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Abstract The convergence of information and medical technologies has resulted in the
emergence and active development of the ubiquitous healthcare (U-Healthcare) industry. The
U-healthcare industry provides telepathology and anytime-anywhere wellness services. The
main purpose of these wellness services is to provide health information to improve the quality
of life. Human skin is an organ that can be easily examined without expensive devices. In
addition, there has recently been rapidly increasing interest in skin care products, resulting in a
concomitant increase in their consumption. In this paper, we propose a new scheme for a self-
diagnostic application that can estimate the actual age of the skin on the basis of the features on
a skin image. In accordance with dermatologists’ suggestions, we examined the length, width,
depth, and other cell features of skin wrinkles to evaluate skin age. Using our highly developed
image processing method, we could glean detailed information from the surface of the skin. Our
scheme uses the extracted information as features to train a support vector machine (SVM) and
evaluates the age of a subject’s skin. Evaluation of our proposed scheme showed that it was
more than 90% accurate in the analysis of the skin age of three different parts of the body: the
face, neck, and hands. Therefore, we believe our model can be used as a standard or as a scale to
measure the degree of damage or the aging process of the skin. This scheme is implemented into
our Self-Diagnostic Total Skin Care system, and the information obtained from this system can
be utilized in various areas of medicine.

Keywords Skin age . Skin surface analysis . SVM classification . Skin feature extraction

1 Introduction

The skin is the outermost part of the human body and is therefore easily visible to everyone.
Thus, people aspire to have beautiful, smooth, and young-looking skin. Therefore, many
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cosmetic companies are trying to develop cosmetic products that can reduce the appearance
of deep wrinkles on the skin. Although consumers use these products, there are no effective
means of measuring the effect of these products on improving skin texture.

At present, the only reliable method is to get a dermatologist’s opinion, but the point of
view of each dermatologist may be different. Dermatologists observe several visual features
on a skin image to determine the condition of each patient’s skin. Among these visual
features, the most significant ones are the length, width, and depth of wrinkles.

Currently, most dermatologists analyze a subject’s skin images and evaluate the condition of
the skin based on their personal experience and expertise. This kind of subjective assessment
can be inaccurate and inconsistent. Therefore, a clinically feasible, objective method (that is
applicable to various fields) is needed to improve the validity of evaluating skin texture.

In this paper, we propose a wrinkle feature extraction and classification scheme for skin
age evaluation. Our scheme can be used to evaluate the degree of improvement in skin
condition. In order to arrive at an objective standard method for skin evaluation, we collected
reliable skin-related clinical data from several dermatologists and accumulated ground-truth
data to prove the accuracy and objectiveness of our study.

Skin age is defined as the age of human skin based on the state of several features
associated with wrinkles. Specifically, it is very distinct from actual human age. Four
different images of skin are depicted in Fig. 1. Fig. 1a and b show images of skin texture
for a 10-year-old and a 50-year-old subject, respectively. In Fig. 1a, the skin texture has a
finely-split pattern, which is a normal pattern observed for teenagers. In Fig. 1b, the skin
texture has a loosely-split pattern, which is a normal pattern observed for people in their 50s.
However, Fig. 1c and d show patterns opposite to each other. Therefore, to ascertain the age
and state of such skin types, we need to evaluate the skin age.

2 Related work

Since the 1950s, various methods have been utilized for analyzing skin surface topography [1, 6,
8, 10, 15–17, 19, 20]. According to the dimensional nature of the parameters measured, these
approaches can be divided into two categories: three-dimensional topography analysis (3DTA)
and two-dimensional image analysis (2DIA). 3DTA needs negative or positive silicon replicas of
skin surface for further analysis by profilometry (mechanical, optical, laser, transmission, or
interference). It primarily involves the following roughness parameters: depth of roughness (Rt),
maximal depth of roughness (Rm), mean depth of roughness (Rz), depth of smoothness (Rp), and
mean roughness value (Ra) [1, 6, 10, 15, 16]. Rt is the peak-to-valley roughness of a surface and a
single feature has a huge impact on the value derived. The profile length is divided into five equal
segments. The peak-to-valley roughness is measured in each segment and the largest of these
five values is Rm. Rz characterizes the mean value of the peak-to-valley roughness in each
segment. The depth of smoothness Rp is calculated as the mean distance of every point on the
curve from the highest peak. Ra is the most useful international parameter for roughness. To
compute Ra, an average line is generated to run through the center of the profile, and the area in
which the profile deviates above and below this line is determined. 3DTA is mainly used for
clinical investigations of the local effects of cosmetic andmedical substances but is limited by the
relatively long duration for the replica to harden and the long measuring time [8, 16] (Fig. 2).

2DIA analysis, on the other hand, does not require silicone replicas of the skin, and it can
quickly acquire a skin surface image, which makes the method suitable for routine detection
of skin surface topography. It primarily involves two parameters: tau and density. Tau
represents the level of anisotropy, i.e., the percentage of furrows oriented in a different

228 Multimed Tools Appl (2013) 64:227–247



direction; the higher this level, the greater the anisotropy of the surface [6]. Density is the
furrow density, which is quantified on the basis of the occurrence of intersections between
primary wrinkles [1, 6].

To detect skin wrinkles, Tanaka et al. employed a cross-binarization method to get a
binary image from a digital skin image, and then, they used the short straight-line matching
method to detect wrinkles from the binary image and measure their length [9]. Their method
is as follows: for each base line in a cross-binarized image, if more than 70% of its pixels are
marked black, then the line is considered a wrinkle. After that, the system extends from the
end of the previous base line to create a new base line. The system extends the line until it
reaches the end of the wrinkle or the end of the image.

Hayashi et al. implemented an age- and gender-estimation system based on facial images
[13, 21]. They detected the wrinkles in a facial image by using a special Hough transform
called the Digital Template Hough Transform (DTHT).

Hatzis proposed a method that uses wrinkle replication [12]. In this method, wrinkles are
replicated using a silicon-rubber dental impression material. The wrinkles’ microtopography

(a) Skin texture of a 10-year-old
subject with normal trend

(c) Skin texture of 10-year-old 
subject with abnormal trend

(b) Skin texture of a 50-year-old 
subject with normal trend 

(d) Skin texture of a 50-year-old 
subject with abnormal trend 

Fig. 1 Examples of skin age. (a) Skin texture of a 10-year-old subject with normal trend. (b) Skin texture of a
50-year-old subject with normal trend. (c) Skin texture of 10-year-old subject with abnormal trend. (d) Skin
texture of a 50-year-old subject with abnormal trend
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in negative replicas is then studied and photographed using a scanner or stereomicroscope
under suitable lighting so that the appearance of the replica is changed from negative to
positive. Hatzis applied silicon material to his subjects’ foreheads and left it for a few
minutes for the silicon to harden. This replication method only provides an imprint of the
superficial picture of a wrinkle. Hatzis used a computer to analyze the picture of the
replications.

In our previous work, we proposed a scheme to detect skin wrinkles by analyzing
microscopic skin images and estimating their length and width [11]. In this scheme, the
skin wrinkles were detected using the watershed algorithm, which was first introduced by
Lantuejoul and Beucher for image segmentation purposes and has since been used with
diverse images including X-ray images, road sign images, and aerial photographs [4]. The
wrinkle length was estimated simply by counting the pixels on the wrinkles. To estimate the
wrinkle width, we proposed a block thickening method. However, we observed that these
methods had high error rates.

To improve the accuracy, we proposed a new method for calculating wrinkle length and
width [2]. In the new method, we used a line sieving method for wrinkle length calculation
and a morphological region growing method for wrinkle width calculation. To get more
features, we proposed a wrinkle-depth estimation method based on the color difference

(a) Original image

(c) Wrinkle width estimation (d) Polygon Mesh Detection 
Algorithm (PMDA) with merge

(b) Wrinkle skeleton

Fig. 2 Overall wrinkle feature extraction step. (a) Original image. (b) Wrinkle skeleton. (c) Wrinkle width
estimation. (d) Polygon Mesh Detection Algorithm (PMDA) with merge
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between the wrinkle and non-wrinkle regions—in contrast to Zou et al., who detected the
area mean of superficial skin texture block formed by primary and secondary lines crossing
each other [14]. Finally, we showed how to calculate skin age based on these features using
an SVM [22].

3 Pre-processing

In this section, we describe the pre-processing steps for detecting wrinkles on a digital
microscopic image. Due to the limitations of the camera and the interference of the light
source, captured images may have noise and vignetting. Vignetting causes captured images
to have different color histogram distributions. Therefore, to avoid vignetting having any
effect on the result, we applied a gradation masking method and cropped its center area to
facilitate accurate results. We also used contrast equalization for better contrast in the
selected area. To eliminate noise in the image, we first binarized the image using Otsu’s
method and then applied a de-noising technique.

3.1 Region of interest (ROI)

A Region of Interest (ROI) is a selected subset of samples within a dataset identified for a
particular purpose. The luminous source of a digital microscope image is concentrated
around its center area. Therefore, detecting wrinkles outside of the center area may prove
to be difficult due to vignetting. As a result, we cropped the center area of the image and set
it as the ROI to get the best luminous source. We then measured the wrinkles only in that
area. We empirically set the ROI size to 300×300 because that area of the image showed the
most homogeneous luminance.

3.2 Image normalization

Since images can be captured under different light conditions, they may have different
brightness. However, in an image, there is only a small difference in contrast between
wrinkled and non-wrinkled areas. Therefore, to enhance the difference between the areas,
we used the contrast stretching method, which increases image contrast and achieves
histogram equalization as well.

Contrast stretching is a process that expands the range of intensity levels in an image so
that it spans the full intensity range of the recording medium or display devices. The
following equation expresses the contrast stretching method.

I 0ðx; yÞ ¼ Iðx ; yÞ �min ðIÞ
max ðIÞ �min ðIÞ

� �
� max intensity ð1Þ

where I(x, y) represents the original image and min(I) and max(I) indicate the minimum and
maximum intensities of the image, respectively. The images used in this paper are 8-bit
grayscale images, which gives a maximum intensity of 255.

3.3 Binarization and de-noising

In order to detect wrinkles, we first converted a normalized grayscale image to a binary
image. We had a choice of various methods including the global threshold method and the
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partial threshold method. However, we chose Otsu’s method. Otsu’s method is used to
automatically perform histogram shape-based image thresholding or the reduction of a gray
level image to a binary image. The method automatically calculates the threshold by using
Eq. 2 and then applies it to the image if the image histogram is bimodal. The equation is
given as

σ2ðtÞ ¼
Xt

i¼0

½ i� μ1 ðtÞ�2 PðiÞþ
X1
i¼tþ1

½ i� μ2 ðtÞ�2 PðiÞ ð2Þ

where i is a gray value ranging from 0 to 255; μ, the mean value; P(i), the ratio of the number
of pixels in the image to the number of pixels with brightness i; σ2, the variance; and t, the
optimum threshold for images. The desired threshold corresponds to the maximum σ2(t) that
minimizes the within-class variance.

The binary image generated by Otsu’s method may contain many salt-and-pepper noises.
Such noise may result in over-segmentation during the wrinkle detection process. Usually,
such noise comprises only a small number of adjacent pixels in the image. Therefore, if the
size of the particle is small enough, it is considered noise and can be eliminated from the
image. Since wrinkles are connected and occupy a significant portion of the image, noise can
easily be differentiated from wrinkles.

To remove noise from the processed image, our scheme first scans the binary image and
searches for a pixel with the target color. Next, it searches for neighboring unexamined
pixels that have the same color. This step is repeated for four neighboring pixels recursively.
The algorithm stops the search process when all the neighboring pixels with the same color
are discovered. If the number of connected pixels with the same color is lower than a
particular cutoff value c, then the scheme considers them to be noise and removes them from
the image. In addition, the scheme fills in the blank left by the pixels that are located in the
wrinkle area.

4 Wrinkle feature extraction

In this section, we will briefly explain the process of extracting wrinkle features from the 2D
image. For more accurate analysis of wrinkles, we extracted various features including
length, width, depth, and wrinkle-bordered polygons. These features were used to train
our classification model that was used to determine skin age.

4.1 Wrinkle length estimation

In order to detect wrinkle regions in the skin image, we used the Watershed algorithm. This
algorithm segments images into regions according to the topology of the image. In our case,
we focused more on the border lines than on the other regions since the border lines
correspond to the skin wrinkles. Watershed transformation performs one-pixel line-based
segmentation. By counting these one-pixel lines, we could determine the approximate
lengths of the wrinkles. However, this method was not very accurate because merely
counting pixels is prone to errors such as false counting.

Therefore, we used the line sieving method to calculate the wrinkle length. Figure 3 depicts
the workflow for the line sieving method. The method is fast and very precise in the calculation
of wrinkle length. The original purpose of the method was to count the cross line components
quickly and easily. As can be seen from Fig. 4a, if the wrinkle is in a straight line, we can easily
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count the number of pixels to estimate the wrinkle’s length. However, if we have cross lines, as
in Fig. 4b, the actual length is not just four pixels. Hence, just counting these pixels on the image
would cause the resulting length derived for the wrinkle to be in error.

The line sieving method solves this kind of problem. It operates by counting the pixels
that have straight-line components based on the x- and y-axis. As illustrated in Fig. 5, the
scheme first executes the line sieving process for the straight-line components along the y-
axis, i.e., it counts and eliminates the pixels from the one-pixel line (Fig. 5b). Next, it carries
out the same procedure for the x-axis straight-line components (Fig. 5c). Finally, we count
the pixels comprising the diagonal components left on the image (Fig. 5d) and multiply the
slope of the line to estimate the wrinkle length. After the x- and y-axis line sieving processes,
there may be some one-pixel islands left on the image. Since these islands are not connected
to any wrinkle, we simply count these islands and add to the result for the straight-line
component length.

Our scheme for wrinkle length estimation can be improved further. For example, line tracing
is a more precise method. However, it requires too much computation, and hence, the feature
extraction cost could be very high. Since we place more emphasis on cost-effectiveness and fast
estimation, other methods requiring high computation cost were excluded.

4.2 Wrinkle width estimation

To measure wrinkle width, we need to recover the original wrinkle from its one-pixel
skeleton image. For this purpose, we proposed a morphology-based region growing method
described by Algorithm 1. In this method, we first apply a dilation process to the wrinkle
skeleton to expand the skeleton lines according to the actual width. We then find wrinkle
area from the dilated region and expand the wrinkle region continuously. During this step,
we perform cross-comparison for output image and grayscale image to estimate the wrinkle
regions. This process is repeated until the affected area gets n pixels, where n is the
parameter representing noise. If the regions are smaller than n pixels, we consider them to

Wrinkle skeleton from 
Watershed algorithm 

Sieve x-axis straight 
lines and count pixels

Sieve y-axis straight 
lines and count pixels

Total wrinkle length

Calculate diagonal-line 
length

Sieve 1-pixel islands 
and count them

Fig. 3 Workflow of line sieving
method

(b) Cross line(a) Straight line

Fig. 4 Examples for detected
wrinkles. (a) Straight line. (b)
Cross line
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be noise. Figure 2c is an example of a wrinkle region recovered by our region growing
method.

4.3 Wrinkle depth estimation

Careful analysis of skin images reveals that the wrinkle region can be identified by its darker
color. Furthermore, regions of deeper wrinkles show more clear color differences due to the

(a) Original data (b) Sieved y-axis component

(c) Sieved x-axis component (d) Final data without island

Fig. 5 Sieving the component from image. (a) Original data. (b) Sieved y-axis component. (c) Sieved x-axis
component. (d) Final data without island

procedure  Thicken-by-morphological-growing
Input:       
grayscale image G(x,y),  
binary wrinkle skeleton S(x,y) 
Parameter:  noise n, threshold t
Output:     grayscale wrinkle map W(x,y)
1: do 
2: affectedPixel ← 0; 
3: W(x,y) ← Dilation(S(x,y))-S(x,y); 
4: for each point p(x,y) in W(x,y) 
5: if p(x,y) = 1 and G(x,y) > t then
6: S(x,y) ← 1; 
7: affectedPixel++; 
8: end if 
9: end for 
10: while affectedPixel > n 
11: W(x,y) ← S(x,y); 

Algorithm 1: Modified wrinkle width estimation algorithm
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interference from the light source. On the basis of this color difference, we used the
following equation to estimate the wrinkle depth:

DðIkÞ ¼ 1

n

Xn

i¼1
maxðjIkðsÞ � IkðciÞjÞ where

js� cij ¼ 1

2
avgwidth þ margin s:t: 8s 2 Si; 8ci 2 C

ð3Þ

In Eq. 3, the skeleton is the center line of the wrinkle, so we extract n Random points
from this line. For each center point ci∈C, a set of all the center points c1,…, cn, we evaluate
the maximum color difference value within the group of points, Si. Si contains all the points
that have a distance r from each center point. We add all the maximum color differences
from n center points and average them out. We then define this value as the depth of the
wrinkle for the affected area. In a grayscale image, we can deduce the color difference as
shown in Fig. 6. Since we are calculating a color-based unit, the extracted difference has an
arbitrary unit. However, as we are only using these features to train the classification model,
we do not need to get an actual unit for depth.

4.4 Wrinkle unit-cell analysis

Close scrutiny of skin images uncovers the fact that they are composed of closed regions
separated by wrinkles. For example, Boyer et al. [5] showed that the skin of younger people
has more cells in the skin wrinkle image than that of older people. On the basis of this
observation, we propose a Polygon Mesh Detection Algorithm (PMDA) for detecting the
number of cells and average area of the cells. In the algorithm, the region bordered by the
skeleton line is regarded as a cell and the algorithm counts the number of cells and computes
the average cell area. Average cell area can be derived by dividing the entire cell area by the
number of cells detected in the image. From the analysis, we found that as the density
decreased, the number of polygons also decreased. In other words, as the number of
polygons and the average cell area change, people age. While collecting the dataset, we
were able to verify that the number of cells and the average area are dependent on the
subjects’ ages. We were also able to verify that as people age, the shape of their polygons
gets simpler with wider borders. The PMDA can analyze and calculate the average cell area
and number of cells per unit area quantitatively.

procedure  PMDA
Input:     binary wrinkle skeleton S(x,y)
Output:    int nCell (cell-count), int avgCell (average cell area)
1: for each point p(x,y) in S(x,y) 
2:    do 
3: recursively_seek_4_neighbors( ); 
4: localCellArea++; 
5:       if p(x,y) belongs to image edge then 
6: localCellArea←0; // discard it // 
7: end if 
8: nCell++; 
9: totalCellArea+=localCellArea; 
10:    while not reaching the borderlines 
11: end for 
12: avgCell = totalCellArea / nCell;

Algorithm 2: Polygon mesh detection algorithm
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The procedure used for cell detection is defined by Algorithm 2. As mentioned previ-
ously, the image is based on the skeleton graph, which is obtained from the watershed
algorithm. In Fig. 7a, there are polygons inside the border lines, and each polygon represents
one cell. To evaluate the number of cells and the dimension of each cell, we used a
connected component detection scheme. Connected component detection recursively
searches for four neighbors (top, down, left, right) from the start point and increases local
cell. If the scheme encounters the border line or the end of the image, it terminates the
process. If it encounters the end of the image, it discards the current cell. It does this because
only cells that are wholly in the image are counted. After all pixels are examined, the scheme
calculates the number of cells and the total area of the cells. It can also calculate the average
area of the cells. However, the selected cells must have validity, which means they should be
fully included cells.

5 Merging over-segmented cells

Cell information is crucial for the accurate evaluation of skin age. Over-segmented cells
appear for many reasons, however, these should be eliminated before feature extraction in
order to increase the accuracy of skin age estimation. In this section, we outline a method by
which over-segmented cells can be detected in our evaluated cell image. We also propose a
method that merges cells with neighboring cells.

5.1 Detection of over-segmented cells

Correct wrinkle representation is crucial for the estimation of skin age. As mentioned before,
even though over-segmented cells may appear in the skeleton image for various reasons,
they should be eliminated before feature extraction in order to increase the accuracy of skin
age estimation.

(a) Skeleton graph (b) Closed cells 

Fig. 7 Detecting closed wrinkle cells. (a) Skeleton graph. (b) Closed cells

Fig. 6 Measuring the color
difference
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To detect over-segmented cells, we first examine each cell in the image to see whether its
border lines are closed. If they are, we assume that the border lines represent the cell’s
contour and record their coordinates. Figure 8 shows an example of detected cells and their
contour lines. We consider only fully closed cells in this step. In addition, we calculate the
center point of gravity for each detected cell, as shown in Fig. 9b. This point plays an
important role in detecting over-segmented cells. (Fig. 10)

To detect over-segmented cells in the skeleton image, we apply a convex hull to each cell.
The convex hull connects a cell’s nodes with straight lines to represent the cell by a
minimized convex function by using a minimum set of points. After finding the convex
hull for each cell, we check whether any cell with its center point of gravity inside another
cell’s convex hull exists. If so, we consider the cell to be an over-segmented cell. For
instance, Fig. 9a shows convex hulls constructed for the wrinkles in the sample image; the
detected over-segmented cells are indicated in blue in Fig. 9b.

Fig. 8 Contour lines

Algorithm 3: Detecting over-segmented cells 

procedure  detecting_OSCs
Input:     C: set of all fully closed cells c1,...,cn

G: set of gravity points of cells g1,...,gn

Output:    O: set of over-segmented cells
1: for each cell ci C and its g-point gi G 
2:    hi ← get_convex_hull(ci); 
3: for each adjacent cell ck C and its g-point gk G 
4: hk ← get_convex_hull(ck); 
5: if get_area(hi) > get_area(hk) then 
6: continue;
7       end if 
8: if gi is inside hk then
9: insert <ci, ck> into O; 
10:          break;
11: end if
12:    end for 
13: end for
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Algorithm 3 details the steps for detecting over-segmented cells. For each closed cell, cel, in
the image, we first calculate its adjacent cells and their convex hulls. After that, we compare their
area. For the adjacent cell, adj, whose area is larger than that of cel, we check whether the gravity
point of cel is inside the convex hull of adj. If it is, then we put a pair<cel, adj>into list O.

5.2 Merging over-segmented cells

After detecting all the over-segmented cells, we eliminate them by merging. Algorithm 4
details the steps involved in merging these over-segmented cells.

For each over-segmented cell pair in the list, we first checkwhether the area of the cell on the
left is less than the average cell area. If it is, we merge it with its neighbor on the right. This
information is then recorded in list M, which will eventually contain a list of all the merged
cells. Finally, we update list C based on list M to get the final set of cells. For instance, Fig. 11
shows the result of cell merging for the image in Fig. 4; in the uppermost box, one over-
segmented cell is merged, while two over-segmented cells are merged in the lowermost box.
After cell merging, we calculate the new contour and area of the merged cells.

(a) Construction of convex hull (b) Detected over-segmented cells

Fig. 9 Convex hull and detected over-segmented cells. (a) Construction of convex hull. (b) Detected over-
segmented cells

Algorithm 4: Merging over-segmented cells 

procedure   merging_OSCs
Input:      O: set of over-segmented cells 

C: set of fully closed cells  
δ: threshold for merge skip 

Output:     M: set of merged cells
1: avg_area ← get_avg_area(C);  
2: for each pair <ci, ck> in O 
3:     area ← calculate_area(ci); 
4: if area ≤ avg_area * δ then 
5:         merge ci and ck into M; 
6: end if 
7: update C using M;
8: end for
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6 Classification

In this section, we explain the features that were used to train the classification model with a
brief introduction to the classification model. We used a support vector machine (SVM) to
test our scheme’s performance and accuracy.

6.1 Feature selection

To perform skin age estimation based on the wrinkle features, we first took skin images of
different parts of the body for 238 subjects from five different age groups. We then collected
11 features that were used to train the classification model. Six of these were observed
features such as total wrinkle length, average width, average depth, average cell area, total
number of cells, and standard deviation of cell areas. The others were personal questionnaire
data such as sex, age, skin care regimen, use of makeup, and smoking.

Fig. 10 Sample image for
detected over-segmented cells

Fig. 11 Merging of
over-segmented cells
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6.2 Support vector machine (SVM)

For feature classification, we used a nonlinear multi-class support vector machine (SVM)with a
radial basis function (RBF). We defined five classes based on the subjects’ age group: teens,
20s, 30s, 40s, and 50s. An SVM does not establish kernel function and cost gamma parameter
automatically. As a result, to determine the optimal parameter value for classification, we used a
grid-search method.

In addition, an SVM needs ground-truth data for training. To construct the ground truth for
our SVM model, we had five dermatologists investigate magnified skin images and determine
their skin age on the basis of wrinkle features alone. We used those data to train our SVM.
Through a blind test by the dermatologists, we found that our classification model achieved
accuracy greater than 90%.

7 Experiment

To evaluate the performance and accuracy of our scheme, we performed several experiments
on our prototype system using the SVM. Our results are presented in this section.

7.1 System architecture

Figure 12 depicts overall architecture of our prototype system. Our system utilizes three
different data: cell-related feature data, wrinkle-related feature data, and survey data. We first
performed some pre-processing of the microscopic skin images. This included contrast
stretching, noise reduction, and binarization. Next, we applied the watershed algorithm to
get the skeleton image of the wrinkles. We then used this skeleton image to extract all the

Fig. 12 System architecture
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wrinkle-related and cell-related features. For instance, to measure a wrinkle’s length, width,
and depth, we performed a cross-comparison between the skeleton and grayscale skin
images. For cell features, we used the skeleton image to detect all the cells in a fixed region.
After that, we detected all the over-segmented cells and merged them. Finally, we calculated
the total number of cells and the average cell area of the wrinkle features. Our scheme used
these features as input to an SVM in order to make a skin-age-classification model and
finally verify skin age as a result.

7.2 Experimental setup

To collect skin images from subjects, we used the PSI Well-Being Aphrodite-I with 60X
lens. The dataset consisted of 834 face, neck, and hand skin images from 238 male and
female subjects whose ages ranged from 10 years to 50 years.

Our prototype system was implemented in C#. It used the EmguCV [7] library for
processing microscope images and LibSVM [18] as the classifier to estimate skin age.
The system ran on an Intel® Core™ 2 Duo 2.8-Ghz CPU with 4 GB of memory and the
Microsoft Windows® 7 operating system.

To obtain the ground truth for the SVM, we solicited feedback from dermatologists on the
wrinkle features and dataset. The dermatologists investigated the skin images without any
prior information as to a subject’s age, gender or other details. Figure 13 shows the user
interface of our system.

Fig. 13 User interface
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7.3 Wrinkle features

Extracted wrinkle features are useful if they can show a trend over ages. Since we are not
skin experts, we had to verify our feature results with dermatologists, and we discovered that
the trend is based on age-related facts. Since we collected the skin images from Random
people, our trend result may have shown an abnormal graph. However, each result graph
showed some kind of trend over ages.

The wrinkle features extracted were length, width, depth, the number of cells, and average
area of cells. Figure 14 shows the trend of wrinkle length versus subject age. The y-axis
indicates the average pixel value of the wrinkle, while the x-axis indicates the ages of the
subjects. The region of observation for the microscopic camera was fixed for all the subjects:
however, since the skin’s elasticity decreases as people age, older subjects’ skins were stretched
out. In consequence, our graph indicates that the wrinkles length decreases as people age.

Figure 15 shows how wrinkle width varies with age for various parts of the body.
The width of hand wrinkles has a clearly discernible trend. As people get older, the
average width of their wrinkles increases. Wrinkles on the hand and neck show
different results because people get treatment or use cosmetic products to improve
their skin. In Fig. 15, the x-axis indicates subjects’ ages, while the y-axis indicates the
average wrinkle width in pixels.

Figure 16 shows the results obtained using the PMDA after the merging, which
counts the cells in the wrinkle image. As shown in the figure, the number of cells in

Fig. 14 Average length
of wrinkles versus age

Fig. 15 Average width
of wrinkles versus age
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the image decreases as the subject gets older. As we age, skin wrinkles get thicker
and wider, and hence, the number of cells in the image decreases. In the graph, the y-
axis indicates the number of cells, while the x-axis indicates subjects’ ages.

Figure 17 shows the average area of the merged cells for each subject. The graph shows a
steady increase in the average area as people get older. In other words, with aging, the
average area of the cells increases in the fixed region because the skin loses elasticity. In the
graph, the y-axis indicates the average area of the cells, while the x-axis indicates the ages of
the subjects.

7.4 Skin image classification

In this section, we discuss how we used the extracted features to train the SVM classifier to
evaluate skin age. Table 1 shows the collected dataset. We divided the dataset based on sex
and body part as aging of the skin is dependent on these two factors.

We then tested the relationship between the extracted features and environmental effi-
ciency. The result was tested with four different feature combinations: all features, all
features without cell features, all features without the age feature, and all features without
the age and wrinkle length feature. As previous results did not indicate a strong correlation
between the wrinkle length and aging, we decided to omit that feature. We executed the

Fig. 16 Number of cells in
wrinkle image versus age

Fig. 17 Average area of cells
versus age
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SVM for each body part to figure out which body part shows the strongest argument for skin
age. In Fig. 18, the y-axis indicates the accuracy of our scheme, while the x-axis indicates
various features used in the experiment.

As can be seen from the graph, the age of a subject strongly influences the result
of the classification. When a subject’s actual age was used as a part of the classifi-
cation, the result was a biased skin age based on the subject’s actual age. In contrast,
without the subject’s age as a parameter, skin age was estimated based solely on
extracted features, and the accuracy of our results decreased. Thus, it is clear that the
age feature is very important in skin age analysis even though it is essentially not a
wrinkle-related feature. This indicates that in reality, wrinkle-related features show
great diversity owing to various factors. Here, the age feature works as a filter and
can narrow down the target.

In this paper, we proposed a skin analysis scheme using the cell features with cell
merging as a feature for skin age classification. As can be seen from the results, when
we used the cell features our accuracy increased by as much as 10%, which indicates
that the cell features is a good method for verifying skin age.

The accuracy of the result may have been higher in male subjects than in female
subjects due to the fact that female subjects get more cosmetic treatment for their skin
than male subjects do. In addition, when we collected the dataset, female subjects
were wearing a little make-up, which might have had an effect on the final analysis
of their skin age.

Table 1 Statistics of
wrinkle dataset No. of images/Total of 834 images

face hand neck Total

Male 111 119 128 358

Female 142 164 170 476

Total 253 283 298 834

Fig. 18 Accuracy test results
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8 Conclusion

In this paper, we proposed a skin feature extraction and processing model for statistical skin age
estimation. To set up the model, we collected various wrinkle features from two-dimensional skin
images and had dermatologists estimate their age. They were used as ground truth for training the
SVM for age estimation. Wrinkle features we used include length, width, depth, average cell area
and number of cells. They all can be calculated automatically frommicroscopic skin images. The
trained SVM can be used as an objective standard model for estimating skin condition quanti-
tatively. Throughout extensive experiments, we observedmore than 90% accuracy in the skin age
estimation for major body parts, which shows the effectiveness of our model. Even though we
had dermatologists verify the ground truth for the SVM, we believe that the ground truth might
still include some personal bias. This could bemoderated by usingmore age-related skin features.
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