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Abstract Audio-Visual People Diarization (AVPD) is an original framework that
simultaneously improves audio, video, and audiovisual diarization results. Following
a literature review of people diarization for both audio and video content and their
limitations, which includes our own contributions, we describe a proposed method
for associating both audio and video information by using co-occurrence matrices
and present experiments which were conducted on a corpus containing TV news, TV
debates, and movies. Results show the effectiveness of the overall diarization system
and confirm the gains audio information can bring to video indexing and vice versa.

Keywords People diarization ·Segmentation ·Unsupervised clustering ·
Audiovisual fusion ·Video indexing

1 Introduction

Audio-Visual People Diarization (AVPD) aims to identify the people that talk
and/or appear in a video document and to quantify their talk/appearance time. Much
existing work has addressed this problem by using only one modality. In the audio
domain, AVPD is often known as speaker diarization: it aims to segment the audio
stream into turns by speakers, then cluster all turns that belong to the same speaker.
Its goal is to answer the questions “who spoke?” and “when?”. In the video domain,
AVPD typically refers to visual people detection, tracking, and clustering. In other
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words, it aims to answer the questions “who appeared?” and “when?”. Some research
activities have addressed the problem of AVPD from a multimodal point of view but
their applications have often been limited.

AVPD can be used in many different kinds of applications by both professionals
and the general public. One of the most interesting applications of people diarization
to video documents is the detection of major casts and their roles, for example, the
anchor persons in TV news or principal characters in movies [6, 10, 11, 14, 18, 19].
Their occurrences provide good indices for organizing and presenting video content.
This enables many applications of such ”intelligent fast-forwards” where users easily
digest the main scheme of visual media by skimming through clips associated with
major casts.

The task of people diarization encounters many difficulties:

– the number of people in the document is unknown;
– there is no a priori knowledge about the identity of the people in the document;
– there may be different lighting conditions;
– many people may appear at the same time;
– the size of face may vary from the very small to the very large;
– there may be different audio recording conditions;
– many speakers may speak at the same time;
– the audio channel may contain not only speech, but also music and other non-

speech sources (applause, laugher, etc.).

This paper is organized as follows: recent literature on people diarization done
in both audio and video domains including our own contributions is reviewed in
Sections 2 and 3. In Section 4, we briefly describe existing work on audiovisual fusion,
and then we outline the framework for associating audio and video information
using co-occurrence matrices. Experiments done on news, debates and movies are
discussed in Section 5.

2 People diarization in audio domain

In the audio domain, AVPD is known as speaker diarization. It consists of seg-
menting and clustering an audio recording into its different speakers without a
priori knowledge of their numbers or identities. Speaker diarization is a necessary
step in a majority of applications such as speech recognition, speaker recognition,
and document content structuring. All these applications are part of the Rich
Transcription (RT) domain and are regularly evaluated by the National Institute of
Standards and Technology (NIST).1

Domains that initially received special research attention were telephone speech
and broadcast news (radio, TV) while today, meetings (debates, lectures, etc.) are
predominantly studied because they bring a number of new challenges to speaker
diarization. While broadcast news is mainly recorded in a studio with a lapel
microphone, the recording conditions for meetings can vary considerably due to
many factors: different far-field microphones (single or multiple), variable distance

1http://www.itl.nist.gov/iad/mig/tests/rt/

http://www.itl.nist.gov/iad/mig/tests/rt/
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between speakers and/or microphones that leads to different speech volume levels,
possible reverberations, background noise, etc. In addition, meetings sometimes
contain spontaneous or overlapping speech while broadcast news speech is often read
and speech turns may be of very short duration in meetings.

Figure 1 shows the general modules that make up most speaker diarization
systems. The preprocessing step is the traditional parameterization of speech data
into acoustic features; in our work, we use the Mel Frequency Cepstrum Coefficients
(MFCCs) and 4 Hz modulation energy. Next, there is a module of speech activity
detection (see Section 2.1) which can be preceded, in the case of “difficult data”, by
noise reduction and multichannel acoustic beamforming.

Speaker segmentation (see Section 2.2) aims at splitting the audio stream into
homogeneous segments by speaker. This module is generally applied before the
clustering one, but new speaker diarization systems for meetings try to employ them
simultaneously, and indeed, our own approach tends to combine these two modules
in an iterative way. Cluster initialization depends on the clustering approach, i.e. the
choice of an initial set of clusters in bottom-up clustering [1] or a single segment in
top-down clustering [7] (see Section 2.3). Finally, the distance between clusters and
a split/merging mechanism is used to iteratively merge clusters [43] or to introduce
new ones [21] until the optimum number of clusters has been reached using stopping
criteria. Optionally, data purification algorithms can be used to make clusters more
discriminant [7, 43]. In the following sections, we review each of these steps and
describe the method adopted in our work.

2.1 Speech activity detection

Speech Activity Detection (SAD) is a fundamental task that involves the separation
of speech and non-speech segments. SAD can have a significant impact on speaker
diarization performance because the speaker acoustic models involved in the process
can be distorted by the presence of non-speech segments. Many different approaches
have been reported in the literature [49]. They are mainly based on models (such as
Gaussian Mixture Models) and rely on a two-class detector. The models are pre-
trained with external speech and non-speech data [36, 68].

The drawback of this model-based approach is the need for new training for every
new data especially in the case of changes in acoustic conditions. It is for this reason
that in our work we combine the model-based approach with an unsupervised speech
detector based on 4 Hz modulation energy [47, 51]. This fusion technique produced
positive results during the French competition ESTER-1 [24].

However, we have found that in segments where two people talk simultaneously
or where speech overlaps with music, the value of 4 Hz modulation energy is not
always relevant. Due to a threshold decision, this method may introduce additional
missed detections and imprecise boundary locations of speech regions. To avoid

Fig. 1 General architecture for speaker diarization
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these errors, we propose to apply our GLR/BIC segmentation (cf. Section 2.2) before
using the speech detection module. This improvement was validated during the
French competition ESTER-2 [25].

2.2 Speaker segmentation

Speaker segmentation consists in splitting the audio recording into homogeneous
segments. Each segment must be as long as possible and must only contain the speech
of one speaker. This segmentation is closely related to acoustic change detection.
Classic methods perform hypothesis testing by using the acoustic segments in two
sliding and possibly overlapping, consecutive windows. They generally use metric
approaches (such as symmetric Kullback-Leibler [53] or Hottelings T2-Statistic [67]),
or approaches based on model selection such as GLR [26] or BIC [12] which lead to
the best systems [8, 54].

However, we have found that the usual GLR and BIC methods present some
disadvantages: too many parameters are required to tune the algorithm, and detect-
ing the boundaries of small segments is often imprecise. In a previous paper [32], we
presented a different method of segmentation that provides more accurate segments:
a GLR algorithm is applied several times until it converges to the best repartition of
Gaussian distributions. Then a BIC algorithm chooses the points that correspond
to speaker changes. Due to the shifted variable size window introduced in this
GLR/BIC method [33], processing from “left to right” may detect different points
of change than processing from “right to left”, and therefore, there is a chance that a
missed boundary in the first direction will be detected in the other direction and vice
versa. Thus, the output is the union of both segmentations.

2.3 Speaker clustering

Clustering consists of collecting all segments corresponding to the same speaker.
Ideally, there will be one cluster for each segment. Most existing clustering methods
for speaker diarization have either bottom-up or top-down architectures as illus-
trated in Fig. 2. Top-down architecture is initialized with few clusters (usually one)
whereas the bottom-up approach (the most common in the literature because of its
results) is initialized with many clusters that are usually the segments provided by
speaker segmentation. In the hierarchical bottom-up manner, the closest clusters
- in the sense of a matching and/or similarity measure - are merged iteratively.
Three scenarios are possible depending on the threshold used to stop the clustering:
over-clustering, under-clustering, or optimal clustering (see Fig. 2). Many matching
measurements such as BIC [12] or EVSM [61] (Eigen Vector Space Model) are
proposed in the literature.

In our work, we use the bottom-up BIC clustering to which we have applied some
improvements in order to fit recordings in which there is high interaction between
speakers: this corresponds to scenarios where many people speak simultaneously and
the average segment duration is relatively short. These scenarios decrease segment
purity, and thus, introduce a risk of cumulative errors in the clustering process. To
deal with this problem, we previously [33] applied local clustering that helps construct
a first set of “good clusters” of balanced size, before applying global clustering to the
whole document.
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Fig. 2 Top-down and
bottom-up hierarchical
clusterings

At the end of the clustering process, each segment is theoretically assigned to
the cluster providing the highest BIC similarity. However, due to the hierarchical
bottom-up manner, there are still some segments that do not follow this hypothesis.
To correct these errors and therefore enhance cluster purity, we compute the
similarity matrix between segments {Si} (1 ≤ j ≤ NS) and clusters {C j} (1 ≤ j ≤ NC)
and then reclassify segments according to this matrix. The clusters are updated by
assigning each segment Si to arg max

C j

(−�BIC(Si, C j)) (1 ≤ j ≤ NC).

“Unstable segments” are split using bidirectional GLR/BIC segmentation: we
consider “unstable segments” as those segments for which −�BIC(Si, C j)) < 0, (i.e.
the similarity between segment Si and its corresponding cluster is low). If at least
one segment is split, a new step of speech detection is processed and another loop
of similarity matrix computation, cluster updating and unstable segment splitting
is performed. Otherwise, a final clustering is processed in order to group clusters
corresponding to the same speaker but under different backgrounds. This method
has shown excellent results on the ESTER-2 corpus [25].

3 People diarization in video domain

AVPD in the video domain aims at annotating video documents according to the
people appearing in those documents using only visual information.

In [17], the authors present an overview of the current approaches that provide an
appearance-based person ”re-identification” using camera networks. These methods
are based on the use of the overall appearance of an individual as opposed to passive
biometrics such as face and gait. In such applications of video surveillance, only
people detection and people tracking are required. However, we are interested in
the case of edited documents such as TV content and movies, in which visual people
diarization requires many steps as illustrated in Fig. 3: shot segmentation, people
detection, people tracking, and people clustering. In the following sections, we will
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Fig. 3 General architecture for visual people diarization

present a state-of-the-art system and the method adopted for each of the processing
steps.

3.1 Shot boundaries detection

Shot boundary detection is a well-known segmentation process. It aims to break
down the massive volume of video into smaller chunks. Quite a lot of approaches
have been proposed in the literature [38, 60]. Readers can see the TRECVid
report [55] for a detailed review and a comparison of state-of-the-art systems.

In our work, we applied our generic segmentation method that combines the gen-
eralized likelihood ratio (GLR) and the Bayesian information criterion (BIC) [34].
The main idea behind this method is to chunk any audio or video stream into
homogeneous segments. For shot boundary detection, this method gives results
comparable to state-of-the-art systems.

3.2 Visual people detection

Once the video shots are extracted, the next goal is to detect people in each of
those shots. People detection consists in identifying and locating humans in an image
regardless of their position, scale and illumination. Many methods that aim to detect
people have been proposed in the literature which are often based on full-body
detection, partial-body detection (upper and lower body) or face detection [2, 30, 64].
As we are interested in methods applied to TV, faces and upper-body are the most
relevant for this kind of data.

3.2.1 Face detection

Given an arbitrary image, the goal of face detection is to determine whether or not
there are any faces in the image, and if so, to provide the location and the size of
each face. Many existing approaches aim to detect faces in images and/or sequences
of images [66] by carrying out the task through extracting some properties (e.g. local
features) of a set of training images acquired in a fixed pose (e.g. upright frontal
pose). Based on the extracted properties, the face detection system scans through
the entire tested image at every possible location and scale in order to locate faces.

In our work, we use the AdaBoost method [65] to detect frontal faces thanks to the
OpenCV toolbox.2 This method contains three major phases: a rectangular feature
extraction, a training data classifier using boosting techniques and a multi-scale de-
tection algorithm. To cope with sequences of frames, we bring a trivial improvement
by considering that a face must be present in at least n consecutive frames (e.g. n = 5,

2http://opencvlibrary.sourceforge.net/

http://opencvlibrary.sourceforge.net/
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corresponding to 200 milliseconds if the frequency is 25 frames/second) in order to
be visible.

3.3 Visual people tracking

Once a person is detected, the next goal is to follow this person in scenarios where
the face detector fails. Numerous approaches for non-rigid object (such as human)
tracking have been proposed in the literature. They generally differ in the way an
object is represented and image features are selected, and/or on the algorithm used
for tracking.

We focus on tracking faces and clothes because unlike video surveillance, movies,
TV talk-shows, TV game shows and TV news frequently feature scenes containing
people in which their upper-bodies are the most visible part.

3.3.1 Face-based people tracking

Tracking is essentially motion estimation. However, general motion estimation has
fundamental limitations such as the aperture problem. In face recognition systems,
each face must be tracked over the video sequence in order to extract appropriate
information. Existing approaches can be divided into three categories: (1) head
tracking, where the entire face is tracked as a single rigid entity (such as in [4]);
(2) facial feature tracking (such as in [59],) where features like eyes, ears, nostrils,
eyebrows, lips, mouth and nose are limited by the anatomy of the head that is
considered here as a non-rigid object influenced by motion due to speech or facial
expressions; (3) complete tracking, which involves tracking both the head and
facial features (such as in [57]). In addition, many of those methods are able to
handle challenging situations such as facial deformations, lighting changes , partial
occlusions, pose variation and facial resolution.

In order to deal with the large variation in face sizes, we consider the face as a
single non-rigid entity with no need to track face features (eyes, lips, etc.). Based on
facial skin color, two tracking processes are done: backward tracking and forward
tracking.

Skin color extraction The most difficult issue for skin color extraction is to separate
chrominance from lighting effect. As reported in [63], the most interesting descrip-
tors are the chrominance components (Cr and Cb ) of the YCrCb color space, and the
hue (H) component of the HSV color space. In our work, we apply a thresholding
method on Cr and Cb that are coded on 1 byte, and H that is normalized between 0
and 1, using the following expressions:

⎧
⎨

⎩

135 ≤ Cr ≤ 170
130 ≤ Cb ≤ 200
0.01 ≤ H ≤ 0.1

(1)

Those thresholds are parametered on a training set of faces of various skin colors
ranging from very light to very dark.

Skin modeling Once the skin color is extracted, the corresponding normalized r and
b are computed and, are used to set up a 2D Gaussian model. It has been shown [64]
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that the rgb normalized space is better than RGB, YCrCb and HSV spaces because
it handles lighting variation.

Backward-forward tracking For each detected face, the bounding box is defined by
two points: the top-left corner (Pt1) and the bottom-right corner (Pt2). Supposing
that a shot contains n frames and that the face is only detected in the sequence of
frames {Is, . . . , Ie}, the goal is to verify if that face is also present throughout the
shot in {I1, . . . , Is−1} on the left side, and in {Ie+1, . . . , In} on the right side as seen
in Fig. 4.

The proposed algorithm is an iterative process and can be divided into 4 steps:

1. For the backward (respectively forward) tracking, two points are estimated in
the frame Is−1 (respectively Ie+1) as follows:

Pt′1 = Pt1 − α(Pt2 − Pt1)

Pt′2 = Pt2 + α(Pt2 − Pt1)
(2)

where Pt1 and Pt2 are the corners of the face box obtained in the starting frame
Is (respectively Ie) and α a fixed coefficient (e.g. α = 0.1).
Pt′1 and Pt′2 delimit the estimated box in which the candidate face is present.

2. Each pixel x = (xi, x j) within the box is classified (skin/non-skin) using the
probability function:

p(x) = 1

2π |�| 1
2

exp
[

−1
2
(x − μ)T�−1(x − μ)

]

(3)

where the mean μ and covariance � are adapted to the skin color of the frame
Is (respectively Ie).

3. Since the face is considered as a single entity, pixels are processed using dilation
and erosion morphological filters.

4. If the Ratio of the Skin Part (RSP) within the box is higher than a threshold
(ThrRSP), the face is considered as visible and the points Pt1 and Pt2 are updated
according to the proper box in the candidate image; the 2D Gaussian model

Fig. 4 The backward-forward tracking scheme
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is also updated with the new data and the process is repeated for frame Is−2

(respectively Ie+2) starting from step 1. If the RSP is lower than ThrRSP or if the
boundaries of the shot are reached, the process is stopped.(See Table 2 for values
of ThrRSP).

3.3.2 Clothing-based people tracking

Sometimes, the face tracker fails because the face may be occluded or the skin color
model is not accurate enough. One way to overcome these problems is to track
clothing instead of the face.

Even though researchers do not give clothing special attention in many publica-
tions, it remains one of the important cues for people tracking because it has an
amount of color information that is trackable in difficult situations like occlusion [37].
In [28], the authors used clothes tracking in order to re-texture it for real-time virtual
clothing applications. More sophisticated research ontracking clothed people can be
found in [50] where the authors used it for motion capture.

In our work, since no precise characterization of clothing is needed, we propose
a simpler clothing tracker. First, for a given detected face, we estimate the clothing
box by the area under the face. The size of this clothing box is proportional to the
size of the face: as in [31], we suppose that the width of the clothing box is equal to
2.3 times the width of the face box, and its height is equal to 2.6 times the height of
the face box. This is illustrated in Fig. 5. Next, we use a tracking technique similar to
the one used for the face. However, instead of using a pre-selected set of pixels as we
did for skin color, we use the entire set of pixels within the clothing box.

This multi-people visual tracker we have been discussing is suitable for offline
processing of TV data especially for debates and news. However, it may fail in some
cases where 1) faces are subject to fast motion, and 2) the background is of similar
color to the skin.

Fig. 5 Clothing localization
based on the face box
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3.4 Visual people clustering

At the end of the tracking step, a list of all “face-tracks” is available. Every track
Ti corresponds to a sequence of frames where the face Fi is visible. The next goal
is to cluster the tracks that contain appearances of the same person. The task of
visual people clustering is relatively new. It can be applied to both still images (e.g.
organizing consumer photos) as in [13] or moving sequences of images like in [15]
since the basic technique is often the same.

3.4.1 Review of existing methods

Researchers often view visual people clustering as a recognition problem [3, 45], an
identification [5, 14] or also re-identification problem [17]. In [3], the authors develop
a recognition method based on a cascade of processing steps that normalize the
effects of the changing environment: they first suppress the background surrounding
the face, enabling the maximum facial area to be retained. Then, they add a pose
refinement step to optimize registration (using facial features like eyes and mouth
detected using SVM) between the test image and a sample face. They use a distance
inherent to a subspace to allow for partial occlusion and expression change.

In [15], after detecting faces using an iterative algorithm that gives a confidence
measure for the presence or absence of faces within video shots, the authors process
the clustering of those faces using a PCA-based dissimilarity measure in conjunction
with spatio-temporal correlation. In [20], a distance which is invariant to affine
transformations, is introduced for clustering and classification. This is applied to
face clustering in order to produce an automatic cast listing in movies. In [13] Chu
et al. present a clustering method for consumer photos by matching images using
local features. It represents matching situations using visual sentences. Then, visual
language models are constructed to describe the dependency of image patches on
faces.

In [14], the authors propose an unsupervised metric learning method for face
identification, recognition and clustering. Their method learns a Mahalanobis dis-
tance without manually labeled examples. They use pairs of faces within tracks
as positive examples, while negative examples are generated from frames where
different people appear together. However, this unsupervised learning may lead to
over-fitting because there is not a lot of variability in the positive examples.

3.4.2 Proposed method for people clustering

The face is the most reliable entity that is used to visually cluster people. However,
other high-level visual concepts like clothing can be helpful. In the following para-
graphs, we will present our face-based and clothing-based matching methods and
then our hierarchical bottom-up clustering algorithm.

Face-based matching The face contains many discriminative features: skin color,
hair, ears, eyes, mouth, nose and even shape. All these features can be used to
recognize people. However, the variations in illumination, face scales, head pose,
partial occlusions, etc., are constraints that make the task of face-based matching
difficult. In our study, face-based matching relies on two features: SIFT matching
and skin color matching both of which are outlined below. Moreover, instead of
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processing the whole sequence of faces which is time consuming, we decided to work
only on keyfaces: for every sequence of frames, we chose one frame in which the
facial image is the most representative and contains the maximum amount of useful
information [35].

– SIFT matching. SIFT features introduced by Lowe in 2004 [41] are known to be
robust to variations in scale, rotation, and illumination. Nowadays, they are used
as baseline features in most successful object recognition systems such as [9].
These systems need huge quantities of both positive and negative training data.
However, in our case, the clustering must work in an unsupervised manner. The
challenge here is not to match unlabeled to labeled images in order to detect a
face in the unlabeled image (as the supervised systems do), but to verify if the
two faces are assigned to the same person or not.
In our previous work [35], we defined a new distance named “Average N-
Minimal Pair Distance” (ANMPD). If we consider two tracks T1 and T2 to which
the keyfaces F1 and F2 are associated, their corresponding sets of SIFT keypoints
K1 and K2 are:

{
K1 = k1

1, k1
2, . . . , k1

L

K2 = k2
1, k2

2, . . . , k2
M

We define dp as the Euclidean distance between each pair of keypoints P =
(k1

i , k2
j). After sorting the distances of all possible pairs, the first N minimum

ones expressed by {dp} (1 ≤ p ≤ N) are selected.
Then, the ANMPD is computed by:

D1(T1, T2) = ANMPD(K1, K2) = 1
N

N∑

p=1

dp (4)

– Skin color matching. Under the same illumination conditions (especially for de-
bates), skin color can be used as an additional cue to help merging or separating
between people. Inside the face box, we select the pixels that correspond to the
skin. To do this, we use the thresholding method applied to the Cr and Cb com-
ponents (from YCrCb color space), and the hue H as described in Section 3.3.
Then matching between the skin colors of two keyfaces F1 and F2 is done by
computing the variation between their corresponding histograms hF1 and hF2 .
Here, we use the Bhattacharyya distance to obtain slightly better results than
Euclidean and Manhattan distances.

D2(T1, T2) = dBhat(h
F1
1 , hF2

2 ) = − log

⎡

⎣
∑

i

∑

j

∑

k

hF1(i, j, k)(hF2(i, j, k)

⎤

⎦ (5)

Clothing-based matching Since within video documents such as debates, TV con-
tests, movies and series a character often wears the same clothing throughout the
whole document or at least for a considerable duration (e.g. a scene), clustering
that uses clothing information is a appropriate/useful solution. The extraction of the
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clothing part is done as explained in [31]. After this extraction, we investigate two
clothing descriptors: 3D histograms and texture.

– Comparing Histograms. After computing the 3D histograms hC1 and hC2 that
correspond to clothes C1 and C2, their comparison is made using Bhattacharyya
distance:

D3(T1, T2) = dBhat(hC1 , hC2) (6)

– Texture. We use the Gabor texture features that are introduced in [42]. In order
to compute the distance dTexture between the textures of two different clothes
C1 and C2, we compute the normalized distance in the feature space between the
corresponding feature vectors X1 and X2.

{
X1 = [x1

1, x1
2, ..., x1

Q]
X2 = [x2

1, x2
2, ..., x2

Q]
(7)

The distance is defined by:

D4(T1, T2) = dTexture(C1, C2) =
Q∑

q=1

∣
∣
∣
∣
∣

x1
q − x2

q

α(vq)

∣
∣
∣
∣
∣

(8)

where α(xq) is the standard deviation of the qth coefficient of the feature vector
over all the database.

Hierarchical bottom-up clustering After listing the different kinds of face and
clothing matching that can be used to help group(cluster) tracks if they correspond
to the same person, the issue is to find an appropriate way to combine all this
information. It is obvious that pairs of tracks that verify all the merging criteria
listed above are preferable at the beginning of the clustering process. However,
in some cases where illumination, background clutter and clothing are subject to
change, some of the above matchings may not be verified at all. In this case, the next
clustering steps should be done by using fewer merging criteria. Thus, we propose to
adopt a 3-level hierarchical bottom-up clustering.

– First-level hierarchical clustering. From the four distances obtained from the Sif t,
Skin, Clothing − histogram and Texture − clothing descriptors, we can compute
the similarity between two tracks Ti and T j as:

S(Ti, T j) =
4∏

a=1

max(Thra − Da(Ti, T j), 0) (9)

Where Da(Ti, T j) is the distance between Ti and T j in terms of the ath descriptor.
Thra is the threshold that corresponds to the ath descriptor (see Table 2 for
the value of these thresholds). S(Ti, T j) may even be positive if there is good
matching, or be equal to 0 if at least one of the descriptors does not confirm
the matching. Then, the clustering is done in a hierarchical bottom-up manner,
(i.e. starting from the most similar tracks/clusters), using the complete linkage
property. Each time two tracks Ti and T j are merged, the matrix is updated as
explained in [35].
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– Second-level hierarchical clustering. After a first clustering for which merging
confidence is very high, a second clustering is done with more tolerance. In this
case, two conditions are sufficient:

1. at least one of the two clothing descriptors works: the second descriptor
may fail if there are partial occlusions in which case the texture descriptor
will fail) or lighting variations (in which case the color histogram compari-
son will fail);

2. at least one of the two face descriptors works: this condition is taken
into account to prevent merging in case two people are wearing the same
clothing.

– Third-level hierarchical clustering. When the illumination varies or the clothing of
the person changes, color-based descriptors and texture descriptors are subject
to change. In this case, the only reliable descriptors that remain useful are the
SIFT descriptors of faces. For this reason a final clustering step is done based
only on SIFT descriptors.

4 People diarization in audiovisual domain

In previous sections, we reviewed techniques that handle each of the audio and video
media separately. In this section, the challenge we are facing is the fusion of different
modalities. By its nature, an audiovisual document contains a set of information
generally synchronized like frames, sound and sometimes textual information. More
particularly, we give special care to the problem of associating voices from the audio
channel to characters from the video channel. We will then use this association to
improve the results of “video-only” AVPD, and the results of “audio-only” AVPD.

The next sub-sections, use the following notations:

– na is the number of audio clusters;
– nv is the number of video clusters;
– {Ai}i=1...na is the set of audio clusters;
– {V j} j=1...nv

is the set of video clusters;
– Qi is the number of utterances of the audio cluster Ai;
– R j is the number of tracks of the video cluster V j;
– {Ui

q}q=1...Qi is the set of utterances that correspond to the audio cluster Ai;

– {T j
r }r=1...R j is the set of tracks that correspond to the video cluster V j.

4.1 Related work

Using the different modalities to create cross-modal correspondences in an unsuper-
vised manner is an advantage of multimodal systems that has not been adequately
explored in the existing literature.

One domain where audiovisual diarization has been studied is meeting scenarios.
The challenge here is to use far-field cameras and microphones to analyze human
activity in a meeting scene which typically has multiple subjects. The CLEAR 2006–
2007 evaluations [56] focused on this domain.

In [29] the authors propose an audiovisual online diarization of participants in
group meetings. They develop an unsupervised approach based on the analysis of
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pairwise correlations between speaker clusters and visual activity features extracted
from multiple video channels. An iterative association is made between pairwise the
audio and video streams with the highest correlation, until all audiovisual streams
are associated. This system tries to solve the task incrementally and on-the-fly. This
work is extended in [22], where a multimodal speaker diarization of real-world
meetings is proposed. This system, not on-the-fly, makes use of a single far-field
microphone and any collection of available uncalibrated cameras and is tested on
4-person meetings where participants behave naturally. Instead of using a lip activity
detector, the authors prefer a motion vector magnitude to construct an estimate of
personal activity levels. This estimate has been shown to correlate well with speaking
activity patterns. In [23], the same authors present an audiovisual approach for
unsupervised speaker localization in both time and space, called “dialocalization”.
Using recordings from a single, low-resolution room overview camera and a single
far-field microphone, a state-of-the-art audio-only speaker diarization system is
extended so that both acoustic and visual models are estimated as part of a joint
unsupervised optimization problem. After the speaker diarization step, the visual
models are used to infer the location of the speakers in the video. The multimodal
integration is made so that, during every agglomerative clustering iteration, each
speaker cluster is modeled by two GMMs, one for the audio features and one for
the video activity features. In the segmentation step and in the merging step, the
weighted sum of the log-likelihood scores of the two models is used.

In [52], the authors present an online diarization of streaming audiovisual data for
smart environments. That system, which requires a training step, integrates compo-
nents for speaker change detection, speaker identification, speaker localization and
face identification. It is divided into a video sub-system that performs face detection
and identification, and an audio sub-system that localizes and identifies the speakers.
The video system incorporates a single camera, while the audio system contains
multiple microphone arrays.

Contrary to our work, these previously reviewed studies focus on analyzing multi-
channel recordings rather than edited content. Existing work with the same purpose
as ours are [16, 39, 40]. In [16], an unsupervised detection of multimodal clusters
in edited recordings (such as talk-shows and sitcoms) is presented. This detection
avoids making assumptions about the recording content, such as the presence of
specific participant voices or faces. In this approach, the video stream is segmented
into shot clusters and the audio stream is segmented into audio clusters using a
diarization framework. Then AV-clusters are built based on the co-occurrences
between shot and audio clusters: a selection criterion based on χ2 (chi-squared
distribution) test [48] is used to this end.

In all this research, we can see the difficulty of associating audio and visual
features due to two main factors. First, the data to model are often heterogeneous
(color histograms, SIFT features, presence of the face, size of the face, etc.) and
correspond to different levels of granularity. Second, there is the problem of stream
synchronization due to the fact that the extractions of low-level features are not
done on the same timestamps for audio and video. These factors make early fusion
of audio and video not particularly appropriate in this case. In addition, as shown
in [62] in the case of a multimodal speaker diarization system, early fusion did not
improve the diarization performance compared to using audio or video alone. With
late fusion, the authors showed that by modeling audio and video features separately,
they improved upon audio-only speaker diarization when video features were also used.
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The work the most similar to our topic is that done by Liu and Wang [39, 40] to
detect the major casts in video content. In their work, they assume that the majority
of speech that accompanies the appearances of each character is from the same
person. Thus, the correlation between the audio cluster Ai and the video cluster V j

can be expressed by the overlapping time between all the utterances of Ai and all the
tracks of V j.

mij =
Qi∑

q=1

R j∑

r=1

OL(Ui
q, T j

r ) (10)

where OL(Ui
q, T j

r ) is the overlapping of audio utterance Ui
q and face track T j

r .
They improve this association by assuming that large faces sizes are most likely to

be talking. Thus the correlation between Ai and V j becomes:

cij =
Qi∑

q=1

R j∑

r=1

OL(Ui
q, T j

r ) × FS(T j
r ) (11)

where FS(T j
r ) is the face size of a track T j

r corresponding to the video cluster V j. The
use of face size is helpful when more than one face appears during a speech segment,
where the larger face is more likely to be the real speaker.

One limitation of this method is that it cannot handle the case where the video
image of one person is accompanied by the speech of another person (voice over).
Our first contribution will focus on solving this problem.

4.2 Proposed audiovisual association

4.2.1 Baseline system

As seen previously, audiovisual people association methods such as [40] consider
both visual and speech features to be simultaneously relevant in video subsequences
and assume that the current voice corresponds to a face present in the frame. In
real sequences, this hypothesis is often violated. It is very common to find sequences
where the people appearing do not talk for many frames or many shots. Furthermore,
it is also possible that the current voice belongs to a person whose face is not in the
current frame.

In this work, we propose to compute co-occurrences between audio and video
indexes, i.e. we match up the voices with the faces. This approach is suitable to handle
cases where the usual assumptions are not verified.

Before describing our method, let us illustrate how a person A can occur in a
document. As seen in Fig. 6, there are seven scenarios for person A. These scenarios
depend on the way person A is visible on the screen or talking.

Fig. 6 Seven different scenarios where a person A may occur in a document
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First, we compute a matrix which represents the intersection between the audio
and video indexes. We consider the two indexes, frame by frame. For every frame,
if the voice of Ai is heard and the visual person V j is present, then the number of
occurrences mij of the pair (Ai, V j) is incremented. Thus, we obtain the following
matrix:

M =

V1 V2 . . . Vnv

A1

A2
...

Ana

⎛

⎜
⎜
⎜
⎝

m11 m12 . . . m1nv

m21 m22 . . . m2nv

...
...

...
...

mna1 mna2 . . . mnanv

⎞

⎟
⎟
⎟
⎠

(12)

where the value mij means that in all the frames where the voice Ai is heard, the
visual person V j appears mij times. Conversely, in all the frames where the person V j

is present, the voice Ai is heard mij times.
The idea in [40] would be to sort the resulting matrix M by rows (or by columns).
However, this solution makes the assumption that: when a voice is heard, the

corresponding face is the one most present in the overlapping time (sorting by rows).
Conversely, sorting by columns means that for each face its corresponding voice is
the one mostly heard when the features appear. For example, in some TV talk-shows
and debates, this assumption is not valid: the person who speaks the most is usually
the host. In this case,the host’s voice is often heard the most even when the guest(s)
appears on screen. Thus, even if the matrix M is a good starting point to associate
audio and video indexes, it cannot be directly used if there is no a priori information
about the people. A post-processing procedure is required.

One way to bypass the problem is to read M both by rows and columns, and
to retain the most significant information. This fusion is carried out by computing
two new matrices, Ma and Mv where the overlapping time is replaced by one of the
frequencies:

f a
ij =

mij
nv∑

k=1
mik

, f v
ij =

mij
na∑

k=1
mkj

(13)

in Ma, the sum of all frequencies of a row is equal to 1.

Ma =

V1 V2 . . . Vnv

A1

A2
...

Ana

⎛

⎜
⎜
⎝

f a
11 f a

12 . . . f a
1nv

f a
21 f a

22 . . . f a
2nv

. . . . . . . . . . . .

f a
na1 f a

na2 . . . f a
nanv

⎞

⎟
⎟
⎠

100 % (14)

Similarly, the sum of all frequencies of a column in Mv is equal to 1. The matrix Ma

(respectively Mv) gives the probability density of each audio cluster Ai (respectively
each video cluster V j).

Therefore, a new matrix Mav that combines these two matrices is defined. To
compute the coefficients of Mav , we can choose a conjunction operator (“AND”)
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as the minimum operator or the probabilistic operator (product). The latter is used
in this work:

f (Ai, V j) = f a
ij × f v

ij (15)

From this matrix, an association between pair wise audio and video clusters is
performed as follows:

1. Search- Delete step: Select the pair (Ai, V j) with the highest co-occurrence and
eliminate the two corresponding clusters from the matrix (i.e. eliminate row I
and column J);

2. Repeat the search-delete step until all clusters are associated (i.e. until an empty
matrix remains).

At the end of this process, we obtain a list of all the clusters which can be classified
into three categories: talking-faces, face-only and voice-only.

Other algorithms could have been used to associate the audio and visual clusters.
Here, we assume that associating the best co-occurring pairs of clusters first can help
to accurately associate the remaining co-occurring ones by process of elimination.
However, there are two limitations to the above proposal:

– If a non-talking person appears while a voice is heard, we should not allow the
association between face and voice. To solve this problem, we use a lip activity
detector.

– If two or more persons appear at the same time, the decision of who is talking
is difficult. In the matrix, this corresponds to the following scenario: in the same
row, there are two or more similar frequencies. To cope with this problem, we
use information on face size.

4.2.2 The use of lip activity

As previously noted, an additional feature must be added to deal with the case where
one person appears when another is talking. In this case, to eliminate any confusion,
it is better to detect lip activity. Even though the literature reveals much work done
to detect the lip activity, the majority deal specifically with large faces and their goal
is to deal with the problem of audiovisual speech recognition [44, 58].

In this work, and given the range of face sizes in our data, we propose an easier
way to estimate lip activity from the automatically detected face. Assuming that the
face is frontal and that the mouth is located in the middle-bottom of the face box [46],
the bounding box of the mouth is selected as illustrated in Fig. 7. In order to quantify

Fig. 7 Mouth localization
(thumbnail taken from the
movie “Amélie”)



764 Multimed Tools Appl (2014) 68:747–775

lip activity, we proceed by pairs of frames as follows: considering two consecutive
face boxes F1 and F2 of the same person that are detected within two consecutive
frames, and after localizing the region of the mouth m1 inside F1, we build a search
zone around m1 inside F2. Then, we move a window m2 of the same size of m1 into
this zone. Therefore, the best matching and the lip activity rate are both obtained by
computing the Minimal Mean Square Error (MMSE) of the Hue values between m1

and m2 pixels.
Since head motions are generally related to speaking expressions, we assume that:

if a person is not moving his/her lips or his/her head, we can be certain that this
person is not talking. This corresponds to the case where LA is lower than a fixed
threshold Thrla (See Table 2 for the value of Thrla). Lip activity can be represented
by a coefficient δV j :

δV j =
{

0 i f LA < Thrla

1 i f LA ≥ Thrla
(16)

4.2.3 The use of face size

In a track (or shot) where many faces appear, often the person with the relatively
larger face size is more likely to be the real speaker. However, this assumption is
not true in the case where there are many faces with different sizes and each one
appears alone in its track. In the clustering process, there should be no difference
between those faces. Therefore, we define the normalized weight of a face size that
is computed compared to the other faces in the image.

Wk = size(Fk)

L∑

l=1
size(Fl)

(17)

where L is the total number of faces within the image. This formula can be extended
to the track level by assuming that the size of a face in a track is almost always the
same. The overall normalized weight of the face that corresponds to the visual cluster
V j is:

ωV j =

R j∑

r=1
Dur(T j

r ) × W j
r

R j∑

r=1
Dur(T j

r )

(18)

Then, these two coefficients are introduced into the co-occurrence matrix M′
av :

M′
av = Mav • [δ1 × ω1, δ2 × ω2, . . . , δnv

× ωnv
]T (19)

4.3 Audiovisual system for people indexing

At the end of the audio (respectively video) processing, a list of audio (respectively
video) clusters as well as similarity measures for each pair of clusters are provided.
Above we studied the association between these audio and video clusters by com-
puting a co-occurrence matrix. Since the confidence level of the bottom-up clustering
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process decreases gradually as it approaches the top of the clustering hierarchy, the
use of mutual information in the later stages such as the co-occurrence matrix will
help to improve clustering performance. A good way to implement our proposal is
to apply the following algorithm that is illustrated in Fig. 8:

1. The first step in confident audio clustering and video clustering is applied using
restrictive decision that ensures high cluster purity but potentially more clusters

Fig. 8 Architecture of the audiovisual people diarization system. Sa is the similarity matrix for audio
clusters, Sv is the similarity matrix for video clusters, M is the co-occurrence matrix, Ma and Mv are
the normalized co-occurrence matrices, and Mav is the final association matrix
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than in reality. The na audio clusters, the nv video clusters, as well as the similarity
matrices Sa and Sv computed for each pair of clusters, are retained.

2. Using these clusters, calculate the co-occurrence matrix M of na × nv dimension.
Then, deduce the matrices Ma and Mv as previously explained.

3. Using Ma, compute α(Ai, A j) for each pair (Ai, A j):

α(Ai, A j) =
nv∑

v=1

ma(Ai, Vv).ma(A j, Vv) (20)

and the new similarity measure:

S
′
a(Ai, A j) = τ1.Sa(Ai, A j) + τ2.α(Ai, A j) (21)

Then, find the pair (AI, AJ) that corresponds to the maximum similarity:

(AI, AJ) = arg max
(Ai,A j)

(S
′
a(Ai, A j)) (22)

If max(S
′
a(AI, AJ)) is higher than a fixed threshold Thra, then merge the two

clusters (see Table 2 for Thra). In this case, the matrices Sa, Sv , M, Ma and Mv

are updated. Similarly, using matrix Mv , compute β(Vk, Vl) and S
′
v(Vk, Vl) for

each pair (Vk,Vl):

β(Vk, Vl) =
na∑

a=1

mv(Aa, Vk).mv(Aa, Vl) (23)

S
′
v(Vk, Vl) = ρ1.Sv(Vk, Vl) + ρ2.β(Vk, Vl) (24)

Then, find the pair (VK, VL) that corresponds to the maximum similarity:

(VK, VL) = arg max
(Vk,Vl)

(S
′
v(Vk, Vl)) (25)

If max(S
′
v(VK, VL)) is higher than a threshold Thrv , then merge the two clusters

(see Table 2 for Thrv). In this case, the matrices Sa, Sv , M, Ma and Mv are
updated. During our experiments, τ1, τ2, ρ1 and ρ2 were respectively valued at
1
2 , 2, 1

2 , 2.
4. Next, return to second step of this algorithm. The three steps are repeated until

the stopping criteria for both audio and video clustering have been reached. In
this case, we compute the weighted co-occurrence matrix M′

av in terms of face
size and lip activity detection using (19). Using M′

av , we can deduce the voice
and/or the face of each person. Consequently, three types of clusters emerge:
talking faces, non-talking faces and the voice-only clusters.

5 Experiments and results

Table 1 describes our audiovisual corpus of overall duration of 10.6 h. This corpus
is divided into three subsets: news, debates and movies. For each subset, the total
duration, the speech duration, the number of speakers in the reference, the total
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Table 1 Details of the corpus

Dur. Speech dur. Ref. spkrs Faces dur. Ref. faces

News 4h05’ 3h04’ 311 1h48’ 626
Debates 3h30’ 2h41’ 129 2h25’ 311
Movies 3h05’ 1h13’ 128 1h03’ 378
Total 10h40’ 6h58’ 568 5h16’ 1315

duration of appearing faces, and the number of appearing faces in the reference are
reported.

Table 2 sums up the thresholds used in these experiments as well as their
corresponding value. They are trained on a development set of video of about
40 min.

5.1 Results of the audio people diarization

In this section, we measure the performance of the diarization system with and
without video information. To do this, we use the diarization error rate3 (DER).
The output of a speaker diarization system consists of a list of speech segments
described with starting time, ending time and speaker cluster name (this list is called
the hypothesis). It is evaluated against a manually annotated ground truth (called
reference). The evaluation performs an optimum one-to-one mapping between the
hypothesis segments and the reference segments so that the total overlap time be-
tween the reference speaker and the corresponding mapped speaker cluster returned
by the hypothesis is maximized. The DER is the sum of three errors: speech/non
speech errors, where speech is present in the hypothesis but not in the reference
(False detection), non speech/speech errors, the contrary (Missed detection), and
speaker errors (SpkrErr), where the mapped reference is not the same as the speaker
found by the system.

DER = SpkrErr + Miss + False (26)

Table 3 shows that the overall weighted DER decreases from 25.35% to 19.64%
when our audiovisual association is applied. For TV news, the gain is about 2.83%.
For debates, the decrease of the error rate is very significant (from 25.96% to
14.89%). This can be explained by the fact that clustering based on audio information
is more difficult for debates than for news, however, the use of video information
resolves this problem. For movies, there is a poor gain of only 1.11% (from 40.81%
to 39.70%). This can be explained by the fact that both audio and video error rates
are high.

5.2 Results of the video people diarization

In this section, we evaluate our system in terms of face clustering. Although, [27] have
defined a cost metric that computes the number of clicks a user would need to
correctly label all images and this metric is fine for still images (e.g. personal photo

3http://www.itl.nist.gov/iad/mig/tests/rt/

http://www.itl.nist.gov/iad/mig/tests/rt/
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Table 2 The set of thresholds used in all the experiments

Threshold Value Description

ThrRSP 0.35 Corresponds to the optimal stopping criterion of the face-based tracker
Thr1 0.41 Corresponds to the stopping criterion that provides the optimal face-based

clustering using SIFT matching
Thr2 3.20 Corresponds to the stopping criterion that provides the optimal face-based

clustering using Skin matching
Thr3 3.30 Corresponds to the stopping criterion that provides the optimal clothing-based

clustering using 3D-Histogram matching
Thr4 0.13 Corresponds to the stopping criterion that provides the optimal clothing-based

clustering using Texture matching.
λBIC 0.80 Corresponds to the penalty coefficient that provides the optimal audio-people

clustering using BIC matching
Thrla 6.80 Is used for lip activity to decide whether a person is speaking or not
Thra 0.50 Corresponds to the stopping criterion that provides the optimal audio-people

clustering using all audiovisual cues
Thrv 0.50 Corresponds to the stopping criterion that provides the optimal video-people

clustering using all audiovisual cues

albums), it is not suitable for face tracks in video because it fails to take into
account the duration of face tracks. Therefore, we have defined a new metric that
we call the “clustering error rate” (CER). This metric, inspired from the DER for
audio, determines the optimal mapping between the hypothesis face clusters and the
reference face clusters in terms of time:

CER =

∑

Allseqs
(dur(s) × (min(NR(s), NS(s)) − NC(s)))

∑

Allseqs
(dur(s) × NR(s))

(27)

where for each sequence s: dur(s) is the duration of s, NR(s) is the number of people
appearing in s according to the reference, NS(s) is the number of people appearing
in s according to the system, and NC(s) is the number of correct matches, i.e. the
number of correct corresponding matches between the two.

Table 4 shows the CER values before and after using the audio information with
the overall CER decreasing from 19.75% to 17.22%. For TV news, the gain is 1.46%
(from 9.10% to 7.64%). For debates, the gain is 3.32% (from 15.73% to 12.41%). For
movies, the gain is 3.23% but the CER is still high (40.49%).

5.3 Results of the audiovisual association

In this section, we test the robustness of our proposed audiovisual association. To
do this, we compute the precision and recall measures of “talking faces”, “non-

Table 3 DER of
“Audio-only” and
“Audiovisual” processing

Audio-only processing Audiovisual processing

News 18.68% 15.85%
Debates 25.96% 14.89%
Movies 40.81% 39.70%
Overall DER 25.35% 19.64%
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Table 4 CER of “video-only”
and “Audiovisual” processing

Video-only processing Audiovisual processing

News 9.10% 7.64%
Debates 15.73% 12.41%
Movies 43.72% 40.49%
Overall CER 19.75% 17.22%

talking faces”, and “off” voices. For each measure, the number of false positives, false
negatives, true positives, and true negatives are computed with respect to positive
and negative people annotated in the ground truth.

First, we evaluate our baseline system where only the co-occurrence matrix Mav

is used. Then, we evaluate the benefits of using “lip activity” and “face size”. Finally,
we take into account the overall measures of our proposed systems and compare
them to the system proposed in [40].

5.3.1 Results of our baseline system

Table 5 shows the detailed results of our baseline system obtained for different
subsets (news, debates and movies) as well as the weighted overall scores. Talking
faces are detected with a precision of 80% despite the low recall score (32%). On
the other hand, non-talking faces are detected with a precision of 65% and a recall
of 92%. Furthermore, “off” voices are detected with a precision of 43% and a recall
of 55%. The results obtained for TV news are generally better than for debates and
movies (except for “off” voices detection). This is mainly due to the fact that the
purity of audio and video clusters is higher in the case of TV news data (as seen in
previous sections).

5.3.2 Results of the improved system

Here,we evaluate the benefits of adding either lip activity detection (S2), face size
(S3), or both (S4). Table 6 shows that all results are higher than those of the baseline
system.

As the most interesting people in the document are generally those who appear
and talk within that document, we detail in Fig. 9 the results of our proposed system
on the task of “talking faces” detection. In TV news (Fig. 9a), the precision increases
from 87% (S1) to 92% (S4), and the recall increases from 58% (S1) to 80% (S4). In
debates (Fig. 9b), the overall gain is 15% for both precision (from 65% to 80%) and
recall (from 34% to 49%). In movies (Fig. 9c), S4 outperforms S1 by 7% for precision
(from 90% to 97%) and by 8% for recall (from 15% to 23%).

Table 5 Results of our baseline system for audiovisual association: detection of talking faces, non-
talking faces and “off” voices

Talking faces Non-talking faces Voices-only

Num. Prec. Rec. Num. Prec. Rec. Num. Prec. Rec.

News 132 87% 58% 565 86% 96% 82 44% 45%
Debates 78 65% 34% 387 75% 91% 52 57% 58%
Movies 52 90% 15% 354 23% 77% 60 30% 72%
Overall 262 80% 32% 1306 65% 92% 194 43% 55%
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Table 6 Results of the improved system

Talking faces Non-talking faces Voices-only

Num. Prec. Rec. Num. Prec. Rec. Num. Prec. Rec.

S2 280 83% 35% 1292 68% 95% 177 45% 62%
(+3%) (+3%) (+3%) (+3%) (+2%) (+7%)

S3 278 84% 36% 1294 67% 93% 182 46% 62%
(+4%) (+4%) (+2%) (+1%) (+3%) (+7%)

S4 331 90% 46% 1232 72% 96% 120 78% 70%
(+10%) (+14%) (+7%) (+4%) (+35%) (+15%)

5.3.3 Comparison with the state-of-the-art system

In the final experiment, we compared our proposed system to the system proposed by
Liu and Wang [40] (S0). To do this, for each system we computed the total precision
and recall: the total precision (respectively recall) of a system is the sum of the
precisions (respectively recalls) of talking faces, non-talking faces and “off” voices
of that system.

Table 7 shows that our baseline system (S1) results in both higher precision and
recall than the method proposed in [40] (S0). This is due to the normalization of
matrices (Ma and Mv). This table also shows that our system (S4) which uses both
“lip activity” and “face size” outperforms (S0) by 14% for precision and 12% for
recall.

5.4 Analysis of errors

After combining all the audio and video components, several different types of errors
still remain. From the audio point of view, we have found that:

– In TV news, errors are often due to confusion between different people who
can be heard with the same background noise. And sometimes, they are due to
the dissimilarity between the different speech turns of the reporter who is either
talking in the studio or in a noisy environment.

– In debates, errors are especially due to the high interaction rate between people.

Fig. 9 Results of our proposed system for the task of “Talking faces” detection in a news, b debates
and c movies
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Table 7 Comparison between the system proposed in [40] (S0) and our proposed system (S1, S2,
S3, S4)

S0 S1 S2: S1 + lip activity S3: S1 + face size S4: S2 + face size

Prec. 62% 65% 71% 67% 76%
Rec. 63% 67% 68% 69% 75%

– In movies, errors are due to the high variations in the background noise (music,
indoors, outdoors, etc.), the short duration of speech turns, and the high interac-
tion rate between actors.

From the video point of view, we have found that:

– In TV news, errors are especially due to confusion between small faces of similar
size, similar lighting or clothes.

– In debates, errors are often due to TV reports that are shown during the program.
– In movies, they are due to variations in the lighting, poses and face sizes.

6 Conclusions

In this paper, we address the problem of audiovisual people diarization using both
audio and video cues. After describing our contributions to cope with this problem by
studying each medium separately, we present our proposed method for audiovisual
association using a co-occurrence matrix as well as enhancements through additional
modules such as face size and lip activity rate. In addition, we describe a framework
that simultaneously improves audio, video and audiovisual diarization output. The
results obtained on a corpus of TV news, debates and movies show the robustness
of this association method, and confirm the gains that one modality can bring to the
other.

One drawback of our audiovisual diarization system is that there are many para-
metered thresholds that may not be optimal for all types of documents. Future work
will focus on finding solutions to automatically compute the optimal thresholds for
each type of document. In addition, we will focus on extending the work presented
in this paper to “inter-documents” audiovisual people diarization, and on designing
dynamic audiovisual models of people in a collection of documents.
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