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Abstract In the era of ubiquitous computing, applications are emerging to benefit
from using devices of different users and different capabilities together. This paper
focuses on user-centric web browsing using multiple devices, where content of a web
page is partitioned, adapted and allocated to devices in the vicinity. We contribute
two novel web page partitioning algorithms. They differ from existing approaches
by allowing for both, automatic and semi-automatic partitioning. On the one hand,
this provides good automatic, web page independent results by utilizing sophisticated
structural pre- and postprocessing of the web page. On the other hand, these results
can be improved by considering additional semantic information provided through
user-generated web page annotations. We further present a performance evaluation
of our algorithms. Moreover, we contribute the results of a user study. These clearly
show that (1) our algorithms provide good automatic results and (2) the application
of user-centric, annotation-based semantic information leads to a significantly higher
user satisfaction.

Keywords Multi-device web browsing · Web page partitioning · Partitioning
algorithms · Web page annotation · Mobile and ubiquitous multimedia

1 Introduction

During the last decades an increasing diverse range of mobile devices, personal
computers, intelligent home and office appliances, as well as shared public devices
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have been reaching the mass market. Each device is specialized for one or multiple
usage scenarios, and they differ significantly from each other in its computing,
networking and I/O capabilities. Borrowing survival mechanisms from biology,
symbiotic environments suggest using devices of different specializations and ca-
pabilities together to overcome the limitations of single ones [25, 26]. Apart from
complementing the functionalities of multiple devices, using them together facilitates
the collaboration within groups and communities or with the public. In mobile and
ubiquitous environments, users move and change their location, and interact with
different people and a changing set of devices. In addition to the diversity of devices,
user interfaces of these applications have to take privacy, psychological and social
aspects into account. The following scenario exemplifies these challenges.

Mike arranged to go out with his friends after work. On his way, he uses his
smartphone to browse the urban information portal for parties and cinemas. Stand-
ing in front of an internet-enabled public information terminal, Mike views the map
showing the events’ locations on the large screen of the terminal. Simultaneously,
he interacts with his smartphone to navigate through the information. Mike’s friends
Alice and Tom have joined him. In order to evaluate the events in parallel, Mike
moves the event list to the smartphones of Alice and Tom. After a while, the friends
move the description of their favored pubs and cinemas to the screen of the terminal.
They jointly make a decision, and Mike volunteers to book movie tickets for all. The
login page of his bank is displayed on Mike’s smartphone, since his private, sensitive
information is involved.

In this paper, we contribute two novel web page partitioning algorithms which
support user-centric web browsing of existing web applications as described in our
scenario above. Our algorithms differ from existing approaches by allowing for
both, automatic web page independent partitioning and semi-automatic partitioning.
To the best of our knowledge, this is the first approach which combines both
techniques. On the one hand, our algorithms exploit structural information of the
web page contained in its Document Object Model (DOM). Mathematically, the
problem of splitting a web page into different, not necessarily complementary parts
for the different devices can be reduced to the problem of graph partitioning (i.e.
partitioning the DOM tree). On the other hand, with the emphasis on user-centric
multi-browsing, our algorithms utilize additional semantic information provided by
user-generated annotations. This is motivated by our previous user study [11] that
confirms the significant difference between annotations from different users even
for the same scenario.

The remainder of this paper is structured as follows. At first, we define require-
ments for architectures supporting multi-browsing and describe related work. Then,
we briefly introduce our architecture and our annotation vocabulary for the self-
containedness of this paper. An extensive description thereof can be found in our
previous publication. Afterwards, we present our main contribution of this paper,
two novel graph partitioning algorithms for multi-browsing and show how annota-
tions can be incorporated into the underlying mathematical framework. Moreover,
we contribute the evaluation results. Finally, we sum up and point out potential
future work.

2 Requirements & related work

There is a considerable body of research on collaborative, multi-device (web) appli-
cations [18, 24, 25] and usage [20]. Most of the proposed frameworks demonstrate
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their feasibility with one or several specially designed scenarios. Either significant
redesign of the framework is necessary to apply it to another scenario, or it is difficult
to evaluate whether a framework is appropriate to support another scenario.

In order to overcome this limitation, this paper focuses on (semi-)automatic parti-
tioning algorithms for multi-browsing applications. The main difference between our
approach and existing work is motivated by our observation that different people
prefer different ways of displaying information in symbiotic environments. Our
previous user study [11] has confirmed how opinions about semantically meaningful
and visually appealing web page distributions differ among users. Hence, we set the
following requirements for our architecture for multi-browsing applications:

– User-centric experience: It is important to provide a flexible architecture which
allows both developers and end users to express their different preferences,
for example by annotating existing web pages. In ubiquitous environments in
which the set of devices in the vicinity and situations dynamically change, the
architecture must allow end-users to dynamically change their preferences.

– Underlying partitioning algorithm: It is vital that the partitioning algorithms take
the annotated information into account to enable user-centric experiences. Nev-
ertheless, it can not be assumed that every web page is annotated. Consequently,
the partitioning algorithm shall be able to utilize heuristics to produce reasonable
results even without the annotations–fully automatically.

Probably closest to our approach is the one by Maekawa et al. [22, 23]. They
propose a system for collaborative web browsing, supporting multiple mobile users.
They have developed a partitioning algorithm which is based on the prominent FM
algorithm [13]. However, their algorithm relies on a pre-defined grouping of web
page elements. The grouping has to be generated manually in advance for every web
page which is to be browsed collaboratively. This system requires expert knowledge
about the web page and does not support a user-centric collaboration, which is an
important requirement for our approach. Moreover, this system focuses only on the
interaction between mobile devices. Neither adaptation for larger displays nor multi-
modal adaptation is considered.

Another approach focusing on distributing web application user interfaces across
multiple devices is WebSplitter [16]. It splits a web page among multiple devices
of multiple users. Additionally, it enables presenting different partial views of the
web page to different users. A separately required, manually generated annotation
file defines the rules for the splitting. This file also consists of information (e.g.
passwords) to perform user authentication. In our opinion, the intermingling of
different concerns (e.g. access control and adaptation) makes the annotation file
complex, and inflexible. Moreover, it seems that WebSplitter is specially designed for
one particular scenario in which a teacher presents a web-based lecture to a group of
students as opposed to our approach which is scenario independent.

Multibrowsing [19] is a system which allows moving web pages among multiple
displays. Its main drawback is the lack of distinction between private and public
artifacts, although both public and private displays have been explicitly mentioned.
Additionally, there is no concept to adapt the web pages in order to take the different
capabilities and constraints of the devices into account. Web pages can only be
completely moved from one device to another.
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Alapetite [2] explored a different approach for moving web pages across multiple
devices. He proposed a system for web session migration, relying on visual 2D
barcodes. Once a user wishes to continue browsing on a different device, a 2D bar
code containing the session information is generated and displayed on screen. The
code can be directly captured using e.g. a mobile phone’s camera. The web browser of
the new device then resumes the browsing session and a user can continue browsing.
While this is perfectly suited for a sequential “device handover”, the system does not
focus on using multiple devices together.

A more recent work by Wiltse and Nichols [28] adopts a rather task-centered
perspective on collaborative web browsing. Their PlayByPlay system records a user’s
browsing activity and communicates this in natural language over an instant messag-
ing channel to other collaborators; e.g. “Bob clicked on the ‘search’ button” [28]. The
collaborating users can thence replay actions on their own device. Moreover, users
can exchange clipped web page snippets over the very same messaging channel. The
overall system however does not focus on using multiple devices together, leveraging
for instance the capabilities of large public displays.

Similar to PlayByPlay, UsaProxy [4] supports synchronous remote web collabo-
ration between two users in different locations. Here, users share a browsing session
and both users have full control over their browsers. The focus of UsaProxy is the
synchronization of the views seen by the users.

CoSearch [3] is a system supporting co-located collaborative web search. The
system primarily targets desktop computers. Here, multiple users can concurrently
interact with the system. Each user has her own mouse. Additionally, users can pair
their mobile phones with the desktop computer, allowing them to use the mobile
phones as a mouse replacement. Users can also continue with the web search on
their own using their mobile devices. For this purpose, the system allows users to
move just the search results to their mobile phones.

Co-located collaborative web search was also investigated in WebSurface [27].
Tuddenham et al. proposed using a tabletop interface for collaborative interaction.
Their exploratory study revealed potential for a better information layout than when
two collaborators each have their own laptop or even share the same. They did
not investigate using other devices together with a tabletop for multi-device web
browsing.

Hattori et al. [17] propose a hybrid segmentation method for a single device. Their
algorithm utilizes structural information (e.g. content-distance) of a web page, and
page layout information. The aim is to generate visually appealing and usable web
layouts for mobile browsers. Supported by our previous user study, we doubt that the
generated layouts could be appreciated by a majority of users without considering
additional semantic information as well as user-specific preferences.

3 Architecture

Our architecture for multi-browsing applications is illustrated in Fig. 1. The multi-
browsing engine acts as a proxy lying between the web browsers of multiple devices
and the web server. It forwards a browser request to the web server, intercepts
the fetched response, and returns a multi-browsing enabled web page to the user.
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Fig. 1 Architecture
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Consequently, users have to configure their browser to use the proxy in order to be
able to use the multi-browsing application.

In the current implementation, the proxy dynamically injects JavaScript files into
the web-page fetched from the web server. On the one hand, the JavaScript files
insert a new toolbar (see Fig. 2) to support annotation, collaboration and registration
of users and their devices. On the other hand they interact with the components
of the multi-browsing engine. To allow for asynchronous interaction, AJAX [29] is
used on the client side, whereas Reverse AJAX [12] is employed on the server side.
Four databases are used to persistently store a) annotation files of the annotated
web pages, b) user created content, c) registered users and devices, and d) registered
collaborations respectively.

3.1 Core components

The Annotation Tool allows users to add, modify or remove annotations for the
currently browsed web page (see Fig. 3). Furthermore, it is able to generate a preview
which simulates the splitting of a web page using the added annotations. Hence, users
are able to study the impact of their annotations on a potential web page distribution.
Section 4 provides an overview over the available annotations.

Collaborations among users and their devices can be created or terminated using
the Collaboration Manager (see Fig. 4). The menu in Fig. 4 shows an active, ongoing
collaboration between John and Michael. There are two plus buttons beside Tom.
With the left plus button, Michael can create a new collaboration together with Tom.
With the right button, Michael can ask Tom to join the currently active collaboration
with John. Whenever interaction spaces are to be composed, members in the ongoing
collaboration need to permit the inclusion of new interaction spaces and decide
on the relationship between the new and existing interaction spaces. Whenever an
interaction space has been invited to a collaboration, the collaboration manager
component of the architecture also asks its owner if she wants to join.
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Fig. 2 Multi-browsing
menu on the iPhone OS

The multi-browsing menu facilitates collaboration requests (see Fig. 2). Using a
collaboration request, Michael can, for example, push the whole web page he is
viewing or only a selected part of it to John’s device. Alternatively, John is able to
actively pull the web page on Mike’s device to his own device.

The Collaboration Manager utilizes the service components to process collabora-
tion requests.

3.2 Service components

The Transformer component is responsible for adapting and splitting the web page.
It applies the graph partitioning algorithms which are the focus of this paper. When
splitting a web page, the transformer decides where to place a certain content. For
example, it avoids placing private annotated content to a public interaction space. If
a part of the information is of private category, its movement to any target device not
owned by the requesting user will potentially reveal a secret. The transformer warns
by initiating the dialog “This may disclose your private information. Do you want
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Fig. 3 Screenshot of the multi-browsing environment: the dynamically injected toolbar at the top
allows users to use both, annotation and multi-browsing tools. Moreover, available annotations are
highlighted

Fig. 4 Collaboration Manager on the iPhone OS
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to proceed?”. In this way the user has got the opportunity to dynamically adapt the
privacy level of her information.

The Security Service component is responsible for identifying and warning the
users of potential privacy violations. Whenever people use social or public devices to
access private information, or use public devices to access social information, privacy
will be violated. Displaying information on a device consumes its I/O resources.
Hence, when moving web content to a non-public device, its owner must grant the
access. The security service explicitly asks the user for permission.

The User Prof ile Service maintains user preferences. For example, a users prefers
the audio instead of the visual modality. Then the service determines whether a piece
of information exists in alternative representations and their locations. For instance,
the desired information in an audio format could be in the database of the user
created content.

4 Annotation

Web pages are usually rendered using pure (X)HTML by a web browser. Hence,
heuristics relying solely on a web site as-is can only benefit from information
encoded either explicitly or implicitly in the DOM. Further semantic information
can be extracted from the structure of a web page by applying rule-based heuristics.
Systems based on this technique typically rely on an unmanageable set of rules
[7, 14]. Whether the result of a web page partitioning, adaptation and distribution
is visually appealing lies in the eye of the beholder and is therefore highly subjective.
Heuristics are for instance unable to reliably decide whether content elements of
a web page shall be displayed exclusively on a particular device or redundantly
on every participating device. This problem can be addressed by manually adding
further semantic information through web page annotations which can then be
utilized by the corresponding heuristics (see the next section). Our previous user
study [11] shows the significant difference between annotations from different users
for the same scenario.

In addition to information about the semantic structure of a web page such as the
atomicity, grouping and ordering of information, we exploit semantic information
which is concerned with the mapping between the information embedded in a web
page and the collaborating devices rendering the information. The latter category
concerning the mapping is particularly important for multi-browsing. Table 1 lists
our annotation vocabulary for the second category which are now described in more
detail.

The CARE (Complementarity, Assignment, Redundancy, and Equivalence)
properties were originally introduced to map a piece of information to a set of

Table 1 Annotation
vocabulary

Type Vocabulary

Content Complementary, redundant,
Distribution Assigned (local, remote), equal
Priority Optional, recommended, mandatory
Privacy Public, social, private
Alternatives Add, modify and delete content
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modalities [5]. We use them to describe how content is being distributed among the
participating devices.

– Redundancy and complementarity: When a piece of information is to be dis-
played repeatedly on various devices, it can either be displayed in the same
way on every device (Redundancy) or adaptively, depending on the devices’
characteristics (Complementarity). For example, a static map can be provided
for mobiles in parallel to JavaScript-enabled maps suitable for capable devices,
or voice output serves as an alternative to textual output for multi-modal
web pages.

– Assignment and equivalence: When selecting a device in an ensemble to display
a piece of information, the hardware and software requirements for the devices
to properly render the information must be taken into account. A piece of
information must be assigned to a certain device (Assignment), since others in
the ensemble do not fulfill these requirements, or all the devices in the ensemble
offer equivalent choices for the rendering (Equivalence).

Information can be prioritized using three different importance categories: op-
tional, recommended and mandatory. Content categorized as mandatory will be
displayed under any circumstances, even on tiny devices like mobiles. Content of
the category recommended will preferably be displayed. However, content marked
as optional will only be displayed, if there is sufficient space, e.g. when desktop
computers or larger devices are available.

Our annotation vocabulary also provides means to describe the privacy levels
of web page elements and of participating devices. The spectrum of publicness
is subdivided into three regions [9]: public, social and private. In real life, the
boundaries between private, social and public are neither rigid nor fixed. People
fluidly shift their artifacts from personal to public and the many shades in between
[15]. We allow users to individually annotate the privacy levels. Moreover, users can
dynamically adapt the privacy levels by interacting with the security service of our
architecture.

Alternatives (e.g. the same content presented in different modalities) can be cre-
ated both by the developers and users. In the latter case, the alternative information
belongs to “user created content”, emphasizing content created by non-expert users
at runtime.

5 Page partitioning

This section presents our main contribution, two novel web page partitioning algo-
rithms. These algorithms allow for automatic, web page independent partitioning.
Moreover, our algorithms are able to utilize user-generated web page annotations
as introduced in the previous section to further improve the automatically generated
partitionings. The rest of this section is structured as follows. We first show how the
problem of partitioning a web page can be formulated mathematically. Afterwards,
we introduce important preprocessing steps and show how annotations are taken into
consideration. Next, the algorithms are presented. Last, we outline the postprocess-
ing steps which also benefit from user-generated annotations.
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5.1 Problem formulation

Each web page is represented by a graph, its DOM tree. Graph partitioning algo-
rithms build the theoretical foundation for partitioning a web page for collaborative
browsing. The partitioning of objects of a particular set (e.g. the vertices of a graph)
can be seen as a discrete classification problem. The objective is to classify these
objects under certain constraints, therefore assigning at least one class (or label) to
each object.

The metric labeling problem, originally formulated in [21], defines an optimization
problem which asks for a discrete labeling of minimum total cost. A precise definition
is given in the following.

Definition 1 (Metric Labeling Problem) Let V be a set of n ∈ N objects which are to
be classified. Let L be a set of k possible labels. Then f : V → L is called a labeling
of V over L. The cost of assigning a certain label l to an object u is denoted by
c : V × L → R

+
0 . The pairwise relationship of the objects can be expressed in terms

of a graph G = (V, E). An edge e = (u, v) indicates that u and v are related. The
similarity of u and v is measured by the distance d : L × L → R

+
0 . d(·, ·) is a metric

over L. This leads to the total cost Q( f ) of the labeling:

Q( f ) =
∑

u∈V

c(u, f (u)) +
∑

e=(u,v)∈E

d( f (u), f (v)). (1)

The goal is to find a discrete labeling of minimum total cost.
For web page partitioning, the labeling problem can be illustrated as follows. Let

G = (V, E) be the graph induced by the DOM of an arbitrary web page. Let N be
a subset of V and u, v ∈ N. The original web page shall be viewed on, for example,
two devices. Thus, let L be a set of labels with |L| = 2 and α, β ∈ L, representing the
two devices respectively. The functions in the above definition can be interpreted as
follows:

– c(u, l) for all u ∈ N and l ∈ L defines the non-negative cost of displaying a vertex
u ∈ N on device l ∈ L. If c(u, l) is small, only low cost has to be paid to display u
on the device assigned to label l. However, if c(u, l) is high, then one will have to
pay high cost by labeling u with l.

– d( f (u), f (v)) defines the edge weight representing the relatedness of two con-
nected vertices u and v. If u and v are related, they shall be displayed on the same
device. Consequently, high cost shall be paid when related vertices are labeled
differently.

The metric labeling problem is MAX SNP-hard [10] and therefore unlikely to have
a polynomial-time approximation scheme. Hence, we have enhanced two existing
approximation algorithms to support the particular demands of collaborative web
browsing. The first algorithm is based on the correlation clustering problem, which
is a specialization of the metric labeling problem. The second algorithm is a graph-
theoretic approach which is based on energy minimizing graph cuts. Moreover, the
challenging task is to determine the weights c(·, ·) and d(·, ·) in (1). We apply three
steps to transform a web page into sub-pages for collaborating devices, namely, the
preprocessing, the actual partitioning and the postprocessing step.
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5.2 Preprocessing

Using all vertices of a DOM as input for the graph partitioning algorithms would lead
to a combinatorial explosion, especially for larger web sites such as Amazon.com. We
decided to use only the leaf nodes of a DOM. Leaf nodes mostly contain links, images
and text elements which are the most important content elements. Leaf nodes which
only contain style information (e.g. typeface) are left out.

Preprocessing depends on the utilized algorithm. Our first algorithm based on
correlation clustering requires a complete graph as input. Hence the leaf nodes
have to be transformed into a complete graph. The second algorithm uses a set
of neighboring vertices. The original tree is traversed in postorder, leafs are being
extracted and put in a sequential list.

The cost functions c(·, ·) and d(·, ·) in (1) are mapped to edge weights of the
corresponding graph which is used by our partitioning algorithms. In order to
determine these weights, we introduce the function ϕ in the following definition.
The actual computation of the edge weights depends on the utilized algorithm and is
therefore described in the subsequent sections.

ϕ utilizes structural information by considering the vertices’ tree distances. More-
over, additional semantic information provided by annotations is taken into account
by mapping them to a series of real numbers in R|[0,1].

Definition 2 Let d : L × L → R
+
0 be a metric over a label set L. Let G = (V, E) be

a graph. Let further u, v ∈ V, δ ∈ N and (si)i∈{1,...,n}, si ∈ R|[0,1] and n ∈ N. Then let
ϕ : V × V → R|[0,1] be defined as

ϕ (u, v) =
{

min(1, duv + cohuv / 10) if duv �= 0,
0 else,

(2)

with cohuv := (
1 + ∑

i=1,...,n si
)
(δ − dist(u, v)).

ϕ relates the initial metrical value duv := d( f (u), f (v)) (i.e. the initial edge weight)
for two vertices u and v in V to their cohesion cohuv . It consists of the term δ −
dist(u, v) which limits the tree distance of two vertices in the DOM by δ. Under the
constraint that dist(u, w) + dist(w, v) < δ for every u, v, w ∈ V, ϕ does not alter the
metric imposed by d(·, ·) 1. When two vertices are too far away from each other (i.e.
dist(u, v) ≥ δ), the corresponding edge weight is not increased. Each si defines a piece
of semantic information (e.g. a local assignment annotation with value 1.0) for either
u or v. This allows to further control the actual edge weight.

ϕ is self-regulating due to the fact that highly cohesive pairs of vertices (i.e.
vertices with small tree distance) are evaluated to higher values. Less cohesive
pairs of vertices are mapped to lower values contrarily. An example illustrating the
application of ϕ for a specific algorithm is shown in Section 5.3.

5.3 Algorithm based on correlation clustering

An approximation algorithm based on correlation clustering has been proposed by
Ailon et al. [1]. It treats the set of labels as indistinguishable (c(u, α) ≡ 0) for all

1Proof omitted in this version due to space limitations.

http://www.Amazon.com
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vertices u and labels α. Hence, it only matters whether a pair of vertices is labeled
using the same label or different labels. The metric d(·, ·) can then be formulated as
follows for any vertices u, v ∈ V and edge weight ϕ(u, v) ∈ R|[0,1]:

d( f (u), f (v)) =
{

ϕ(u, v) if f (u) �= f (v),
1 − ϕ(u, v) if f (u) = f (v).

(3)

This leads to the modification of (1) for u, v ∈ V as

Q( f ) =
∑

f (u) �= f (v)

ϕ(u, v) +
∑

f (u)= f (v)

1 − ϕ(u, v). (4)

Our approximation algorithm for this problem is based upon those presented
in [1, 8]. Our approach differs first by utilizing ϕ(·, ·) (see Definition 2) to compute
the edge weights and therefore considering additional semantic information. Second,
the number of Clusters n is known a-priori.

Figure 5 exemplifies the computation of the edge weights for a small tree G =
(V, E) with leaf nodes u, v and w. These leaves are being used to generate a complete
graph which serves as the input for Algorithm 1. The edge weights of the complete
graph are initialized with 0.5 (step 1). Let δ = 4 in (2) and assume that the graph
has neither been annotated (i.e. si = 0 for all i = 1, . . . , n), nor labeled before.
Then the edge weight for (u, v) is d( f (u), f (v)) = ϕ(u, v) = min(1, 0.5 + 0.2) = 0.7;
analogously d( f (u), f (w)) = d( f (v), f (w)) = min(1, 0.5) = 0.5 due to dist(u, w) =
dist(v,w) = 4 in G. Consequently, the relationship between u and v is evaluated to a
higher value because they are siblings in G.

The algorithm starts with a weighted, complete graph K = (V, E) and a cluster
threshold t ∈ R|[0,1] (e.g. 0.6) as input values (see Algorithm 1). It outputs a clus-
tering (Ci)i=1,...,n, with n being the total number of labels. A clustering (Ci)i=1,...,n

corresponds to a labeling f in a natural way. A cluster Ci is just a set of vertices
with the same label. Consequently, the terms labeling and clustering can be used
interchangeably.

The clusters are generated as follows (cf. Algorithm 1). The algorithm uses a
temporary set W, being a copy of V, for the computational process (step 1). This way,
the original set of vertices V is not altered. While W is non-empty and i < n, a vertex
v ∈ W is selected uniformly at random, removed from W and added to a new cluster
set Ci (step 3 to 5). Every vertex u ∈ W with e = (v, u) ∈ E and d( f (u), f (v)) ≥ t
is added to Ci and removed from W as well (step 6 to 11). In other words, each

Fig. 5 Example computation
of edge weights
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Algorithm 1 CorrelationClustering
Input: Weighted, complete graph K = (V, E); threshold t.
Output: Clustering (Ci)i=1...n.

1: W ← V
2: while W �= ∅ and i < n do
3: Choose v ∈ W uniformally at random.
4: W ← W\{v}
5: Create new cluster Ci = {v}
6: for all u ∈ W such that ∃ e = (v, u) ∈ E do
7: if d( f (v), f (u)) ≥ t then
8: W ← W\{u}
9: Ci ← Ci ∪ {u}

10: end if
11: end for
12: i ← i + 1
13: end while
14: Cn ← W
15: return (Ci)i=1,...,n

vertex u adjacent to v will be added to the same cluster Ci, if u and v are related to
a certain extent (i.e. d( f (u), f (v)) ≥ t). When the creation of Ci is completed, the
algorithm continues for i = i + 1 and with another randomly selected vertex in W
(step 12 and step 2 onwards). Finally, remaining vertices in W are being copied to the
last cluster Cn. Since this algorithm is randomized (see step 3), several independent
runs of Algorithm 1 are performed and the clustering with the least objective value
Q( f ) is chosen.

5.4 Algorithm based on graph cuts

The correlation clustering algorithm permits only one label assignment per vertex
at a time. In contrast to this, the following approximation algorithm for (1) allows
to assign labels to various vertices simultaneously by pairwisely exchanging labels.
This process is a so-called α-β-swap [6], where α and β are labels, corresponding
to a particular device. These swap moves are performed using graph cuts in a flow
network which consists of the labels as terminals and the node set V containing the
neighboring vertices. Internally, the terminals are also leaf nodes which have been
preliminary assigned a label. The edge weights wu,v ∈ R|[0,1] for u, v ∈ V are defined
as follows:

wu,v =

⎧
⎪⎨

⎪⎩

1
2 d( f (u), f (v)) if u, v ∈ V\{α, β},
c(u, f (u)) if v ∈ {α, β},
c(v, f (v)) if u ∈ {α, β},

(5)

whereas d( f (u), f (v)) := ϕ(u, v) and for s ∈ R|[0,1]

c(u, f (u)) =
{

s if u is annotated,
ϕ(u, v) else.

(6)
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Fig. 6 Example
flow network β

α

u v w

In case a neighbor vertex is annotated, the annotation is again mapped to a real
number s and assigned as an edge weight. This technique allows for instance to
enforce an assignment of a vertex to a particular label. Figure 6 illustrates a swap
move for a flow network with source α, sink β and a set of neighboring vertices
{u, v, w} which were originally labeled β.

An α-β-swap is performed by computing the minimum cut over the flow network
(dashed line in Fig. 6). Each cut edge to either source or sink indicates an assignment
to the corresponding label. In case of Fig. 6 the edges (α, u), (α, v) and (w, β) are cut.
Hence, both u and v are assigned to α and w is labeled with β. By applying these
swap moves for every pair of labels, an approximation for (1) is being calculated.2

Algorithm 2 is based upon [6] and uses α-β-swaps to find a local minimum for
the total cost of a discrete labeling. In contrast to [6], our algorithm utilizes a set of
neighboring vertices N (i.e. {u, v} ∈ N ⇒ u and v are related) and a set of labels L
with |L| = m ∈ N as input. Moreover, annotations are encoded in the edge weights
(see (5) and (6)). The algorithm outputs a labeling f for which Q( f ) is a local
minimum. First, each vertex in N is labeled with the same label α ∈ L; α can be
chosen arbitrarily (step 1 to 3). Next, for each pair of labels {α, β} ⊂ L, α-β-swaps
are performed over N on the basis of the current labeling f (step 5.1).

If the labeling f ∗, yielding the lowest cost over all possible α-β-swaps from f ,
results in a lower total cost Q( f ∗) ≤ Q( f ), f ∗ is set as the new labeling of N
(step 5.2). This process is repeated iteratively until the total cost Q( f ) can not be
further reduced.

5.5 Postprocessing

In the postprocessing step, the labeling of the leaf nodes is used to label the complete
DOM. The DOM is traversed from the leafs to the root in level-order. The most
common label in each father node’s subtree is assigned to the father itself. Figure 7
(step 1) shows an example DOM tree whose leaf nodes have been labeled by applying
a graph partitioning algorithm. Next, a label is assigned to the father node of a, c and

2Proof omitted in this version due to space limitations.
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Algorithm 2 GraphCuts
Input: Set of vertices N, set of labels L
Output: Labeling f .

1: for all {u} ∩ N �= ∅ do
2: f (u) ← α, for any fixed α ∈ L
3: end for
4: success ← false
5: for each pair of labels {α, β} ⊂ L

5.1: f ∗ = arg min Q( f̂ ) among f̂ within one α-β-swap of f
5.2: if Q( f ∗) < Q( f ) then

f ← f ∗
success ← true

end if

6: end for each
7: if success then
8: goto 4
9: end if

10: return f

e. Both c and e are labeled grey and only a is labeled with a square. Grey, being the
dominant label in this subtree, is assigned to the father node of a, c and e (step 2).
The same procedure is repeated for the father node of n and o which is therefore
labeled with a square. Note, that the root node is not labeled, since it groups the
content elements of a web page and must be present in every cluster.

A further traversal of the DOM is required to subdivide the tree into different,
not necessarily disjunctive partitions. When performed naively, this may result in an
improper removal of content elements as shown in Fig. 8. The subdivision starts with
the labeled DOM tree as shown in Fig. 7 (step 2). The tree is traversed in preorder,
once per label. First, a cluster C1 consisting of grey nodes is being generated. Each
time, when the label of a child node differs from its father’s label (grey), the child is

Fig. 7 Applying a labeling
to the original DOM

Step 1

a c e n o

Step 2

a c e n o
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Fig. 8 Example, content
accidently removed

C1

c e

C2

n o

being removed. C1 is the result of removing node a and the right subtree of the root
vertex. This procedure is repeated to construct C2. Since a is neither contained in
C1, nor in C2 it is not displayed on any device. Simply adding a to C2 would actually
solve this problem. However, the presentation of a additionally depends on that of
its father. Hence, its father must not be removed from the tree to ensure a proper
display (see Fig. 9).

When partitioning the labeled DOM, annotated CARE properties are considered.
For example, if node o were to be displayed redundantly, it would have to be added
to C1. Moreover, its father would have to be added to C1 as well (see Fig. 10).

6 Evaluation

We have implemented the two partitioning algorithms with the additional pre- and
postprocessing steps, and integrated them into our architecture for multi-browsing
applications. A controlled experiment has been conducted to evaluate and compare
the algorithms both in terms of user satisfaction for the generated web page distri-
bution and concerning their runtime performance. In particular, the impact of the
annotations on results of the algorithms was investigated.

6.1 Method

We recruited 14 participants (10 male, 4 female) on their willingness to participate.
We gave them a short introduction to multi-browsing in general, as well as our multi-
browsing engine. The storyline for their tasks was based on the scenario introduced
at the beginning of this paper: Mike and Alice want to browse the web together.
Mike uses a smartphone, whereas Alice is in front of a large touchscreen. Mike
wants to use his smartphone to present certain information contained in a web site to
Alice by exploiting the large touchscreen. The participants were asked to take over
Mike’s role.

Fig. 9 Example, content
duplicated

C1

c e

C2

a n o
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Fig. 10 Example, content o
displayed redundantly

C1

c e o

C2

a n o

The procedure consisted of two parts which are described in the following. In the
first part, they got printed versions of the following three web pages:

– Google Maps:3 A map application like Google is a typical example of a web
application which benefits from using multiple devices. The presentation of the
map can be adapted to the rendering devices. Furthermore, a remote control
pattern can be easily applied to this application.

– 101cookbooks.com:4 This web site has a complex table-based layout. It provides
lots of different information (e.g. recipes and images) in different modalities. The
web page provides recipes, images and content created with Adobe Flash.

– Travel information portal of the German Railways:5 The portal features a large
form and hence provides various input possibilities. Consequently, it is inter-
esting to see how people deal with such a complex application in symbiotic
environments.

The assignment to the participants was to subdivide each print of the web pages
into different, not necessarily disjunctive segments. The participants had to decide
where the segments should be displayed; either on Mike’s smartphone, on the large
touchscreen or on both. They sketched their decisions on the prints. An example
annotation of one of our participants for the travel information portal of the German
Railways is shown Fig. 11. At this stage, the participants were not influenced by the
way the multi-browsing system performs the web page distribution.

In the second part, the multi-browsing system was utilized to perform the distri-
bution of the web-pages among both devices. One after another, both algorithms
were used, utilizing no annotations. The evaluation order was fully counterbalanced
for each participant, regarding both, algorithms used and web pages partitioned. The
participants had to compare these results with their own paper-based segmentations.
Thus, they decided whether the computed results met their expectations and rated
these results with grades from 1 (meaning “def icient”) to 10 (meaning “very good”).

Next, the web pages have been annotated to improve the results. When three
annotations had been added to the web page, we paused the annotation process
and used our multi-browsing system to compute the results for the annotated web
pages. The participants had to rate these results again. This allowed us to evaluate
the improvement compared to the previous result. The process ended when at most
12 annotations were added to the web page or when a result entirely fulfilled a user’s
expectations and was therefore graded with ten.

3http://maps.google.de/maps?output=html&q=heidelberg
4http://www.101cookbooks.com/pies_and_tarts
5http://reiseauskunft.bahn.de

http://maps.google.de/maps?output=html&q=heidelberg
http://www.101cookbooks.com/pies_and_tarts
http://reiseauskunft.bahn.de
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Fig. 11 User annotated print, two areas of the input form are marked as redundant. The participant
noted that the rest of the web page should only be displayed on the mobile device

Fig. 12 Average user satisfaction per iteration
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After the user study, each participant filled out a questionnaire with nine state-
ments. Each statement was graded with a five point Likert scale (one meaning “I
totally agree” and five meaning “I totally disagree”).

6.2 User acceptance and annotation impact

Figure 12 shows the average user satisfaction for the three web sites respectively
(CClus designates correlation clustering and GCuts designates our graph cuts algo-
rithm). The term iteration designates the pauses of the whole process. No annotations
were used in the first iteration. From the second iteration onwards, at most three
user-generated annotations were added per iteration as described above. Each figure
compares the utilized algorithms to each other. In the first iteration without any
annotations, correlation clustering has been rated with grades from 3.9 to 4.8. Hence,
the generated web page distributions were acceptable for the participants.

In all but one case, correlation clustering provided much better initial results
than the graph cuts algorithm. Interestingly, correlation clustering was not able to
generate satisfying results for the travel information portal of the German Railways.
The information portal consists of various form elements which are semantically
related and need to be displayed on the same device. For example, if the input
fields for the starting location and the destination are displayed on different devices,
continuity is being lost and people get confused. Such elements were assigned to
different devices using correlation clustering.

Annotations were added in the second iteration. Their impact on the user
satisfaction was significant for both algorithms (p < 0.01). Only the difference in
user satisfaction using correlation clustering for the travel information portal was
not significant. This is because the correlation clustering algorithm ignored several
annotations, although annotations are strongly binding and must not be ignored. The
cause for this indeterministic behavior remains to be investigated.

6.3 General user feedback: questionnaire

The questionnaire was subdivided into four different main categories. In the category
regarding multi-device browsing as a feature, 11 out of 14 participants think that
browsing the web collaboratively is useful in general. All of the participants think that
the presented system is useful. Nevertheless, only ten would like to use the system
frequently.

Regarding the implemented algorithms, a total of nine participants think that
the web page distributions generated by our algorithms without any annotations
were satisfying. Twelve participants were content with the time the algorithms took
to calculate a result. However, correlation clustering is not suitable for larger web
pages, due to its complexity. For instance, two participants remarked that correlation
clustering took too long to generate a web page distribution for 101cookbooks.com.

The participants also had to state whether additional annotations improved the
results of our algorithms. Nine out of 14 are of the opinion that adding annotations
improved the results significantly. Additionally, fourthink that annotations improved
the generated results to a certain extent. However, only six participants would take
the time to annotate web pages. Eight participants think that annotating a web page
is too time consuming and the results provided solely by the algorithms without any

http://www.101cookbooks.com/
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Table 2 Comparison of
algorithm runtime for two
devices

Nodes Algorithm 1 Algorithm 2

apple.com 40 83 ms 36 ms
maps.google.de 42 110 ms 18 ms
reiseauskunft.bahn.de 106 2731 ms 83 ms
101cookbooks.com 207 18607 ms 145 ms
microsoft.com 213 20472 ms 127 ms
ebay.com 254 39099 ms 196 ms
tagesschau.de 476 >60000 ms 254 ms
amazon.com 483 >60000 ms 299 ms

annotations satisfied their needs. But Fig. 12 shows that after adding about three to
six annotations, even for larger web pages like 101cookbooks.com, users were nearly
satisfied with the results. Hence, only little effort is required to improve the results.

6.4 Runtime performance

We have measured the runtime performance of our algorithms for partitioning
various web pages of different sizes for two devices. Table 2 shows an excerpt of
the evaluated web pages, where Algorithm 1 is correlation clustering and Algorithm
2 is graph cuts.

The number of nodes designates the relevant leaf nodes of the corresponding
DOM tree. The partitioning was computed on the server-side using a 2,4 GHz dual
core processor. For Google Maps with 42 leaf nodes, correlation clustering and graph
cuts required 110 ms and 18 ms respectively. For the travel information portal with
106 leaf nodes, correlation clustering and graph cuts required 2731 ms and 83 ms
respectively. For 101cookbooks.com with 207 leaf nodes, correlation clustering and
graph cuts required 18607 ms and 145 ms respectively. We can conclude that graph
cuts clearly outperforms the correlation clustering algorithm, in particular when the
size of a web page increases (e.g. number of leaf nodes ≥ 100). Since web pages shall
be partitioned dynamically to take the prevailing context (e.g. the number of devices)
into account, graph cuts shall be preferred over correlation clustering for large web
pages to avoid long response time.

7 Conclusion

In this paper, we contribute two novel web page partitioning algorithms which
differ from existing partitioning algorithms by allowing for both, automatic and
semi-automatic partitioning. These algorithms provide good automatic, web page
independent results, as shown by our user study. The results can be improved
significantly by taking user-generated annotations into account.

The first algorithm is based on the correlation clustering problem, while the sec-
ond one is based on energy minimizing graph cuts. Both algorithms utilize weighted
graphs. We have defined a function which determines the edge weights using both
structural information contained in a web page’s DOM tree, and additional semantic

http://apple.com
http://maps.google.de
http://reiseauskunft.bahn.de
http://101cookbooks.com
http://microsoft.com
http://ebay.com
http://tagesschau.de
http://amazon.com
http://www.101cookbooks.com/
http://www.101cookbooks.com/
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information provided by annotations. Applying the algorithms naively may result in
the deletion of content elements of a web page. Hence, the postprocessing of the
generated partitionings is a crucial step for the eventual presentation on different
devices.

A user study has been conducted to evaluate the user satisfaction for web page
distributions generated by the two algorithms. The correlation clustering algorithm
provided better initial results for web pages which have not been annotated before.
However, the quality of results generated by the graph cuts algorithm improved
significantly by adding annotations. Correlation clustering has a much higher com-
plexity than the graph cut algorithm. Moreover, it requires several runs to find
a satisfactory solution due to using randomization. Consequently, concerning the
runtime performance, it is obviously outperformed by the graph cuts algorithm, when
the number of leaf nodes of a DOM exceeds a certain threshold.

We have presented our architecture supporting user-centric multi-browsing. Its
annotation environment allows both developers and end users to individually an-
notate existing web-pages. In contrast to existing approaches, our architecture does
not require web pages with static, pre-defined annotations. As an adaptation to the
changing context, end users can dynamically change their annotations to trigger a
new partitioning of the web pages.

In summary, the implemented architecture and the partitioning algorithms fulfill
the requirements we set before. As future work, we will consider adjusting the
behavior of our partitioning algorithms (e.g. by using different δ values in (2)), as
well as adaptively selecting the partitioning algorithm based on, e.g. the number of
leaf nodes of a concrete web page.

References

1. Ailon N, Charikar M, Newman A (2005) Aggregating inconsistent information: ranking and
clustering. In: STOC ’05: proceedings of the thirty-seventh annual ACM symposium on theory
of computing. ACM, New York, NY, USA, pp 684–693. doi:10.1145/1060590.1060692

2. Alapetite A (2010) Dynamic 2d-barcodes for multi-device web session migration including mo-
bile phones. PUC 14:45–52. doi:10.1007/s00779-009-0228-5

3. Amershi S, Morris MR (2008) Cosearch: a system for co-located collaborative web search.
In: Proceeding of the twenty-sixth annual SIGCHI conference on human factors in computing
systems, CHI ’08. ACM, New York, NY, USA, pp 1647–1656. doi:10.1145/1357054.1357311

4. Atterer R, Schmidt A, Wnuk M (2007) A proxy-based infrastructure for web application sharing
and remote collaboration on web pages. In: Proc. of the 11th International Conference on Human
Computer Interaction (INTERACT)

5. Bouchet J, Nigay L, Ganille T (2004) ICARE software components for rapidly developing
multimodal interfaces. In: Proc. of the International Conference on Multimodal Interfaces (ICMI
2004)

6. Boykov Y, Veksler O, Zabih R (2001) Fast approximate energy minimization via graph cuts.
IEEE Trans Pattern Anal Mach Intell 23(11):1222–1239. doi:10.1109/34.969114

7. Cai D, Yu S, Wen J, Ma W (2003) Extracting content structure for web pages based on visual
representation. In: Proc.5 th Asia pacific web conference, pp 406–417

8. Chakrabarti D, Kumar R, Punera K (2008) A graph-theoretic approach to webpage segmenta-
tion. In: WWW ’08: proceeding of the 17th international conference on World Wide Web. ACM,
New York, NY, USA, pp 377–386. doi:10.1145/1367497.1367549

http://doi.acm.org/10.1145/1060590.1060692
http://dx.doi.org/10.1007/s00779-009-0228-5
http://doi.acm.org/10.1145/1357054.1357311
http://dx.doi.org/10.1109/34.969114
http://doi.acm.org/10.1145/1367497.1367549


230 Multimed Tools Appl (2013) 62:209–231

9. Coles A, Deliot E, Melamed T, Lansard K (2003) A framework for coordinated multi-modal
browsing with multiple clients. In: Proc. of the 12th international conference on World Wide
Web (WWW ’03). ACM Press, New York, NY, USA, pp 718–726

10. Dahlhaus E, Johnson DS, Papadimitriou CH, Seymour PD, Yannakakis M (1992) The com-
plexity of multiway cuts (extended abstract). In: STOC ’92: proceedings of the twenty-fourth
annual ACM symposium on theory of computing. ACM, New York, NY, USA, pp 241–251.
doi:10.1145/129712.129736

11. Ding Y, Huber J (2008) Designing multi-user multi-device systems—an architecture for multi-
browsing applications. In: Proc. of the 7th international ACM conference on mobile and ubiqui-
tous multimedia, pp 8–14

12. Direct Web Remoting (2011) http://www.directwebremoting.org. Accessed 2 Jan 2012
13. Fiduccia CM, Mattheyses RM (1988) A linear-time heuristic for improving network partitions.

In: 25 years of DAC: papers on twenty-five years of electronic design automation. ACM, New
York, NY, USA, pp 241–247. doi:10.1145/62882.62910

14. Florins M, Vanderdonckt J (2004) Graceful degradation of user interfaces as a design method
for multiplatform systems. In: Proc. 9th International Conference on Intelligent User Interfaces
(IUI 2004)

15. Greenberg S, Boyle M, Laberge J (1999) PDAs and shared public displays: making personal
information public, and public information personal. PUC 3(1/2):54–64

16. Han R, Perret V, Naghshineh M (2000) WebSplitter: a unified XML framework for multi-
device collaborative web browsing. In: CSCW ’00: proceedings of the 2000 ACM confer-
ence on computer supported cooperative work. ACM Press, New York, NY, USA, pp 221–
230

17. Hattori G, Hoashi K, Matsumoto K, Sugaya F (2007) Robust web page segmentation for mobile
terminal using content-distances and page layout information. In: WWW ’07: proceedings of the
16th international conference on World Wide Web. ACM, New York, NY, USA, pp 361–370.
doi:10.1145/1242572.1242622

18. Johanson B, Fox A, Winograd T (2002) The interactive workspaces project: experiences with
ubiquitous computing rooms. IEEE Pervasive Computing 1(2):67–74

19. Johanson B, Ponnekanti S, Sengupta C, Fox A (2001) Multibrowsing: moving web content
across multiple displays. In: UbiComp ’01: proceedings of the 3rd international conference on
Ubiquitous Computing. Springer, London, UK, pp 346–353

20. Kane S, Karlson A, Meyers B, Johns P, Jacobs A, Smith G (2009) Exploring cross-device web
use on pcs and mobile devices. In: INTERACT 2009. Springer, pp 722–735

21. Kleinberg J, Tardos É (2002) Approximation algorithms for classification problems with pairwise
relationships: metric labeling and markov random fields. J ACM 49(5):616–639. doi:10.1145/
585265.585268. http://portal.acm.org/ft_gateway.cfm?id=585268&type=pdf&coll=GUIDE&dl=
GUIDE&CFID=2588277&CFTOKEN=23748779

22. Maekawa T, Hara T, Nishio S (2006) A Collaborative web browsing system for multiple mobile
users. In: PERCOM ’06: proceedings of the fourth annual IEEE international conference on Per-
vasive Computing and Communications (PERCOM’06). IEEE Computer Society, Washington,
DC, USA, pp 22–35

23. Maekawa T, Uemukai T, Hara T, Nishio S (2005) Content description and partitioning methods
for collaborative browsing by multiple mobile users. In: Proc. of the 16th international workshop
on Database and Expert Systems Applications (DEXA’05)

24. Magerkurth C, Tandler P (2002) Interactive walls and handheld devices—applications for a smart
environment. In: Proc. of the workshop collaboration with interactive walls and tables, held in
conjunction with UbiComp’02

25. Myers B (2001) Using handhelds and PCs together. Commun ACM 44(11):34–41
26. Raghunath M, Narayanaswami C, Pinhanez C (2003) Fostering a symbiotic handheld environ-

ment. Comput 36(9):56–65
27. Tuddenham P, Davies I, Robinson P (2009) Websurface: an interface for co-located collabo-

rative information gathering. In: Proceedings of the ACM international conference on Inter-
active Tabletops and Surfaces, ITS ’09. ACM, New York, NY, USA, pp 181–188. doi:10.1145/
1731903.1731938

28. Wiltse H, Nichols J (2009) Playbyplay: collaborative web browsing for desktop and mobile
devices. In: Proceedings of the 27th international conference on human factors in computing
systems, CHI ’09. ACM, New York, NY, USA, pp 1781–1790. doi:10.1145/1518701.1518975

29. Yahoo User Interface Library (2011) http://developer.yahoo.com/yui/. Accessed 2 Jan 2012

http://doi.acm.org/10.1145/129712.129736
http://www.directwebremoting.org
http://doi.acm.org/10.1145/62882.62910
http://doi.acm.org/10.1145/1242572.1242622
http://doi.acm.org/10.1145/585265.585268
http://doi.acm.org/10.1145/585265.585268
http://portal.acm.org/ft_gateway.cfm?id=585268&type=pdf&coll=GUIDE&dl=GUIDE&CFID=2588277&CFTOKEN=23748779
http://portal.acm.org/ft_gateway.cfm?id=585268&type=pdf&coll=GUIDE&dl=GUIDE&CFID=2588277&CFTOKEN=23748779
http://doi.acm.org/10.1145/1731903.1731938
http://doi.acm.org/10.1145/1731903.1731938
http://doi.acm.org/10.1145/1518701.1518975
http://developer.yahoo.com/yui/


Multimed Tools Appl (2013) 62:209–231 231

Jochen Huber is a doctoral researcher at Technische Universität Darmstadt, Germany. He is
a scholar in the research training group on Feedback-based Quality Improvement in E-learning
funded by the German Research Foundation (DFG). Jochen holds degrees in both computer
science and mathematics from Technische Universität Darmstadt. He teaches Interaction Design
at Fachhochschule Mainz, Mayence, Germany. Jochen is a member of ACM, ACM SIGCHI, ACM
SIGMM and the German Informatics Society (GI e.V.).

Yun Ding is senior consultant at RIB Software AG. The major work of this article has been
conducted when she was project manager and researcher at European Media Laboratory GmbH,
Heidelberg, Germany. She received her PhD and MS in Computer Science from University of
Stuttgart, Germany and Technische Hochschule Karlsruhe, Germany, respectively.


	Adapting web pages using graph partitioning algorithms for user-centric multi-device web browsing
	Abstract
	Introduction
	Requirements & related work
	Architecture
	Core components
	Service components

	Annotation
	Page partitioning
	Problem formulation
	Preprocessing
	Algorithm based on correlation clustering
	Algorithm based on graph cuts
	Postprocessing

	Evaluation
	Method
	User acceptance and annotation impact
	General user feedback: questionnaire
	Runtime performance

	Conclusion
	References




