. In [8], each color channel was quantized into 12 different
values, resulting in the number of colors into a small one 12301728. Based on the key
observation that color in a natural image typically covers a small portion of the full color
space, the authors in [8] further reduced the number of colors by choosing more frequently
occurring colors that covered the colors of more than 95% of the image pixels, and ignoring
less frequently occurring ones. The final sparse color histogram had around 85 colors, where
the remaining pixels, that comprised fewer than 5% of the image pixels, were substituted by
the closest colors in the histogram. Figure 3 shows that given an input image (left), we
execute the color reduction procedure as discussed above. The quantized image (right) uses
only 85 histogram bin colors and still remains sufficient visual quality for saliency detection.

By integrating the dissimilarity of regions Dissmilarity, the size of regions w2, spatial
distance w3 and central bias w1, for a region rp, we measure its saliency values to all other
regions in the image as:

Saliency rp
� � ¼ w1 rp

� � X
rp 6¼rq

w2 rq
� �

w3 rp; rq
� �

Dissmilarity rp; rq
� � ð6Þ

where w2(rq) is the weight of region rq and we use the number of pixels in rq as rq to emphasize
color contrast to bigger regions. The weight w1(rp) is the first weighting mechanism we
proposed, indicating a bias of region rp to the center of image, and is defined as:

w1 rp
� � ¼ 1� BiasToCenter rp

� �
D= ð7Þ

Fig. 4 The impact of introducing spatial distance and central bias weighting on saliency computation

Fig. 3 The color quantization result for an input image
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where BiasToCenter(rp) is the Euclidean distance between the centroid of region rp and the
center of image, and D0maxq {BiasToCenter(rq)} is a normalization factor.

In Eq. 6, the spatial weight w3 (rp, rq) is used to increase the effects of closer regions and
decrease the effects of farther regions, representing the biological plausible characteristics.
We calculate it as:

Fig. 5 Visual comparison of saliency maps between our method and other five approaches on Bruce’s color
image database. The rows from top to bottom are: the input images, the saliency maps of the IT method [23],
IM method [5], CL method [21], GB method [19], RC method [8], our method, and human fixation density
maps
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w3 rp; rq
� � ¼ exp �Ds rp; rq

� �
σ2
s

�� � ð8Þ
where Ds(rp, rq) is the spatial distance between regions rp and rq, computing by the
Euclidean distance between their centroids, and σs controls the strength of spatial weighting.
In fact, larger values of σs reduce the effect of spatial weighting so that contrast to farther
regions would contribute more to the saliency of the current region. In our experiments, σ2

s

was empirically set as 0.4.
The term Dissmilarity (rp, rq) in Eq. 6 is the dissimilarity between two regions rp, rq and

we define it according to color distance between them as:

Dissmilarity rp; rq
� � ¼ Xm

i¼1

Xn
j¼1

f cp;i
� �

f cq; j
� �

D cp;i; cq; j
� � ð9Þ

where f (cp,i) is the probability of the i-th color cp,i among all m colors in the rp region, f (cq, j)
is the probability of the j-th color cq, j among all n colors in the rq region and the color
distance between color cp,i and cq, j is denoted by D(cp,i, cq, j). Here, probability of a color in
the probability density function (i.e. normalized color histogram) of the region is used as the
weight for this color in order to emphasize more the color differences between dominant
colors.

Figure 4 demonstrates the impact of introducing spatial distance w3 and central bias
w1 in our method. We first use the method in [45] to segment the whole image and
results are shown is the left of Fig. 4. Then, we compute the corresponding saliency
map with (middle–right) and without (middle–left) spatial distance and central bias
weighting. It is obvious that, by incorporating spatial distance and central bias weight-
ing, we get a high quality saliency map when compared to the real human fixation
density map (right).

Fig. 6 The ROC curves of our method and other five approaches on Bruce’s color image database

Table 1 Performances on the
Bruce’s color image database Method IT

[23]
IM [5] CL[21] GB[19] RC[8] Our

method

AUC 0.7092 0.7737 0.7964 0.8015 0.8300 0.8943

Improvement – 0.0688 0.0351 0.0092 – –
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Table 2 Performances on the
Judd’s color image database Method IT [23] IM [5] CL[21] GB[19] RC[8] Our method

AUC 0.7615 0.7384 0.7738 0.8149 0.8170 0.8729

Fig. 7 Visual comparison of saliency maps between our method and other five approaches on Judd’s color
image database. The rows from top to bottom are: the input images, the saliency maps of the IT method [23],
IM method [5], CL method [21], GB method [19], RC method [8], our method, and human fixation density
maps
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Fig. 8 The ROC curves of our method and other five approaches on Judd’s color image database

Fig. 9 Visual comparison of saliency maps between our method and other three approaches on DOVES gray
image database. The rows from top to bottom are: the input images, the saliency maps of the IT method [23],
GB method [19], RC method [8], our method, and human fixation density maps
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5 Experimental results

We have evaluated the results of our approach on four public databases provided by Bruce et
al. [5], Judd et al. [24], Linde et al. [37] and Achanta et al. [1]. We compared the proposed
method with eight state-of-the-art saliency methods, e.g. RC [8], IT [23], SR [20], FT [1],
LC [44], GB [19], CL [21] and IM [5].

Please note that in our comparison experiments, the compared algorithms are
different for different databases. The reasons are as follows: the authors in [1] pointed
out that, “The true usefulness of a saliency map is determined by the application”. In
our experiments, using the method of Receiver Operator Characteristic (ROC) curve,
we found the area under the curve (AUC) of FT [1] method was smaller than that of
GB [19] method. Some authors also reported the similar observation [12]. Therefore,
for fair comparison, we sliced experiments into two groups: we compared our method
with RC [8], IT [23], GB [19], CL [21] and IM [5] according to the AUC criterion
on the three databases: Bruce, Judd and Linde, and compared our method with RC
[8], SR [20], FT [1] and LC [44] on the Achanta database based on saliency-guided
segmentation trials.

We implemented our method in C++. For the other methods namely, GB [19], CL [21],
IM [5] and IT [23], we used the author’s implementations. In addition, we downloaded
source codes, kindly provided by the authors of [8] on website, that include implementations
of the RC [8], SR [20], FT [1] and LC [44] methods.

5.1 Results on Bruce’s color image database

The first color image database we used was introduced by Bruce et al. [5]. 120 different
color images are contained in this database, and 20 different subjects’ fixations are recorded
for each image (all the image sizes are 681×511). To objectively evaluate the performance of
different methods, we utilize the area under Receiver Operator Characteristic (ROC) curve

Table 3 Performances on the
DOVES gray image database Method IT [23] GB[19] RC[8] Our method

AUC 0.7109 0.7941 0.8162 0.8455

Fig. 10 The ROC curves of our method and other three approaches on DOVES gray image database
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[5] (i.e. the area under the curve (AUC)) to compare the saliency maps with the human
fixations.

Figure 5 shows visual comparison of saliency maps obtained by proposed method and
five state-of-the-art methods (IT [23], IM [5], CL [21], GB [19] and RC [8]). The fixation
density maps are generated from the sum of all 2D Gaussians approximations of the drop-off
the density of the human fixations [5]. From Fig. 5, it is clear that the most salient locations
(represented as the brightest regions) of our saliency map are more consistent with human
fixation density map. For example, in the second image, the green-yellow colored melon is
attended by humans, but it is not detected to be the salient region by all other saliency
detection methods expect ours.

Fig. 11 Visual comparison of saliency maps between our method and other four approaches on Achanta’s
Color Image Database. The rows from top to bottom are: the input images, the saliency maps of the SR
method [20], FT method [1], LC method [44], RC method [8], our method, and manually label ground truth
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Table 1 lists the results on Bruce’s color image database for six different methods. The
ROC curves are generated by taking Harel et al. [19]’s code. It is clear that our method
outperforms the other five methods on predicting human fixations. Note that the results of
IM, CL and GB methods are different from the corresponding results published in their
paper [5, 19, 21]. That is because the sampling density which we used to obtain the threshold
is different from what they used. However, in our experiments, they were all evaluated
according to the same validation approach, so their relative performance should not be
affected.

We have also investigated the benefits of adding three weighting factors w1, w2 and w3 in
our method. By setting w1 to 1, the AUC decreases from 0.8943 to 0.8726, and by setting w2

to 1, the AUC decreases from 0.8943 to 0.8838. Besides, if we use the flat values, i.e., w1, w2

and w3 are all set to 1, the AUC drastically decreases from 0.8943 to 0.7940. Therefore, all
three spatially weighting factors play a significant role in computing saliency.

Furthermore, the ROC curves of six different methods on Bruce’s color image database
are shown in Fig. 6 which demonstrates that our method obtains higher hit rates and lower
false positive rates.

5.2 Results on Judd’s color image database

We conducted our method on Judd’s color image database [24]. There are 1003 natural
images including different scenes and objects, and the corresponding human fixations
are also recorded from 15 subjects. In this database, the size of the images is not the
same, e.g., the width varies from 682 to 1024 pixels, and the height varies from 628 to
1024 pixels. The comparison between saliency maps using different methods is shown
in Fig. 7.

The AUC results are listed in Table 2 and our method achieved highest AUC results.
Furthermore, we compared the ROC curves in Fig. 8 which demonstrates that our method
again obtains higher hit rates and lower false positive rates.

5.3 Results on DOVES gray image database

The DOVES gray image database we used in our experiments was introduced by van der
Linde et al. [37]. This database collects eye movements from 29 human observers when they

Fig. 12 Precision-recall curves for naïve thresholding of saliency maps using Achanta’s color image database
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view 101 natural calibrated images. The database consists of around 30,000 fixation points,
and is believed to be the one of the large-scale databases of eye movements to be made
available to the vision research community.

Here, we compared our saliency map with that of IT [23], GB [19] and RC [8]
methods, as shown in Fig. 9. Please note that IM [5] and CL [21] methods are
excluded now, because they could not process gray images. Here, for gray images,
the parameters hold the same values as before (e.g. the quantization in the clustering
stage also takes 12 values). Based on the AUC, the qualitative results are also listed in
Table 3. The corresponding ROC curves are shown in Fig. 10. Our method performs
relatively poorly on DOVES gray image database. That is because the color image
contains semantic objects, but the gray image contains more raw signals. However, our
method is also superior to other three approaches on this database.

5.4 Results on Achanta’s color image database

Finally, we evaluated the results of our method on Achanta’s color image database [1].
This database contains 1003 color images, including different objects and scenes. To the
best of our knowledge, the database is the largest of its kind, and has ground truth in
the form of accurate human-marked labels for salient regions. Figure 11 shows saliency
maps computed by our approach and other four methods (e.g. SR [20], FT [1], LC [44]
and RC [8]).

To quantitatively measure the accuracy of our method on these publicly available
benchmark images [1], we conducted the saliency-guided segmentation experiment. In the
experiment, to segment salient regions and compute precision and recall curves [20], like the
fixed thresholding experiment in [1], we binarized the saliency map using every possible
fixed threshold. In other words, we vary the threshold values from 0 to 255 to reliably
compare how well various saliency detection methods highlight salient regions in images.
Figure 12 describes the resulting precision-recall curves generated from our method and
other four methods. Our method again achieves the highest performance.

5.5 Discussion

In our proposed method, the color saliency boosting function is applied to the original image
as a preprocessing step and we found it plays an important role in achieving more accurate

Table 5 Performances on two
databases using different color sa-
liency boosting functions

Bruce’s database Judd’s database

Our method The method in
[36]

Our method The method in
[36]

AUC 0.8943 0.8736 0.8729 0.8544

Table 4 Performances on two
databases with or without color
saliency boosting

Color saliency boosting Bruce’s database Judd’s database

Yes No Yes No

AUC 0.8943 0.8556 0.8729 0.8306
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saliency maps. Table 4 demonstrates different performances of our method on two databases
when using the color saliency boosting function or not. The performances in Table 4 are
evaluated according to AUC and it is clear that with the assistant of color saliency boosting,
our method could be greatly improved.

To further compare the advantage of our proposed color saliency boosting function over
the method presented in [36], we conducted experiments on two databases using the AUC
criterion, as shown in Table 5. Obviously, our method obtains relatively better results.

The proposed method is quite simple and efficient with no parameters are required in the
main body of our method. The only parameter k, that required in Eq. 4, needs to be
determined when initializing segmentation, and we set it to be 50 for all experiments.

Table 6 compares the average time taken by each method in the database by Achanta et al.
[1]. Frankly speaking, our method is a little slower than four methods (e.g. SR, FT, LC and
RC), but it can produce superior quality saliency maps.

6 Application: saliency based image classification

Image classification is a fundamental problem in computer vision. While steady progress has
been made toward this objective, the gap between the capabilities of the primate visual
system and state-of-the-art object recognition systems remains vast. In this section, we try to
apply the inherent capability of human brain known as visual attention to image classifica-
tion. Figure 13 describes the framework of our saliency based image classification method.

Our method is similar to NIMBLE framework [3]. For readers who are interested in such
technique, please refer to the literature [3] for more details. However, most of its details,
such as its features and saliency map model, have been replaced in our method. In fact, we
use Independent Component Analysis (ICA) features and our proposed color boosted visual
saliency detection model for image classification.

We evaluated our saliency based image classification method on the public dataset:
Caltech-256 [17]. The Caltech-256 dataset [17] contains 29,780 images falling into 256
categories with much higher intra-class variability and higher object location variability.
Figure 14 shows classification examples from Caltech-256 dataset.

In classification experiments, we performed 5-fold random cross validation. During per cross-
validation run, for each class, n training images were randomly selected, where nwas varied, and

image 

color saliency 
boosting

region based 
contrast 

compute 
saliency map

image 
classification

get fixation ICA features

Fig. 13 The framework of saliency based image classification

Table 6 Average time taken to compute a saliency map for images in the database by Achanta et al. [1]. All
methods were tested using a Dual Core 2.4 GHz machine with 2GB RAM

Method SR[20] FT[1] LC[44] RC[8] GB[19] IT[23] Our method

Time(s) 0.069 0.018 0.020 0.261 1.643 0.621 0.319

Code Matlab C++ C++ C++ Matlab Matlab C++
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up to 30 test images randomly were chosen (distinct from the training images) unless fewer than
30were available in which case all of the available images were used. After each cross-validation
run, we computed the mean per class accuracy. We finally reported the mean accuracy and
compared our results against recent state-of-the art results [4, 15, 17, 30, 42].

Figure 15 shows our Caltech-256 results compared with other recent methods [4, 15, 17,
30, 42]. It is clear that our results are well enough compared to other approaches using a
single feature type, but they are inferior to the method when multiple feature types are
included. For instance, Gehler and Nowozin [15] used five feature types to train a SVM then
used boosting to combine the kernels to achieve higher classification accuracy whereas our
method used a single feature type.

7 Conclusion and future work

In this paper, we presented a visual saliency detection method that combines the respective
merits of color saliency boosting and global region based contrast schemes to compute high
accurate saliency maps. We comprehensively evaluated our method on four publicly avail-
able databases and compared our approach with eight other state-of-the-art methods.
Experimental results clearly indicate the proposed method to be superior in terms of both
visual comparison and quantitative analysis. Toward practical application, we also demon-
strate how the extracted saliency map can be used for image classification.

There is still room for improvement. For instance, it may be useful to incorporate high
level features such as human faces, symmetry into saliency map. In addition, we try to
develop a more efficient saliency detection algorithm to better handle special scenes that of

Fig. 15 The performance of our saliency based image classification on the Caltech-256 [17] dataset
compared to five state-of-the-art approaches [4, 15, 17, 30, 42]

Fig. 14 Classification examples from the Caltech-256 dataset
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cluttered and textured background. We believe the proposed saliency detection method can
be applied to many areas, e.g., efficient object detection and robust image scene analysis.
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