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Abstract Bag-of-word (BOW) is used in many state-of-the-art methods of image classi-
fication, and it is especially suitable for multi-class classification. Many kinds of local
features and classifiers are applicable for the BOW model. However, it is unclear which
kind of local feature is the most distinctive and meanwhile robust, and which classifier can
optimize classification performance. In this paper, we discuss the implementation choices
in the BOW model. Further, we evaluate the influences of local features and classifiers on
object and texture recognition methods in the framework of the BOW model. To evaluate
the implementation choices, we use two popular datasets: the Xerox7 dataset and the
UIUCTex dataset. Extensive experiments are carried out to compare the performance of
different detectors, descriptors and classifiers in term of classification accuracy on the
object category dataset and the texture dataset. We find that the combinational detector
which combines the MSER detector with the Hessian-Laplacian detector is efficient to find
discriminative regions. We also find that the SIFT descriptor performs better than the other
descriptors for image classification, and that the SVM classifier with the EMD kernel is
superior to other classifiers. More than that, we propose an EMD spatial kernel to encode
the spatial information of local features. The EMD spatial kernel is implemented on the
Xerox7 dataset, the 4-class VOC2006 dataset and the 4-class Caltech101 dataset. The
experimental results show that the proposed kernel outperforms the EMD kernel which
does not consider the spatial information in image classification.
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1 Introduction

The Bag-of-words (BOW) model is widely used in visual object categorization [6] and image
retrieval [8], because it is suitable to represent the multiple classes of objects in a unified
framework. The core of the BOWmodel is that an image is represented by the visual words in a
visual dictionary. In detail, a keypoint detector is firstly used to find interest regions, each of
which is represented by a keypoint descriptor. After that, the local features are quantized and an
image is represented by a histogram of word frequency. In the following content, we refer to
both the keypoint detector and descriptor as “local features”. In this paper, we focus on the two
implementation choices: local feature and classifier, which greatly affect the performance of a
method in image classification. We evaluate several popular keypoint detectors, keypoint
descriptors and classifiers to see which local feature is more distinctive and meanwhile more
robust for image classification, and which classifier can achieve better classification perfor-
mance. We want to answer the question how the performance of a recognition method based on
the BOW model is affected by the choice of both local features and classifiers.

Many studies have discussed the influence of the components of the BOW model on the
accuracy of visual object categorization. Sampling strategy is the first key issue in the BOWmodel.
A common strategy is to use a sophisticated multiscale keypoint operator, such as DOG [16],
Harris-Laplacian [18], Harris-Affine [18], Hessian-Laplacian [18], Hessian-Affine [18], MSER
[17], etc. Lazebnik et al. [11] combined the Harris-Laplace detector with the Laplacian detector to
sample interest regions. The Harris-Laplace detector detects key points and the Laplacian detector
detects key blobs which are complementary to some degree. Eric et al. [21] discussed the sampling
strategy and demonstrated that the number of sampling patches is important in visual categoriza-
tion: the more patches, the better performance for image classification.

A keypoint descriptor plays a second important role in the BOW model. There are many
popular keypoint descriptors such as SIFT [16], SURF [1], GLOH [19], GIH [14], shape
context [2] and steerable filter [9], etc. The BOW model quantizes these local features and
represents an image by a histogram of word frequency. However, the BOWmodel neglects the
spatial information among the local features. Therefore, many researchers pay attention to
utilizing spatial information in the BOWmodel. Especially, in the field of image retrieval, many
methods are proposed to utilize the spatial information in the BOW model. Wu et al. [27]
proposed the bundle features which used the geometric rank of local features to represent the
spatial information. Cao et al. [4] proposed the spatial BOW method to improve the retrieval
results. Zhang et al. [28] proposed to model the spatial context of the local features in a group to
avoid any single local feature instability or noises, which is superior to the bundle features in
term of retrieval precision. However, these methods are more applicable to image retrieval
instead of image classification, because they only use the spatial information and local features
to measure the similarity between each pair of images, and they do not represent an image by a
feature vector which is required by a classifier. Therefore, we discuss how to introduce the
spatial information to the BOW model for object classification.

The design of a classifier is the third important factor in the BOW model. Lazbnike et al.
[12] used the maximum entropy classifier for visual object categorization. Moosmann et al.
[20] designed a random clustering forest for the visual object categorization. Liu et al. [15]
designed a classifier based on the boosting algorithm to select the category-specific words
which are composed of the “visual bits”.

The codebook construction is the fourth important factor. Csurka et al. [6] grouped the
local features of the training images by the K-means algorithm where the cluster centers
were regarded as the visual words. Winn et al. [26] clustered the responses of the filter-bank
where the compact visual dictionary was learned by pair-wise merging. Farquhar et al. [7]
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used the Gaussian Mixture Model to model the density function of the key points for each
class of images. Perronnin [22] built adaptive vocabularies which combined universal
vocabularies with specific vocabularies. Larlus et al. [10] proposed the Gaussian Mixture-
Multimodal LDA [3] model to generate the visual codes. Moreover, the construction of
visual dictionary is often related to classifiers, and the design of a classifier is based on the
visual word representation [15, 20].

There are twowork [19, 29] closely related to our work.Mikolajczyk et al. [19] evaluated the
influence of local descriptors in imagematching and object (or scene) recognition. They showed
that GLOH and SIFT are superior to other keypoint descriptors. However, they evaluated the
keypoint desciptors only for image matching, not for image classification. It is unclear whether
or not a descriptor can achieve the same performance in image matching as in image classifi-
cation. Furthermore, we want to know if a keypoint descriptor designed for image matching
under some constrained conditions is also discriminative for image classification. For example,
GIH [14] is a deformation invariant descriptor for image matching, and we want to know what
performance it achieves in image classification. Zhang et al. [29] did a comprehensive study on
local features for texture and object classification. Based on the extensive experiments, they
pointed out that the descriptor combining SIFT with SPIN and RIFT was the most discrimina-
tive for image classification. Moreover, they mainly analyzed the performance of SVM with
different kernels and designed a SVM classifier with the EarthMover’s Distance (EMD) kernel.
However, there are three limits in Zhang’s method: 1) they only evaluated the performance of
the SVM classifiers with different kernels, but they did not compare its performances with the
performances of the other types of classifiers; 2) they neglected the MSER detector [17], which
is widely used in computer vision; 3) the spatial information of the local features was not
mentioned. In this paper, we evaluate the performance of various keypoint detectors, keypoint
descriptors and classifiers. We also discuss how these components affect the classification
performance in the BOW framework. In detail, we evaluate seven different types of classifiers:
the SVM classifier with the Radius Basis Function (RBF), the SVM classifier with the χ2

kernel, the SVM classifier with the EMD kernel, the Adaboost classifier, the random forest
classifier, the maximum entropy classifier and the Naïve Bayes classifier. Furthermore, we
propose the EMD spatial kernel, which encodes the spatial information.

This paper extends our previous work [5] by proposing a novel spatial kernel to improve the
classification performance, adding additional empirical results and making an in-depth analysis
of our approach’s performance. The rest of this paper is organized as follows. In section 2, we
evaluate the performances of the keypoint detectors, the keypoint descriptors and the classifiers.
And then we propose the EMD spatial kernel in section 3. We evaluate the EMD spatial kernel
in term of object classification on the Xerox7 datasets, the 4-class VOC2006 dataset and the 4-
class Caltech101 dataset in section 4. In section 5, we draw conclusions.

2 Empirical evaluations

2.1 Experimental setup

We use two types of datasets: the Xerox7 dataset, which is an object category dataset; and
the UIUCTex dataset, which is a texture dataset. These two standard datasets are popular and
have been used to evaluate the performance in visual object categorization. The Xerox7
dataset contains 7 object classes: faces (792), bikes (125), buildings (150), cars (201), trees
(150), books (142), phones (216). It is a challenging dataset because the images are captured
in real world and in different viewpoints which cause the variance of appearance for the same
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class of objects. The UIUCTex dataset contains 25 texture classes and each class contains 40
images. Figure 1 shows some examples in two datasets.

In order to evaluate the local features and the classifiers, we use the classification
accuracy as a criterion. For the image representation of histogram distribution, we use the
K-means algorithm to cluster local features and get a dictionary with 1,000 visual words.
Thus an image can be represented as a histogram distribution with 1,000 dimensions.
Moreover, each image class is split randomly into two separate sets: one set is for training
and the other set is for testing. In the evaluation, we run 5 random trails and report the
averaged results. In order to classify multiple classes, we take the one-against-other strategy
for the binary classifier, such as SVM and Adaboost.

2.2 Empirical evaluation of keypoint detectors

We evaluate the six popular keypoint detectors in term of classification accuracy on the
Xerox7 dataset and the UIUCTex dataset. The competing detectors are respectively

Face Building Tree Phone Car Bike Book

a) Xerox7 

T01 (Bark) T02 (Bark) T03 (Bark) T04(Wood) T05(Wood)

T06 (Wood)

T11 (Tone)

T16 (Glass)

T21 (Paper)

T07 (Water) T08 (Granite) T09 (Marble) T10 (Tone)

T12 (Grit)

T17 (Glass)

T22 (Fur)

T13 (Wall)

T18 (Carpet)

T23 (Textile)

T14 (Brick)

T19 (Carpet)

T24 (Textile) T25 (Textile)

T20 (Textile)

T15 (Brick)

b) UIUCTex 

Fig. 1 Some examples of each class in two datasets: a) Xerox7. b) UIUCTex
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Difference of Gaussian (DOG) [16], Harris-Affine (HarA) [18], Harris-Laplacian (HarL)
[18], Hessian-Affine (HesA) [18], Hessian-Laplacian (HesL) [18], and MSER [17]. DOG,
HarL and HesL detect small circle blobs, while HarA, HesA, and MSER detect ellipse blobs.
In Fig. 2, we show some results obtained by the six detectors. In the experiments, we use
SIFT as the local feature descriptor and use SVM with RBF kernel as the classifier. The
quantitative results in Tables 1 and 2 show that the Hessian-Laplacian detector has the
superior performance compared with other competing detectors and that the MSER detector
can find the discriminative regions. The averaged number of the detected interest points used
in the experiments is given in Table 3. The regions detected by MSER are larger than those
detected by other detectors, so the number of the keypoints detected by MSER is the
smallest. Considering the trade-off between representation ability and computational com-
plexity, we combine the Hessian-Laplacian detector with the MSER detector which we call
as the HesLM detector. That is, we use both of the detectors to detect the key points,
so the image is sampled densely and described by dense description. Figure 5a and b
show the dense sampling and dense description. As shown in the last column of
Tables 1 and 2, the HesLM detector has achieved a promising result in the classifi-
cation accuracy on both datasets. The classification accuracy obtained by HesLM is
similar to those obtained by Hessian-Laplacian and Hessian-Affine. HesLM spend
much less running time than HesA. And HesLM achieves the highest classification
accuracy in the four object classes of the Xerox7 dataset and in the 11 texture classes
of the UIUCTex dataset.

2.3 The evaluation of keypoint descriptors

We evaluate seven state-of-the-art descriptors of local features in term of classification
accuracy: i.e. SIFT [16], GLOH [19], SURF [1], Shape Context (SHAC) [2], steerable filter
(STEF) [9], SPIN [11] and GIH [14].

a)  DOG detector b)  Harris-Affine detector c)  Hessian-Affine detector

d)  MSER detector e)  Harris-Laplacian detector f)  Hessian-Laplacian detector

Fig. 2 The interest points detected by the six detectors. a) DOG detector. b) Harris-Affine detector. c)
Hessian-Affine detector. d) MSER detector. e) Harris-Laplacian detector. f) Hessian-Laplacian detector
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– SIFT is a very popular descriptor which is a histogram of gradient orientation. An
interest region is divided into 4-by-4 grids. In each grid, the gradient angle is quantized
into 8 orientations, such that a 128-dimention feature vector is formed.

– GLOH is an extension of SIFT. It computes a histogram of gradient orientation for a
log-polar location grid.

– SURF is similar to SIFT in description. It is faster than SIFT due to using the Haar-like
template instead of the Gaussian function to compute interest regions. It computes a
four-dimension feature vector for a grid: the sum of gradients in x coordinate, the sum of
gradients in y coordinate, the sum of gradient absolute values in x coordinate, the sum of
gradient absolute values in y coordinate. Each interest region is divided into 4-by-4
grids, and then a 64-dimension vector is formed.

– Shape context is widely used to describe the shape of an object. It computes the
histogram of edge points for a polar location grid, and each bin is the number of edge
points in the corresponding grid.

– Steerable filter uses the derivates of a patch up to 4th orders which are computed by
convolution with Gaussian derivatives. The changes of the orientation of derivatives
give the element values of the feature vector.

– SPIN is a two-dimension histogram: the intensity is quantized to 10 bins and the radius
is quantized to 5 bins. Each row of SPIN is a normalized histogram for a homocentric
circle region.

– GIH is a deformation invariant descriptor. In GIH, an image is regarded as a two-dimension
surface embedded in 3D space. The method uses the geodesic distance instead of the
Euclidean distance. It is a 2D joint distribution of geodesic distance and the intensity.

In the test, we use MSER to detect the interest regions, and use SVM with the RBF kernel
to classify the images. The results shown in Tables 4 and 5 demonstrate that SIFT is superior
to other descriptors in term of the classification accuracy. In contrast, GLOH and shape
context is inferior to SIFT for object classification. However, SIFT, GLOH, SURF, shape
context and SPIN achieve a similar classification accuracy for texture classifications.

Furthermore, we also compare the local features with the textons on the UIUCTex dataset in
order to address whether the local features are superior to the textons for texture recognition.We
represent a texture image based on the textons according to Varma’s work [24, 25]. In detail, we
use MR8 [24] which are the filter banks to filter the images, and then we cluster the filter
responses and obtain the textons. In our experiments, 10 cluster centers are computed by using
the K-means method for each class, and all the cluster centers generated for all the classes form
the texton set. At last a texture image is represented by the distribution of the textons. The SVM
classifier with the χ2 kernel is adopted to classify the texture classes. As shown in Table 5, the
last column is the results based on the textons. The classification accuracies based on the textons
generated by MR8 are inferior to those based on the local features except for GIH. In other
words, the image patch features are superior to the filter response features. Our experimental
results are consistent with Varma’s conclusion [25].

2.4 Evaluation of the classifiers

We evaluate the seven classifiers in this section: i.e., SVM with the RBF kernel, SVM with
the χ2 kernel, SVM with the EMD kernel, Adaboost, the random forest classifier, the
maximum entropy classifier, and the Naïve Bayes classifier. The first five classifiers belong
to discriminative models. SVM is one of the most efficient tools for binary classification.
The kernel selection in classifiers greatly affects the classification performance. In this paper,
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Table 1 The evaluation of the seven different detectors in term of classification accuracy on the Xerox7
dataset

DOG HarL HarA HesL HesA MSER HesLM

Face 97.2 98.1 97.5 98.7 98.8 96.1 98.2

Building 50.4 52 49.3 64.5 55.7 45.1 65.6

Tree 84.5 73.1 77.3 86.1 89.3 79.2 85.9

Phone 82 80 80.7 88.1 86.5 87.4 88.7

Car 63.2 62 54 71.2 67 62 74.6

Bike 87.1 87.4 85.8 90.6 92.9 86.5 92.6

Book 69 62.3 65.6 77.2 80.6 69.6 80.8

Average 83.5 82.2 81.4 88.1 86.8 82.7 88.8

Numbers in bold shows the results which achieve the best performance among the competing methods

Table 2 The evaluation of the seven different detectors in term of classification accuracy on the UIUCTex
dataset

DoG HarL HarA HesL HesA MSER HesLM

T01(bark) 98 100 100 100 100 100 100

T02(bark) 92 94 89 93 95 99 93

T03(bark) 95 94 96 98 100 99 99

T04(wood) 100 83 65 100 96 93 100

T05(wood) 98 100 96 100 100 91 98

T06(wood) 97 92 94 99 99 99 100

T07(water) 100 96 95 100 100 100 100

T08(granite) 92 98 92 94 96 90 96

T09(marble) 97 93 88 97 96 91 95

T10(tone) 94 97 97 97 97 99 97

T11(tone) 89 100 95 96 100 94 91

T12(grit) 99 100 100 98 95 95 96

T13(wall) 98 95 91 96 99 95 96

T14(brick) 98 96 87 94 100 96 100

T15(brick) 100 100 100 100 100 99 100

T16(glass) 100 100 99 100 100 100 100

T17(glass) 100 100 100 100 95 95 99

T18(carpet) 97 98 100 98 100 100 99

T19(carpet) 88 98 91 91 91 88 92

T20(textile) 96 100 100 100 99 99 97

T21(paper) 84 61 45 87 94 82 88

T22(fur) 97 87 71 100 99 92 100

T23(textile) 99 100 89 100 100 100 100

T24(textile) 100 100 100 100 100 100 100

T25(textile) 100 100 99 100 100 99 100

Average 96.5 95.3 91.2 97.5 98 95.8 97.6

Numbers in bold shows the results which achieve the best performance among the competing methods
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we focus on the kernels based on the exponential function k x; yð Þ ¼ exp � D x;yð Þ
A

� �
, where

D(x, y) is the distance between the vectors x and y. We compare the following three kernels.

– The RBF kernel uses the Euclidean distance to measure the distance between two

vectors, D x; yð Þ ¼ x� yk k2 .
– The χ2 kernel defines D(x, y) as the χ2 distance, where D x; yð Þ ¼ 1

2

Pn
i¼1

xi�yið Þ2
xiþyi

.

– The EMD kernel defines D(x, y) as the EMD distance, where D x; yð Þ ¼ min
fijf g

P
i;j

fijdij
P
i;j

fij
.

The Adaboost algorithm is famous for its successful application in face detection.
The classifier is the linear combination of a set of weaker classifiers, and it can be

written as hðxÞ ¼ sign
PT
t¼1

athtðxÞ
� �

, where ht(x) is a weaker classifier, and αt>0. The

random forest classifier is an ensemble classifier, which combines a set of decision
trees and is a multi-class classifier. The object label is predicted by the decision tree
classifiers voting or by using the average confidence value of the tree classifiers. In
our case, we take the latter strategy to determine the label.

Among the classifiers mentioned above, the last two classifiers are of the generative
models. The maximum entropy algorithm solves a classifier by maximizing the conditional
entropy, which can be written as:

lkf g ¼ argmax � 1

Tj j
X
I2T

X
c

P c Ijð Þ logP c Ijð Þ
 !

; ð1Þ

where |T | is the number of the elements in the object set T, c is the number of the object

classes, and P(c|I) is the posterior probability, P c Ijð Þ ¼ 1
Z exp

P
k
lk fk I ; cð Þ

� �
.

Table 3 The mean number of the interest points sampled by different methods on the Xerox7 dataset and the
UIUCTex dataset

DOG HarL HarA HesL HesA MSER

Xerox7 378 327 319 948 683 159

UIUCTex 1491 1304 1247 3174 2569 921

Table 4 The evaluation of the seven descriptors on the Xerox7 dataset

SIFT GLOH SURF SHAC STEF SPIN GIH

Face 96.1 95.3 95.2 95.6 92.8 94.5 92.3

Building 45.1 47.5 36 45.3 31.7 26.9 26.9

Tree 79.2 79.2 77.1 75.7 64.5 73.3 61.1

Phone 87.4 83.5 81.1 85.6 77.2 78.9 48.3

Car 62 60.4 56.8 57.8 54.8 53.6 36.8

Bike 86.5 86.1 87.1 87.7 75.2 80.3 85.2

Book 69.6 69.9 65.6 69 60.8 59.2 41.4

Average 82.7 81.8 79.7 81.5 75.3 76.7 68

Numbers in bold shows the results which achieve the best performance among the competing methods
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The Naïve Bayes can be viewed as a maximum a posteriori classifier and the class label is
predicted as follows:

cðxÞ ¼ argmax
c2C

PðcÞ
Yn
i¼1

P wi cjð Þ ð2Þ

where P(c) is the prior probability; P(wi|c) is the condition probability of the ith word given

the cth object class, and P wi cjð Þ ¼
1þ
P
Ii2c

N t;ið Þ

Vj jþ
PVj j

s¼1

P
Ii2c

N s;ið Þ
, where N(t,i) is the concurrent matrix of

words and images.
In the experiments, we represent an image in two ways: the histogram distribution and the

signature representation. Considering the computational complexity, we sample interest
points randomly along the edges detected by the Canny operator instead of sparse sampling
in order to compute the histogram distribution, and then obtain 200 image patches. We take
SIFT as the descriptor of the sampling patches, and use the K-means algorithm to construct

Table 5 The evaluation of the eight descriptors on the UIUCTex dataset

SIFT GLOH SURF SHAC STEF SPIN GIH Texton

T01(bark) 98 100 99 100 100 99 29 75

T02(bark) 96 94 91 100 96 93 27 76

T03(bark) 93 97 90 96 87 94 52 69

T04(wood) 89 94 88 88 88 90 23 74

T05(wood) 98 94 100 95 92 98 67 85

T06(wood) 98 97 100 98 92 98 71 81

T07(water) 100 99 98 98 99 100 60 97

T08(granite) 96 89 95 88 83 98 23 91

T09(marble) 94 91 98 97 62 92 10 93

T10(tone) 93 97 96 98 96 100 15 97

T11(tone) 84 98 95 91 96 100 92 79

T12(grit) 90 99 90 97 95 92 15 78

T13(wall) 100 93 94 99 94 90 11 80

T14(brick) 100 96 91 97 91 97 28 60

T15(brick) 98 97 100 99 100 97 28 96

T16(glass) 100 100 100 100 94 94 79 91

T17(glass) 100 97 100 100 100 100 80 80

T18(carpet) 98 100 99 100 97 99 43 88

T19(carpet) 95 86 82 85 81 96 22 67

T20(textile) 100 99 96 100 100 100 73 89

T21(paper) 99 89 90 82 81 86 7 84

T22(fur) 91 80 97 77 86 88 56 77

T23(textile) 97 100 97 98 99 100 57 67

T24(textile) 100 100 100 100 100 100 88 90

T25(textile) 100 100 100 99 99 100 41 94

Average 96.3 95.4 95.4 95.3 92.3 96 43.9 82.3

Numbers in bold shows the results which achieve the best performance among the competing methods
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the codebook which contains 1,000 words. We represent the image by the histogram of word
frequency. At last, we classify the images by using different classifiers while we do not use
the SVM classifier with the EMD kernel because it requires that an image is represented by
signatures instead of the histogram of word frequency.

For the signature representation, there are two sampling methods: one is to use the HesLM
detector; the other is to use the Harris-Laplacian detector combined with the Laplacian detector
(HesLL) [11]. We use SIFT to describe the interest regions. After that, we cluster the SIFT
feature vectors in each image and form 40 cluster centers which are regarded as the signatures of
the image. And the ith image is denoted by si1;wi1ð Þ; si2;wi2ð Þ � � � sil;wilð Þf g , where sik is the
ith cluster center, l is equal to 40, and wik is the corresponding weight which is the frequency of
the kth cluster center in the ith image. Given two images, in order to compute the distance
between two signatures Si and Sj, where

Si ¼ si1;wi1ð Þ; si1;wi1ð Þ � � � sil;wilð Þf g; Sj ¼ sj1;wj1

� �
; sj1;wj1

� � � � � sjl;wjl

� �� 	
;

we solve the optimal problem which minimizes a cross-bin dissimilarity measure between Si
and Sj,

Demd Si; Sj
� � ¼

Pl
m¼1

Pl
n¼1

fmnd sim;sjnð Þ
Pl
m¼1

Pl
n¼1

fmn

s:t:

fij > 0
Pl
j¼1

fij � wim 1 � m � l

Pl
i¼1

fij � wjm 1 � m � l

8>>>>><
>>>>>:

ð3Þ

where d(sim, sjn) is the Euclidean distance between themth signature in the ith image and the nth
signature in the jth image, fmn is the flow value which is obtained by solving the linear
programming problem. More details about the algorithm are given in [13] and [23]. After that,
we use the SVM classifier with the EMD kernel to classify the objects. We implement the
methods mentioned above on the Xerox7 dataset and the UIUCTex dataset. The classification
accuracies are shown in Tables 6 and 7. We find that the SVM classifier with the EMD kernel
achieved better accuracy than the other classifiers, and the EMD kernel based on the HesLM

Table 6 The evaluation of the seven classifiers using the Xerox7 dataset

EMD1 EMD2 χ2 RBF Entropy Bayes Adaboost RanTree

HesLM_sig HarLL_sig Histogram distribution

Face 96.8 99 96.5 95.7 95.5 90.3 93.4 98.4

Building 77.5 55 72 51.5 60.3 57.6 28 16.8

Tree 62.7 91 93.3 92.8 90.4 88.8 81.9 92.8

Phone 83 91 87 82.8 82.6 77.6 55.7 69.8

Car 97.9 78 88 70.2 63.8 77.8 45.4 61.2

Bike 94.4 100 85.5 88.7 89.4 89.4 63.2 67.4

Book 85.3 83 70.4 62 66.5 71.8 38.3 38.3

Average 90.1 89.7 89.1 84.1 84.2 82.9 70.3 76.3

Numbers in bold shows the results which achieve the best performance among the competing methods
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detector is superior to that based on the HarLL detector. Moreover, the HesLM signatures
achieve the highest classification accuracy in three image sets of the Xerox7 dataset, and in 22
image sets of the UIUCTex dataset.

Furthermore, we evaluate how a sampling method affects the performance of classification. We
compare the previous mentioned sparse sampling methods and the random sampling method, and

Table 7 The evaluation of the seven classifiers on the UIUCTex dataset

EMD1 EMD2 χ2 RBF Entropy Bayes Adaboost RanTree

HesLM_sig HarLL_sig Histogram distribution

T01(bark) 100 100 66.3 96 93 68 81 75

T02(bark) 90 95 61.3 74 68 79 62 66

T03(bark) 100 95 68.8 82 74 63 70 47

T04(wood) 95 100 73.8 99 97 99 94 94

T05(wood) 100 100 76.3 85 88 84 91 87

T06(wood) 100 95 82.5 75 80 76 67 61

T07(water) 100 100 80 94 89 100 99 100

T08(granite) 95 90 81.3 79 83 87 74 85

T09(marble) 100 100 81.3 88 78 88 78 90

T10(tone) 100 100 63.8 69 75 47 60 36

T11(tone) 90 85 63.8 70 73 46 58 36

T12(grit) 100 95 70 62 67 53 47 21

T13(wall) 95 90 61.3 97 97 94 91 96

T14(brick) 100 100 75 63 68 32 51 26

T15(brick) 100 100 96.3 100 100 100 99 100

T16(glass) 100 100 92.5 98 99 98 98 100

T17(glass) 100 100 83.8 92 91 82 88 83

T18(carpet) 100 100 78.8 90 85 91 90 97

T19(carpet) 100 100 86.3 39 55 45 43 13

T20(textile) 100 100 86.3 100 98 98 91 100

T21(paper) 95 95 80 89 93 90 82 66

T22(fur) 100 100 70 94 89 87 83 83

T23(textile) 100 100 68.8 90 89 71 93 96

T24(textile) 100 100 81.3 99 100 100 100 100

T25(textile) 100 100 78.1 100 100 100 98 94

Average 98.4 97.6 76.2 85 85.2 79.1 79.5 74.1

Numbers in bold shows the results which achieve the best performance among the competing methods
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Fig. 3 The comparison of the sampling methods in term of the classification accuracies on the Xerox7 dataset
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all the experimental data come from Tables 1 and 6 for object classifications and from Tables 2 and
7 for texture classifications. Figure 3 shows the classification accuracies obtained by using the six
sampling methods on each object class of the Xerox7 dataset, and Fig. 4 shows the averaged
classification accuracies on all the texture classes achieved by the mentioned eight sampling
methods. As shown in Figs. 3 and 4, random sampling is inferior to the sparse sampling methods
in term of the classification accuracy. Because, for the purpose of simplicity, we only randomly
sample 200 points along the edges which is smaller than the number of sampling points generated
by the sparse sampling methods. The experimental results demonstrate that the number of the
sampling points affects greatly the classification performance.

3 The EMD spatial kernel

For the experiments in section 2, we find that 1) the combinational detector HesLM can detect the
discriminative regions; 2) SIFT is superior to the other local feature descriptors in image represen-
tation; 3) SVM with the EMD kernel achieves better performance in classification accuracy than
the other classifiers. The experimental results also demonstrate that the BOWmodel gives a unified
framework for multi-class image classification. However, it neglects the spatial information of the
local features. Considering the relationship between the MSER regions and the Hessian-Laplacian
blobs, these two detectors are complementary to some degree. The MSER detector can detect the
interest regions which are bigger than the interest blobs detected by the Hessian-Laplacian detector.
Moreover, an MSER region may contain some Hessian-Laplacian blobs, which forms the
combinational pattern and embeds the spatial relationship. In this section, we propose an EMD
spatial kernel to encode the spatial information of the local features, and boost the classification
performance further.
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Fig. 4 The comparison of the sampling methods in term of averaged classification accuracy of the 25 texture
classes on the UIUCTex dataset

a) The HesLM detector b) The SIFT descriptor c) The signatures

Fig. 5 The image representation of signatures based on the HesLM detector. a) The HesLM detector. b) The
SIFT descriptor. c) The signatures
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Firstly, we use the HesLM detector to sample image patches which are shown in Fig. 5a.
The red circle represents the region detected by MSER, and the green circles represent the
regions detected by the Hessian-Laplacian detector.

Secondly, we use the SIFT descriptor to describe the interest regions which are shown in
Fig. 5b. Unlike to the methods [27–28] which are used in image retrieval and measure the
similarity by using a voting strategy, we need to compute a kernel matrix to record the
similarity between each pair of images in the training dataset. We propose to encode the
spatial similarity in a kernel matrix. The element of the kernel matrix between the ith image
and the jth image is defined as,

K Ii; Ij
� � ¼ Kemd Ii; Ij

� �þ Kspace Ii; Ij
� �

: ð4Þ
There are two parts in the kernel matrix. The first part is just like the EMD kernel matrix

mentioned above. We compute 40 signatures for each image which are shown in Fig. 2. And
then we use these signatures to compute the EMD kernel matrix. The second part encodes
the spatial information. We construct a codebook with 200 visual words obtained by using
the K-means algorithm for the MSER detector and the Hessian-Laplacian detector respec-
tively. We measure the spatial similarity between each pair of images which is illustrated in
Fig. 6. For each MSER region in an image, we split the region into four quadrants according
to its major axis and minor axis. And the major orientation of the gradients in the MSER
region is assigned to the first quadrant. We firstly match the MSER regions between each
pair of images. The MSER regions are matched if they can be represented by the same visual
word. And then we count the matching Hessian-Laplacian local features in the matched
MSER regions. Two Hessian-Laplacian local features are defined to be matched if they are
represented by the same visual word and located in the same quadrant of the MSER region.
The similarity is defined as:

si ¼ tfidf fið Þ � space fið Þ; ð5Þ
where tfidf(fi) is to compute the weight of the visual words obtained by MSER according to
the term frequency and document frequency, and space (fi) is the number of the matched
Hessian-Laplacian local features in the MSER regions whose visual words are consistent.

Finally, we use the SVM classifier with the EMD spatial kernel to classify the images.
When a query image is input, we do the same operations to obtain the signatures and the
space information and then classify the query image with the SVM classifier obtained by
using the training images. The framework of our approach is shown in Fig. 7.

Fig. 6 The spatial matching of the visual words
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4 Experimental results

We test our approach on the Xerox7 Dataset, the 4-class VOC2006 dataset and the 4-class
Caltech101 dataset. The 4-class VOC2006 dataset contains four image sets: bicycles (270), cars
(553), motobikes (235), persons (666). The 4-class Caltech101 dataset contains four image sets:
faces (435), Buddha (85), grand-pianos (99), and sunflowers (85). Each class is randomly split into
two separate sets of images with the same size. One set is for training and the other set is for testing.
We firstly compare different image representations. Three detectors and two representation features
are considered. The three detectors are the Hessain-Laplacian detector (HesL), the MSER detector,
and the HesLM detector. The two representation features are the histogram distribution (HD) and
signatures (Sig). There are five kinds of combinations to represent an image:

(1) HesL + HD: Hessain-Laplacian detector + histogram distribution;
(2) MSER + HD: MSER detector + histogram distribution;
(3) HesLM + HD: Hessian Laplacian and MSER detectors + histogram distribution;
(4) HesLM + Sig: Hessian-Laplacian and MSER detectors + signatures;
(5) HesLM + Sig + space: Hessian-Laplacian and MSER detectors + signatures + space

information.

For the first three image representation combinations, we construct a dictionary with 1,000
visual words, and thus an image is represented as a feature vector of 1,000 dimensions. We use
the SVM classifier with a RBF kernel to classify objects. For the last two image representation
combinations, we generate 40 signatures for an image. For the fourth combination, we use the
SVM classifier with an EMD kernel. In order to compute the spatial information, we construct a
dictionary with 200 visual words for the MSER detector and for the Hessian-Laplacian detector
respectively. We use the EMD spatial kernel to classify the objects.

In Fig. 8, we compare the classification accuracy among the five representation methods,
and the last group of the bars represents the averaged results obtained by the five methods on
the dataset. The experimental results demonstrate that our approach achieves the highest
classification accuracy, and the proposed EMD spatial kernel is superior to the single EMD
kernel in object categorization. Therefore, our proposed EMD spatial kernel averagely
improves the overall classification performance for object categorization.

Image description Image description 

Fig. 7 The framework of the proposed approach
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We also use the confusion matrix to evaluate our approach as follows,

Mij ¼
Ik 2 Cj \ h Ikð Þ ¼ i
� 	

 



Cj



 

 ð6Þ

where i; j 2 1; � � � ;Ncf g , Nc represents the number of classification, Cj denotes the images
which belong to the jth class, and h(Ik) denotes the predicted class for the image Ik. The
values of the diagonal elements in the confusion matrix are marked by the black color and
they represent the classification accuracy for each category.

We compare the EMD spatial kernel with the single EMD kernel. As shown in Figs. 9 and 10,
the proposed EMD spatial kernel is superior to the single EMD kernel for almost all the classes of
objects in term of classification accuracy except for the Face set and the Bicycle set, which
demonstrates that our approach is more effective in object categorization.

Moreover, we compare the explicit spatial coding in (5) (see Fig. 11) and our implicit spatial
coding (4) (see Figs. 9a and 10) in term of classification accuracy. As we know, (5) is mostly used
in image retrieval. We design a classification method based on the retrieved results. In detail, we
firstly use each image in a class to retrieve the images in the dataset. Secondly, we use a k-NN
method to select the most similar images. Thirdly, in the retrieved images, we count the images
belonging to each class, and the label of a query image is determined by the class of images whose
number is the largest in the retrieved images. Figure 11 shows how the number of the remaining
images affects the classification accuracies on the Xerox7 dataset (see the left subfigure) and on the
4-class VOC2006 dataset (see the right subfigure). Next, we analyze the average value of the
classification accuracies obtained by using the two different coding approaches. On the Xerox7
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Fig. 9 The comparison of the EMD spatial kernel and the EMD kernel in term of confusionmatrix on the Xerox7
dataset. a) The confusion matrix of the EMD spatial kernel. b) The confusion matrix of the EMD kernel
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dataset, the highest averaged classification accuracy is 59%whenwe use 330 retrieved images. On
the 4-class VOC2006 dataset, the averaged classification accuracy is 43 % when we use 150
retrieved images. These two results are much smaller than the averaged classification accuracies of
our proposedmethodwhich is 90% on theXerox7 dataset (obtained from Fig. 9a) and 63%on the
4-class VOC2006 dataset (obtained from Fig. 10). Thus, we can conclude that the implicit spatial
coding is superior to the explicit spatial coding.

5 Conclusions

In this paper, we analyze the influence of local features and the classifiers used in the BOW
model on image classification accuracy. We evaluate different local features and classifiers
on the Xerox7 dataset and the UIUCTex dataset. We find that the combination of the
Hessian-Laplacian detector and the MSER detector can obtain more discriminative regions,
and the SVM classifier with the EMD kernel can achieve the highest classification accuracy.
We also propose an EMD spatial kernel which encodes the spatial information. We have
evaluated our approach on the Xerox7 dataset, the 4-class VOC2006 dataset and the 4-class
Caltech101 dataset. The experimental results demonstrate that (1) the EMD kernel with
signature representation achieves higher classification accuracy than other kernels with
histogram distribution representation; and (2) the EMD spatial kernel is superior to the
single EMD kernel in term of classification accuracy.
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