
Multimed Tools Appl (2013) 64:731–755
DOI 10.1007/s11042-011-0970-3

Multi-view codec with low-complexity encoding
for Distributed Video Coding

Lucian Ciobanu · Luís Côrte-Real

Published online: 6 January 2012
© Springer Science+Business Media, LLC 2012

Abstract The low-complexity encoding, as fundamental requirement of Distributed
Video Coding, relies on performing the bulk of computation at decoder, including
tasks as the generation of side information and particularly, inter-camera registration
in the case of multi-view systems with complete-overlapped views and free motion
of the cameras (e.g., video surveillance). In Ciobanu and Corte-Real (Multimedia
Tools Appl 48(3):411–436, 2010) we introduced a codec-independent solution for
such tasks at decoder. In this paper, we present a multi-view Wyner–Ziv codec
(IWZ) designed for the architecture and scenarios from Ciobanu and Corte-Real
(2010) (e.g., free motion of the cameras, no a priori knowledge of the instant
camera positions, no feedback channel), based on transform domain (DCT), block-
based coset coding. We aimed to achieve a compromise between the low encoder
complexity and the rate-distortion performance. A detailed evaluation is presented
for comparison with conventional coding (Intra 4×4 and Intra 16×16). Practical
results show a better overall performance of the proposed codec at low bitrates.

Keywords Distributed Video Coding (DVC) · Distributed Source Coding (DSC) ·
Wyner–Ziv (WZ) · SSIM (Structural SIMilarity) · Intra 4×4 · Intra 16×16 ·
Discrete Cosine Transform (DCT) · CAVLC (Context-Adaptive Variable-Length
Coding) · Huffman Coding · Coset Coding

1 Introduction

Distributed Video Coding (DVC), as a particular paradigm of Distributed Source
Coding (DSC), has been one of the most active research areas in the signal processing

L. Ciobanu (B) · L. Côrte-Real
Faculdade de Engenharia da Universidade do Porto/INESC Porto, Porto, Portugal
e-mail: lciobanu@inescporto.pt

L. Côrte-Real
e-mail: lreal@inescporto.pt

732 Multimed Tools Appl (2013) 64:731–755

community in the last years, providing a revolutionary new perspective over the
conventional video compression (e.g., the MPEGx, H.26x families). It emerged in
the favourable context of increasing distributed architectures, due to the technical
advances from the last decade, enabling the deployment of cheap, low-power sensing
devices widely spread over large areas, from hand-held digital cameras to the
omnipresent multimedia cellular phones.

The roots of Distributed Source Coding date back to the 1970s when the
information-theoretic results of Slepian–Wolf in 1973 for lossless coding with side
information at decoder side [21], and then in 1976 extended by Wyner–Ziv for lossy
coding [27], have shown the conceptual importance of this distributed paradigm. As
stated in theory, the Distributed Source Coding enables the same coding efficiency
for architectures with independent encoders (no communication between each
other) and joint decoding as in the case the encoders are jointly encoding. Con-
sequently, when applied to Distributed Video Coding, it is an essentially reversed
paradigm that enables the shift of the bulk of computation from encoder to decoder,
as opposed to the conventional (e.g., H.26x, MPEGx), non-distributed coding.

Presently, most of the techniques rely on the channel coding principles due to
their relationship with the Slepian–Wolf coding. As indicated in [9], there can be
transmitted only the parity bits of one binary sequence X based on the statistical
dependence between X and its noisy version (Y). At decoder it can be used the
side information Y jointly with the correlation model to successfully decode the
initial source X and therefore, it can be performed a channel coding regarded as
Slepian–Wolf coding. An equivalent approach is to divide the alphabet of X into
cosets, the encoder then sends the syndrome (index of the coset that X belongs to)
and the decoder decides upon the most probable guess among the codewords in that
respective coset by comparing them to Y. In this approach the syndromes can be seen
also as parity bits, showing the relationship of this method with the channel coding
principles [9]. A brief introduction to the main distributed source coding techniques
is made in [9].

The work on the Distributed Source Coding problem was started by Pradhan and
Ramchandran in 1999, since then more improved channel coding techniques were
developed based on iterative channel decoding, most of them using turbo codes [5,
8, 13, 24, 29]. Other works rely on Low-Density Parity-Check (LDPC) codes as a
powerful alternative to turbo codes for Distributed Source Coding [14, 23, 25, 26, 28],
some authors suggest that in certain circumstances they might achieve better results
than turbo codes. Either way, such state of the art codecs can come close to the
Slepian–Wolf bound in lossless Distributed Source Coding. Some reference codecs
from the literature are presented next.

The PRISM codec, as introduced in [18, 19], performs a block-based coset coding.
It first classifies the correlation noise structure for each block thus contributing
to the formation of the temporal predictors, a two-dimensional Discrete Cosine
Transform (DCT) is then applied to the current block, the DCT coefficients are
subsequently quantized with a step size proportional with the standard deviation of
the correlation model. The syndrome encoding is performed, the space of quantized
codewords being partitioned using trellis codes. A refinement quantization stage
takes place as part of the encoding process in order to reach a target reconstruction
quality by further re-quantizing the coefficients. Finally, the encoder sends a Cyclic
Redundancy Checksum (CRC) check of the quantized sequence in order to help

Multimed Tools Appl (2013) 64:731–755 733

the decoder choose the right decoded sequence when searching over the space of
candidate predictors. One CRC match indicates the successful decoding.

Girod et al. presented in [1] a pixel-domain Wyner–Ziv codec based on turbo
codes operating on the whole frame. The odd frames (X2i+1), considered key frames,
are not coded and are assumed to be perfectly known at decoder. The even frames
(X2i) are independently coded as follows: the frame is scanned line by line and each
pixel value is quantized using 2M levels, then the resulted symbols are fed into the
turbo encoder and the generated parity bits are stored in a buffer. A subset of these
parity bits are sent to decoder upon request. At decoder, the side information for
each frame to be decoded is achieved by temporal interpolation between the two
adjacent key-frames (X2i−1 and X2i+1). This is used jointly with the received parity
bits sub-set in order to decode the frame. If the decoder cannot reliably decode the
symbols it requests more parity bits from encoder. When an acceptable probability
of symbol-error is met the decoding is considered successful.

Guo et al. propose in [10] a generic architecture for multi-view Distributed Video
Coding where the video is captured as a two-dimensional image matrix. The scheme
was improved later in [11]. Within the predefined multi-view system each frame can
be encoded as either a conventional Intra-frame (I frame) or as a Wyner–Ziv frame.
The authors use the basic idea proposed in [2] in which the Wyner–Ziv frame is
encoded using turbo codes and decoded with side information generated from the
reference frames and furthermore, they propose a more flexible algorithm for side
information generation based on both temporal and view-directional corrections
in order to achieve high prediction accuracy. Wavelet transform is additionally
employed on the Wyner–Ziv frame coding for exploiting the spatial correlation and
at the same time to benefit from the high-order statistical correlation.

More references about DVC codecs can be found in [3, 4, 6, 17, 22].
Unlike other multi-camera codec approaches from the literature [10, 11, 15, 16],

in this paper we present a multi-view Wyner–Ziv codec which doesn’t require any
specific camera arrangement, i.e., it enables the free motion of the cameras in the
scene and requires no a priori knowledge of the instant camera positions. It is
designed for real-life multi-camera environments (e.g., video surveillance) and the
scenarios described in [7] (e.g., complete-overlapped views).

In our previous work [7] we introduced a simplified two-view scenario with one
moving camera (the target camera), as illustrated in Fig. 1. The reference camera
performs conventional encoding (e.g., H.26x, MPEGx) of its perceived view (the
“scene” view) which is used by decoder to provide the side information, while the
target camera conventionally encodes only the first frame and applies Wyner–Ziv
encoding for the remaining frames. This paper is focused on the Wyner–Ziv coding
from the target camera (starting with the second frame).

The codec was developed at INESC Porto and in this paper it is referred as IWZ
(INESC’s Wyner–Ziv codec). It relies on transform domain (DCT), block-based
coset coding. It also requires an offline training stage with low-processing.

We aimed to achieve a compromise between the low-complexity encoding and
the rate-distortion performance when compared with the conventional coding (Intra
4×4 and Intra 16×16). Practical results show a better overall performance of the
proposed codec at low bitrates. Moreover, the rate-distortion performance increases
significantly in scenarios with slow (target) camera movement, specific to the consid-
ered environments like video surveillance (see Section 4).

734 Multimed Tools Appl (2013) 64:731–755

Fig. 1 Two-camera scenario with complete-overlapped views

Section 2 contains a detailed description of the IWZ codec. A methodology for
evaluation of the encoder complexity is proposed in Section 3. The achieved results
are presented in Section 4. Finally, the conclusions are drawn in Section 5.

2 Multi-view Wyner–Ziv codec (IWZ)

The architecture of the IWZ encoder is shown in Fig. 2. Each captured frame (in
YUV 420 format) from the target camera is divided in equal blocks of predefined
size (e.g., 8×8), i.e., the same block size is used for dividing both the luma and the
two chroma components. Each block, in the raster-scan order within the current
component, is individually managed by the same processing sequence, as described
next.

All the DCT coefficients for the current block are determined, i.e., BW H
2

coefficients, where BW H is the predefined value of the block width and block height
(e.g., 64 coefficients for 8×8 block size, BW H = 8). In the implementation of the
IWZ codec we reused the code of the two-dimensional integer DCT from [12].
Consequently, only two block sizes are permitted: 8×8 and 4×4. In this paper we used

Fig. 2 Architecture of the IWZ encoder

Multimed Tools Appl (2013) 64:731–755 735

for evaluation purposes the 8×8 block size (see Section 4). The DCT coefficients are
subsequently rearranged into a one-dimensional array by the zig-zag scan specified
in [20], sections 8.5.6 and 8.5.7, for 4×4 and 8×8 integer DCT, respectively. The first
(low-frequency) K coefficients are further on processed in the order given by the
array, i.e., from the DC (zero-frequency) coefficient to the highest frequency AC
coefficient. The trailing coefficients up to BW H

2 are discarded. The number of DCT
coef f icients to be processed (K) is predefined (e.g., 32 for 8×8 block size). These
steps are performed by the DCT module (see Fig. 2).

All K coefficients are uniformly quantized by a predefined value (e.g., 1000),
called quantization levels (QL), in the Quantizer module (see Fig. 2). For each
quantized coefficient (CC) is generated the corresponding syndrome (Syn) in the
Syndrome Generator module, as follows: Syn = CC % SL, where SL is a pre-
defined parameter called syndrome levels (e.g., 64) and % is the modulo operation
(the remainder, on division of CC by SL).

Therefore, an integer array of syndromes is initially generated for each frame. The
number of syndromes (NS) from array is equal for each frame, as follows:

NS = 1.5
FW
BW H

F H
BW H

K (1)

where FW and F H represent the predefined frame width and frame height, e.g.,
NS = 57,600 syndromes for 320×240 frame size, 8×8 block size and 32 DCT
coefficients per block. In Section 4 we used 320×240 frame size for evaluation of
the IWZ codec and the YUV 420 format for the raw video sequences. Consequently,
the total number of blocks for a frame is 1.5 times bigger than the number of blocks
for the luma component (see (1)).

The arrangement of syndromes within the array is given (in this order) by: (1) the
Y-U-V order of the frame components, (2) the raster-scan order of blocks within
each component and finally, (3) the order of the zig-zag scan of DCT coefficients for
a block.

The array of syndromes is finally entropy coded and the resulted bitstream is
sent to decoder (see the two instances of Entropy Coding module from Fig. 2). For
higher efficiency of the codec, starting with the second frame, only the syndrome
differences are entropy coded (see the Syndrome Dif fs module), i.e., Syn(i) =
Syn(i) − Syn′(i), i = 1, NS, where Syn is the array of syndromes for the current
frame and Syn′ is the array for the previous frame. At decoder, these syndromes
are restored in the Syndrome Reconstruction module (see Fig. 3).

Fig. 3 Architecture of the IWZ decoder

736 Multimed Tools Appl (2013) 64:731–755

The entropy coding algorithm for one frame is depicted next.

Begin algorithm
Read the array of syndromes, the Huffman table for

syndromes (the syndrome table) and the Huffman table
for zero-runs (the zero-runs table)

Prepare an empty bit array representing the bit coding
of the current frame

Select the first (leftmost) element (from the array
of syndromes) as the pivot element

While pivot has not reached the last (rightmost)
position yet
Get the Huffman code corresponding to the value of

the current element (from the syndrome table);
add this bit sequence (code) to the bit array

Count the number of trailing zeros (NTZ) succeeding
this element (the zero-run for this syndrome);
get the Huffman code corresponding to NTZ
(from the zero-runs table); add this bit
sequence (code) to the bit array

Move the pivot (rightwards) to the next non-zero
element (after skipping NTZ elements)

Endwhile

Send the bit array to decoder; it represents the
Wyner-Ziv encoding of the current frame

End algorithm

The bitstream sent to decoder comprises an alternation between the Huffman
code of a non-zero syndrome and the Huffman code of the number of trailing zeros
succeeding it (the length of the zero-run). Therefore, the entropy coding algorithm
uses two Huffman tables which are previously generated in an offline training stage
by two tools called Syndrome Statistics and Zero-Runs Statistics. Nevertheless, they
perform a low-complexity processing comparable with the complexity of the encoder
(see Section 4). The architectures of the two offline tools are shown in Figs. 4 and 5.

The two tools have the same architecture as the encoder (see Figs. 4 and 5), except
for the entropy coding which is replaced by the generation of the Huffman tree
(performed by the Huf fman module). The additional module Zero-Runs Generator
from Fig. 5 counts the number of trailing zeros after each non-zero element. Each

Fig. 4 Architecture of the Syndrome Statistics offline tool

Multimed Tools Appl (2013) 64:731–755 737

Fig. 5 Architecture of the Zero-Runs Statistics offline tool

offline tool generates two Huffman tables, one for syndromes and one for syndrome
differences. Therefore, four Huffman tables are generated in the offline training
stage. All four tables will be used by both the encoder and decoder. Examples of
Huffman tables are shown in Tables 1, 2, 3 and 4.

On encoding are used simultaneously two Huffman tables at a time, depending on
the frame number, i.e., for the first frame are used the Huffman tables for syndromes
(Tables 1 and 3) and for the remaining frames are used the tables for syndrome
differences (Tables 2 and 4). See the two Entropy Coding instances from Fig. 2.

In Fig. 3 is illustrated the architecture of the decoder. The contained modules
perform the inverse operations corresponding to those described for encoder (e.g.,
the Syndrome Reconstruction module simply adds the received difference to the
previous syndrome, in order to restore the current syndrome). The same order of the
syndromes is used (as for encoder). For each block, the remaining DCT coefficients
up to BW H

2 are set to 0 (zero). Additionally, the decoder also performs a parallel
processing for generating the quantized DCT coefficients for the side information
frames (the side information based on the reference frames, as introduced in [7]),
in synchronization with the target frames. This parallel processing is identical with
the one performed by encoder up to (not including) the generation of the syndromes
(see Fig. 2).

For each received syndrome from the target camera, the decoder tries to estimate
the most probable value of the respective (quantized) DCT coefficient. To this end,

Table 1 Example of Huffman
table for syndromes

Syndrome Huffman code

−5 11010000010
−4 1101000000
−3 11010001
−2 11011
−1 00
1 01
2 11001
3 110001
4 110101
5 1110
6 1011
7 100
8 1010
9 1111
10 110000
11 1101001
12 110100001
13 11010000011

738 Multimed Tools Appl (2013) 64:731–755

Table 2 Example of Huffman
table for syndrome differences

Syndrome difference Huffman code

−9 010101010000111
−8 010101010000110
−7 010101010000100
−6 010101010001
−5 010101011
−4 0101011
−3 01011
−2 0100
−1 00
0 01010101001
1 1
2 011
3 010100
4 01010100
5 0101010101
6 0101010100000
7 010101010000101

Table 3 Example of Huffman
table for zero-runs based on
syndromes

Zero-run length Huffman code

0 01
1 001
2 1100
3 1011
4 1111
5 10001
6 11011
7 100110
8 101000
9 11101
10 100100
11 11010
12 1000011
13 10000101
14 10000100
15 1001110
16 101001
17 10000001
18 10000010
19 100101111
20 1001111
21 1001010
22 101010
23 100101110
24 100000000
25 10010110
26 100000001
27 1010110
28 1010111
29 11100
30 10000011
31 000

Multimed Tools Appl (2013) 64:731–755 739

Table 4 Example of Huffman
table for zero-runs based on
syndrome differences

Zero-run length Huffman code

0 00
1 011
2 0100
3 0101
4 1010
5 1110
6 10010
7 10110
8 11011
9 11000
10 11110
11 11010
12 100010
13 110011
14 1111101
15 1100100
16 1000000
17 1000001
18 1011100
19 10001101
20 1011101
21 1011110
22 1001110
23 10000111
24 10011010
25 10000101
26 10001110
27 10000100
28 10011111
29 1100101
30 1111110
... ...

the decoder uses as reference the corresponding DCT coefficient from the reference
camera, i.e., from the same frame number, YUV component, block position and
DCT coefficient index. This decision process is performed by the DCT Coef f icient
Reconstruction module (see Fig. 3), as follows.

For a given DCT coefficient from the reference camera (CR), the decoder deter-
mines the nearest candidate to CR, among all the candidates whose remainders on
division by SL are equal to the received syndrome from the target camera (Syn). The
corresponding implementation of the reconstruction method is detailed as follows. A
variable Q is initially computed as the integer result of the division of CR by SL.

Q =
[

CR

SL

]
(2)

Then are determined the two nearest candidates (C1 and C2) to CR, the closest
candidate greater or equal to CR and the closest candidate smaller or equal to CR:

C1 = Q ∗ SL + Syn (3)

740 Multimed Tools Appl (2013) 64:731–755

C2 = (Q + sign(CR − C1)) ∗ SL + Syn, (4)

where

sign(x) =
⎧⎨
⎩

−1, i f x < 0
0, i f x = 0
1, i f x > 0

, (5)

e.g., for CR = 17, Syn = 3 and SL = 8, the two candidates are C1 = 19 and C2 = 11.
Finally, the closer of the two candidates is chosen (e.g., in the example above,

19 is the closer value to 17) as the most probable value of the original DCT
coefficient encoded by the target camera: if ABS(CR − C1) ≤ ABS(CR − C2) then
the candidate C1 is chosen, or C2 otherwise. ABS(x) represents the absolute value
of x.

In the implementation of the IWZ codec (the encoder, decoder and the two
offline tools) it is considered a common set of configuring parameters: frame width—
FW, frame height—F H, block size—BW H , number of DCT coef f icients per block—
K, quantization levels—QL, syndrome levels—SL. In the evaluation presented in
Section 4, the QL parameter was varied in order to obtain various points of rate-
distortion.

3 Evaluation methodology for encoder complexity

The low-complexity encoding is a fundamental feature of Distributed Video Coding.
Therefore, we present in this section a methodology for complexity evaluation of the
IWZ encoder, introduced in Section 2. To this end, we consider as references two
conventional encodings with low-complexity: Intra 4×4 and Intra 16×16, specified in
the H.264/AVC standard [20]. For more accuracy of the evaluation, regardless of the
eventual implementation optimizations that any encoder may have, in this section
we propose a detailed assessment based on counting all the arithmetic operations
(e.g., additions, subtractions, multiplications, divisions, etc.) and conditions (e.g., flag
testing, checking the input parameters, etc.) employed for processing one frame. The
relatively low complexity of the three encodings (IWZ, Intra 4×4 and Intra 16×16)
makes it an achievable objective and therefore, it motivated the authors to propose
this solution.

Due to the considered 8×8 block size for evaluation of the IWZ coding, it will be
referred as “IWZ 8×8”.

The total number of operations (arithmetic operations and conditions) for
processing one frame can be counted in two steps, as follows: first, the bulk of
computation is evaluated in Section 3.1 by counting all the operations from the high-
level encoding (e.g., DCT transform, intra prediction, syndrome generation, etc.) up
to (not including) the entropy coding. The number of operations per frame is always
the same for each of the three encodings (IWZ 8×8, Intra 4×4 and Intra 16×16),
regardless of the input video sequence. Consequently, the operations are manually
counted. Secondly, the operations from entropy coding are counted in Section 3.2.
Due to the usual variation of the complexity for this component, i.e., the total number
of operations depends on the input data (for each of the three encodings), this partial

Multimed Tools Appl (2013) 64:731–755 741

evaluation is automatically conducted by dedicated implementations and the average
number of operations for six video sequences (see Section 4) is considered the actual
result.

Finally, the sum of the two results (the total number of operations per frame) for
each encoding is considered the evaluated complexity.

3.1 Evaluation of the high-level encoding

The evaluation of each of the three encodings is based on the H.264/AVC
specification from [20], either partially (for IWZ encoder) or totally (Intra 4×4 and
Intra 16×16), as discussed below. Although [20] specifies the decoding process, the
same number of operations, either arithmetic operations or conditions, is expected
for the corresponding high-level encoding.

We first consider an example in order to discuss the proposed evaluation method.
In section 8.5.13.2 from the H.264/AVC standard [20] is specified the 8×8 integer
DCT. Table 5 shows the partial counting (by groups of equations) of the operations
required by this process. It also enumerates the types of arithmetic operations (see
the “Counted operations” column) and specifies how many times each group of
equations is repeated (see the “Multiplication factor” column). The total number
of operations is also provided.

The total number of arithmetic operations is 896, as follows: 352 additions (+), 256
subtractions (−), 224 bitwise right shifts (>>) and 64 raisings of 2 to a power (2X).
Note that in the process defined in section 8.5.13.2 from [20] there is no condition
defined and also, there are no sub-processes to be recursively called. However, these
elements are usually present in other sections from [20] and they are fully considered
in this evaluation. Moreover, for each encoding (IWZ 8×8, Intra 4×4 and Intra
16×16) are only considered those execution paths (subset of operations from a given
section) from [20] that apply for the specified input parameters, described below.

The complexity of the high-level encoding for IWZ, as total number of operations
per frame, can be evaluated as follows. First, are identified those input parameters
which influence the number of operations and, specific values are chosen for this par-
ticular evaluation: frame size—320×240, YUV format—YUV 420, block size—8×8
and, number of used DCT coef f icients per block (K)—32. Given these parameters,
the total number of 8×8 blocks to be processed for the luma component is 40 × 30 =
1,200 blocks, and for each of the chroma components is 20 × 15 = 300 blocks.
Therefore, the total number of 8×8 blocks to be processed per frame is 1800. Each
block is evaluated by the following procedure.

Table 5 Example of operation counting for section 8.5.13.2 (the specification of 8×8 integer DCT)
from [20]

Group of equations Counted operations Multiplication factor

Eq. (8-362) ... (8-369) 10 +, 8 −, 6 >> 8x (for i = 0..7)
Eq. (8-370) ... (8-377) 4 +, 4 −, 4 >> 8x (for i = 0..7)
Eq. (8-378) ... (8-385) 4 +, 4 − 8x (for i = 0..7)
Eq. (8-386) ... (8-393) 10 +, 8 −, 6 >> 8x (for j = 0..7)
Eq. (8-394) ... (8-401) 4 +, 4 −, 4 >> 8x (for j = 0..7)
Eq. (8-402) ... (8-409) 4 +, 4 − 8x (for j = 0..7)
Eq. (8-410) 1 +, 1 “2X ”, 1 >> 64x (for i, j = 0..7)
Total 896 operations (352 +, 256 −, 224 >>, 64 “2X ”)

742 Multimed Tools Appl (2013) 64:731–755

for each of the 1800 blocks of size 8x8 do
manually count (recursively) the number of operations from

section 8.5.13.2 (the 8x8 integer DCT) => 896
arithmetic operations (352 +, 256 -, 224 >>, 64 "2^X"),
no condition found

quantize the 32 DCT coefficients => 64 arithmetic
operations (32 +, 32 >>)

additional tests (implementation specific) => 96 conditions
syndrome generation => 32 arithmetic operations (32 %)

endfor

syndrome difference => 57600 arithmetic operations (57600 -)
is the first frame ? => 1 condition
additional tests (implementation specific) => 2 conditions

Consequently, for the IWZ encoder we counted a total of 2,016,003 operations
per frame, as follows: 1,843,200 arithmetic operations (691,200 +, 518,400 −, 57,600
%, 460,800 >>, 115,200 “2X”) and 172,803 conditions. Note that the other input
parameters of IWZ encoder (syndrome levels—SL, quantization levels—QL) do not
have any influence on complexity evaluation. Therefore, they were not mentioned in
this evaluation.

We used the same methodology for the evaluation of Intra 4×4 and Intra 16×16
encodings. The considered parameters are: frame size—320×240, YUV format—
YUV 420, coding mode of each macroblock pair (the MBAFF flag)—frame mode,
intra prediction mode of each macroblock (for both luma and chroma)—DC mode,
baseline prof ile (level 5.1) [20]. We aimed to simplify the evaluation by adopting
the same DC prediction mode for all the 4×4 blocks from all the macroblocks, for
both luma and chroma. Moreover, as specified in [20], the DC prediction mode can
always be applied for any 4×4 block. In this paper we also considered the disabled
deblocking filter (for Intra 4×4 and Intra 16×16) for an objective comparison with
IWZ 8×8 (see Section 4). However, the deblocking filter can be applied to the IWZ
decoder without affecting the low-complexity of the IWZ encoder.

For both encodings the total number of macroblocks (of 16×16 size) to be
processed per frame is 20 × 15 = 300.

The procedure for evaluation of Intra 4×4 is described next.

for each of the 300 macroblocks do
manually count (recursively) the number of operations from

section 8.3 (intra prediction, transform decoding for
luma, picture construction) => 3165 arithmetic
operations (2135 +, 84 -, 245 *, 245 /, 179 %,
32 <<, 229 >>, 16 "2^X"), 842 conditions

manually count (recursively) the number of operations from
section 8.5.4 (transform decoding for chroma, not
explicitly called in section 8.3) => 2947 arithmetic
operations (780 +, 644 -, 289 *, 162 /, 416 %,
264 <<, 264 >>, 128 "2^X"), 1409 conditions

endfor

Multimed Tools Appl (2013) 64:731–755 743

The total number of operations per frame for Intra 4×4 encoding is 2,508,900, as
follows: 1,833,600 arithmetic operations (874,500 +, 218,400 −, 160,200 ∗, 122,100 /,
178,500 %, 88,800 <<, 147,900 >>, 43,200 “2X”) and 675,300 conditions.

Finally, the Intra 16×16 is evaluated by the following procedure.

for each of the 300 macroblocks do
manually count (recursively) the number of operations

from section 8.3 (intra prediction) => 12114
arithmetic operations (10340 +, 175 -, 358 *,
470 /, 319 %, 452 >>), 1429 conditions

manually count (recursively) the number of operations
from section 8.5 (transform decoding and picture
construction for luma, not explicitly called in
section 8.3) => 6156 arithmetic operations
(1713 +, 1362 -, 578 *, 386 /, 835 %, 513 <<,
513 >>, 256 "2^X"), 2713 conditions

manually count (recursively) the number of operations
from section 8.5.4 (transform decoding for chroma,
not explicitly called in section 8.5) => 2947
arithmetic operations (780 +, 644 -, 289 *,
162 /, 416 %, 264 <<, 264 >>, 128 "2^X"),
1409 conditions

endfor

The total number of operations per frame for Intra 16×16 encoding is 8,030,400, as
follows: 6,365,100 arithmetic operations (3,849,900 +, 654,300 −, 367,500 ∗, 305,400
/, 471,000 %, 233,100 <<, 368,700 >>, 115,200 “2X”) and 1,665,300 conditions.

3.2 Evaluation of the entropy coding

The same configuration for each encoding is assumed for evaluation of entropy
coding (see Section 3.1).

We used our implementation of the IWZ encoder, described in Section 2, in order
to automatically count the number of operations per frame. The average for six video
sequences (see Section 4) was considered the actual evaluation: 115,200 arithmetic
operations (112,223.67 +, 2,976.33 −) and 250,758.53 conditions.

For Intra 4×4 and Intra 16×16 encodings, we implemented a dedicated encoder
by rigorously following the H.264/AVC specification from [20], both the high-level
decoding from section 8.3 (e.g., intra prediction, residual frame, DCT transform, etc.)
and the CAVLC (Context-Adaptive Variable-Length Coding) decoding from sec-
tion 9.2. Our encoder (automatically) counts only the operations from the CAVLC
encoding.

For CAVLC from Intra 4×4 we counted 172,217.83 arithmetic operations
(37,861.67 +, 83,901.17 −, 5,764.33 ∗, 10,923.67 <<, 17,378.67 >>, 10,455.67 &,
3,956.67 |, 1,976.17 !) and 449,588.5 conditions, where the operations &, | and !
represent the binary AND, binary OR and binary NOT, respectively. For

744 Multimed Tools Appl (2013) 64:731–755

Fig. 6 The evaluated encoding complexity per frame: arithmetic operations in a, conditions in b and
total operations in c

CAVLC from Intra 16×16 the counting results are: 1,341,483 arithmetic operations
(156,620.67 +, 485,149.67 −, 53,532 ∗, 151,024.83 <<, 206,640.67 >>, 199,717.67 &,
59,664.5 |, 29,132.33 !) and 1,683,590.67 conditions.

In Section 4 are illustrated the graphical results for the entire evaluation. More
details and discussions are also provided.

4 Results

We present the overall results for the evaluation methodology described in Section 3.
Figure 6 illustrates the general complexity of the three encodings (Intra 16×16, Intra
4×4 and IWZ 8×8), as total number of arithmetic operations and/or conditions per
frame. We used the IWZ 8×8 encoding as reference for comparison with Intra 16×16
and Intra 4×4 and therefore, the overall complexity of the IWZ 8×8 encoder is 1.31
times lower than Intra 4×4 and 4.64 times lower than Intra 16×16 (see Fig. 6c).

The overall complexity is discriminated in Fig. 7 between high-level encoding and
entropy coding, as discussed in Section 3. The entropy coding represents 27.36%,
19.86% and 15.36% of the overall complexity for Intra 16×16, Intra 4×4 and
IWZ 8×8, respectively, as illustrated in Fig. 7c. The complexity of Intra 16×16 is

Fig. 7 The discriminated encoding complexity per frame, between high-level encoding and entropy
coding: arithmetic operations in a, conditions in b and total operations in c

Multimed Tools Appl (2013) 64:731–755 745

significantly higher than Intra 4×4 and IWZ 8×8, for both components (high-level
encoding and entropy coding). Although Intra 16×16 uses the same entropy coding
method (the CAVLC encoding) as Intra 4×4, the input data (i.e., the generated
DCT coefficients, as specified in [20]) is considerably different and the complexity
of CAVLC encoding increases significantly (4.86 times). This shows the variation of
the complexity for the entropy coding component, as discussed in Section 3.

Fig. 8 Detailed arithmetic operations per frame: for Intra 16×16 in a, for Intra 4×4 in b and for IWZ
8×8 in c

746 Multimed Tools Appl (2013) 64:731–755

Fig. 9 Examples of original frames, one from each sequence: “Ribeira” in a, “Serralves” in b,
“Castelo de Queijo” in c, “Sé do Porto” in d, “Rotunda da Boavista” in e and “Tourists” in f

The overall arithmetic operations per frame presented in Fig. 6a are classified by
operation type in Fig. 8. The following types were found in our analysis: additions
(ADD), subtractions (SUB), multiplications (MULT), divisions (DIV), modulo
(MOD)—reminder of a division, raisings of 2 to a power (2X), bitwise left shift
(LSH), bitwise right shift (RSH), binary AND (BAND), binary OR (BOR), binary
NOT (BNOT). As illustrated in Fig. 8c, the first three operation types found in the
IWZ 8×8 encoder (ADD, SUB, RSH) represent a major proportion (91.17%) of all
the arithmetic operations. These three are among the fastest operation types on most

Fig. 10 The rate-distortion performance for the “Ribeira” sequence: for 10 fps sampling in a and for
simulated slow camera movement in b

Multimed Tools Appl (2013) 64:731–755 747

Fig. 11 The rate-distortion performance for the “Serralves” sequence: for 10 fps sampling in a and
for simulated slow camera movement in b

implementations, i.e., the number of clock cycles required is much lower, as opposed
to operations like multiplications or divisions.

We also present the evaluation results for a dataset composed by six video
sequences, as follows: “Ribeira”, “Serralves”, “Castelo de Queijo”, “Sé do Porto”,
“Rotunda da Boavista” and “Tourists”. Each sequence has 320×240 frame size, 100
frames, 10 fps, and was sub-sampled and extracted from original sequences having
320×240 frame size, 30 fps. Figure 9 illustrates examples of original frames, one from
each sequence.

This dataset was used for evaluation of the entropy coding complexity for each of
the three encodings (see Section 3.2).

Fig. 12 The rate-distortion performance for the “Castelo de Queijo” sequence: for 10 fps sampling
in a and for simulated slow camera movement in b

748 Multimed Tools Appl (2013) 64:731–755

Fig. 13 The rate-distortion performance for the “Sé do Porto” sequence: for 10 fps sampling in a
and for simulated slow camera movement in b

The rate-distortion performance evaluation is shown in Figs. 10a, 11a, 12a, 13a,
14a and 15a. The results for Intra 16×16 and Intra 4×4 were generated by the
H.264/AVC reference software (JM 16.2) [12] with the configurations described in
Section 3. The IWZ 8×8 coding generally shows a better performance than Intra
4×4 for low bitrates. It also provides inferior (although comparable) results when
compared with Intra 16×16. Nevertheless, the Intra 16×16 coding is 4.64 times more
complex, as illustrated in Fig. 6c.

For each of the six video sequences, the two offline tools presented in Section 2
(Syndrome Statistics and Zero-Runs Statistics) were initially run. The four generated

Fig. 14 The rate-distortion performance for the “Rotunda da Boavista” sequence: for 10 fps
sampling in a and for simulated slow camera movement in b

Multimed Tools Appl (2013) 64:731–755 749

Fig. 15 The rate-distortion performance for the “Tourists” sequence: for 10 fps sampling in a and
for simulated slow camera movement in b

Fig. 16 Examples of decoded frames for the “Serralves” sequence: Intra 16×16 coding in a, Intra
4×4 coding in b, and IWZ 8×8 coding in c

Fig. 17 Examples of decoded frames for the “Castelo de Queijo” sequence: Intra 16×16 coding in a,
Intra 4×4 coding in b, and IWZ 8×8 coding in c

750 Multimed Tools Appl (2013) 64:731–755

Huffman tables were subsequently used on encoding (of the same sequence). Never-
theless, due to the cyclic variation of the syndrome values and their distribution in a
short range, i.e., the syndromes are simply remainders of divisions, the four generated
Huffman tables use to be similar for different sequences.

Given the syndrome difference from one encoded frame to another, as discussed
in Section 2, the IWZ coding is expected to have better rate-distortion performance
on slower movement of the (target) camera, i.e., smaller differences between two
consecutive frames. This efficiency technique is suitable for the scenarios described in
Section 1 (e.g., video surveillance). The “Castelo de Queijo” sequence is particularly
distinct from the others, i.e., for the first ten frames and for the last 13 frames the
camera almost stalls (23 frames out of 100 with no noticeable movement of the
camera). Figure 12a shows the better performance of the IWZ 8×8 coding in this
case.

We prepared six additional video sequences for further evaluation of the scenarios
with slow camera movement: we extracted six video sequences (each having 320×240
frame size, 100 frames, 30 fps) from the same original sequences mentioned above.
We considered the sampling rate of 10 fps instead, in order to simulate a three times
slower camera movement. We adopted this approach for a direct comparison with

Fig. 18 Examples of decoded frames for various encoding rates, for the “Ribeira” sequence
(simulated slow camera movement)

Multimed Tools Appl (2013) 64:731–755 751

Fig. 19 The rate-SSIM performance for the “Ribeira” sequence in a and “Serralves” in b

the results presented in Figs. 10a, 11a, 12a, 13a, 14a and 15a. Therefore, maintaining
the same complexities shown in Fig. 6c, the rate-distortion performance of the IWZ
8×8 coding improves significantly in this case (see Figs. 10b, 11b, 12b, 13b, 14b and
15b), providing even better results than Intra 16×16 for some sequences.

Figures 16 and 17 illustrate a few examples of decoded frames. For Intra 16×16
and Intra 4×4 codings there can be noticed the blocking effect (see Figs. 16a, b, 17a
and b). As discussed in Section 3, the deblocking filter was disabled in this evaluation,
for an objective comparison with the IWZ 8×8 coding.

Figure 18 illustrates more examples of decoded frames showing the distortion
effects in the three codings for various encoding rates.

Fig. 20 The rate-SSIM performance for the “Castelo de Queijo” sequence in a and “Sé do Porto”
in b

752 Multimed Tools Appl (2013) 64:731–755

Fig. 21 The rate-SSIM performance for the “Rotunda da Boavista” sequence in a and “Tourists”
in b

Due to the blocking artefacts present in the decoded frames (see Figs. 16 and 17),
the perceptual measure SSIM (Structural SIMilarity) was also used for additional
evaluations. Figures 19, 20 and 21 show the rate-SSIM performance for the same
scenario with slow camera movement. The IWZ 8×8 coding provides better overall
results over both the Intra 16×16 and Intra 4×4.

The dataset was evaluated on a computer with an Intel® Core™ 2 6420 2.13 GHz
processor and 2.0 GB of physical memory. The implementation of the IWZ 8×8
encoder took an overall average time of 4.78 ms per encoded frame. It was considered
the average time of five consecutive runs for each rate-distortion point from Figs. 10,
11, 12, 13, 14 and 15. For Syndrome Statistics and Zero-Runs Statistics it took an
overall average time of 4.03 and 14.55 ms, respectively, per processed frame.

5 Conclusions

In this paper we presented a multi-view codec for Distributed Video Coding, called
IWZ. The evaluation outlines two main achievements: first, the lower complexity
of the IWZ encoder when compared with Intra 4×4 and Intra 16×16 conventional
codings, and secondly, for low bitrates (as required by Distributed Video Coding),
the higher rate-distortion performance of the overall IWZ codec over the Intra 4×4,
and even over the Intra 16×16 for a slower (target) camera movement, specific to
the considered scenarios (e.g., video surveillance).

We adopted a compromise between the low-complexity of the IWZ encoder and
the high rate-distortion performance of the overall IWZ codec, both being consid-
ered fundamental requirements of Distributed Video Coding. We were challenged
by the mutual dependence of the two objectives (e.g., for higher rate-distortion
performance is needed a higher complexity of the IWZ encoder, and vice versa).
To this end, we tried to benefit from the mature stage of the conventional coding
[20] as much as possible, and to adapt it to the requirements of Distributed Video
Coding. We finally adopted the integer DCT specified in [20].

Multimed Tools Appl (2013) 64:731–755 753

Due to the lack of other multi-view codecs for the considered scenarios (e.g.,
no specific camera arrangement), we compared our codec with low-complexity
conventional codings (Intra 4×4 and Intra 16×16). The evaluation is focused on the
codec’s performance. The robustness is beyond the scope of this paper and adequate
solutions can be provided in future work to enforce the codec’s resilience (e.g.,
sending periodically an Intra-frame when transmission errors occur), employed at
decoder side in order to maintain the low-complexity of the encoder.

Acknowledgement The first author acknowledges the Fundação para a Ciência e a Tecnologia,
Portugal, for the financial support.

References

1. Aaron A, Zhang R, Girod B (2002) Wyner–Ziv coding of motion video. In: 36th Asilomar
conference on signals, systems and computer, Pacific Grove, USA

2. Aaron A, Rane S, Setton E, Girod B (2004) Transform-domain Wyner–Ziv codec for video. In:
Proc. SPIE conference on visual communication and image processing

3. Artigas X, Tagliasacchi M, Torres L, Tubaro S (2006) A proposal to suppress the training stage
in a coset-based distributed video codec. In: IEEE international conference on acoustics, speech,
and signal processing, Toulouse, France, 14–19 May 2006

4. Artigas X, Ascenso J, Dalai M, Klomp S, Kubasov D, Ouaret M (2007) The DISCOVER codec:
architecture, techniques and evaluation. In: Picture coding symposium (PCS)—2007, Lisbon,
Portugal, 7–9 November 2007

5. Belkoura Z, Sikora T (2006) Towards rate-decoder complexity optimisation in turbo-coder based
distributed video coding. In: Proc. international picture coding symposium, Beijing, P. R. China

6. Brites C, Ascenso J, Pedro JQ, Pereira F (2008) Evaluating a feedback channel based
transform domain wyner-ziv video codec. Signal Process Image Commun 23(4):269–
297. [Online]. Available: http://www.sciencedirect.com/science/article/B6V08-4S32NK9-1/2/
e0b368561cd87009a992861007fc0eaf

7. Ciobanu L, Corte-Real L (2010) Successive refinement of side information for multi-view dis-
tributed video coding. Multimedia Tools Appl 48(3):411–436

8. Dalai M, Leonardi R, Pereira F (2006) Improving turbo codec integration in pixel-domain
distributed video coding. In: IEEE international conference on acoustics, speech, and signal
processing, Toulouse, France, 14–19 May 2006

9. Girod B, Aaron A, Rane S, Rebollo-Monedero D (2005) Distributed video coding. In: Proceed-
ings of the IEEE, vol 93

10. Guo X, Lu Y, Wu F, Gao W, Li S (2006) Distributed multi-view video coding. In: Proceedings of
SPIE-IS&T electronic imaging, SPIE, vol 6077, San Jose, California, USA, 15–19 January 2006

11. Guo X, Lu Y, Wu F, Zhao D, Gao W (2008) Wyner–Ziv-based multiview video coding. IEEE
Trans Circuits Syst Video Technol 18(6):713–724

12. H.264/AVC JM reference software (JM 16.2) (2009) [Online]. Available: http://iphome.
hhi.de/suehring/tml/

13. Lajnef K, Guillemot C, SiohanP (2006) Distributed coding of three binary and Gaussian corre-
lated sources using punctured Turbo Codes. EURASIP Signal Process J (Elsevier) 86(11):3131–
3149

14. Lan C, Liveris AD, Narayanan K, Xiong Z, Georghiades C (2004) Slepian–Wolf coding of mul-
tiple M-ary sources using LDPC codes. In: Proc. IEEE data compression conference, DCC’04,
Snowbird, Utah, 23–25 March 2004

15. Li Y, Liu H, Liu X, Ma S, Zhao D, Gao W (2009) Multi-hypothesis based multi-view dis-
tributed video coding. In: Proceedings of the 27th conference on picture coding symposium,
ser. PCS’09. IEEE Press, Piscataway, pp 45–48. [Online]. Available: http://portal.acm.org/
citation.cfm?id=1690059.1690071

16. Lv H, Xiong H, Zhang Y, He Z (2008) Side information generation with constrained relaxation
for distributed multi-view video coding. In: IEEE international symposium on circuits and sys-
tems, 2008. ISCAS 2008, pp 3450–3453

http://www.sciencedirect.com/science/article/B6V08-4S32NK9-1/2/e0b368561cd87009a992861007fc0eaf
http://www.sciencedirect.com/science/article/B6V08-4S32NK9-1/2/e0b368561cd87009a992861007fc0eaf
http://iphome.hhi.de/suehring/tml/
http://iphome.hhi.de/suehring/tml/
http://portal.acm.org/citation.cfm?id=1690059.1690071
http://portal.acm.org/citation.cfm?id=1690059.1690071

754 Multimed Tools Appl (2013) 64:731–755

17. Pedro J, Soares L, Brites C, Ascenso J, Pereira F, Bandeirinha C, Dufaux F, Ebrahimi T
(2007) Studying error resilience performance for a feedback channel based transform domain
Wyner-Ziv video codec. In: Picture coding symposium (PCS)—2007, Lisbon, Portugal, 7–9
November 2007

18. Puri R, Ramchandran K (2002) PRISM: a new robust video coding architecture based on
distributed compression principles. In: Proc. Allerton conference on communication, control and
computing

19. Puri R, Ramchandran K (2003) PRISM: a “reversed” multimedia coding paradigm. In: Proc. Intl.
conference on image processing, (ICIP), Barcelona, Spain

20. Recommendation ITU-T H.264: advanced video coding for generic audiovisual services. March
2009

21. Slepian D, Wolf JK (1973) Noiseless coding of correlated information sources. IEEE Trans Inf
Theory 19:471–480

22. Tonoli C, Dalai M, Migliorati P, Leonardi R (2007) Error resilience performance evaluation of
a distributed video codec. In: Picture cODING sYmposium (PCS)—2007, Lisbon, Portugal, 7–9
November 2007

23. Varodayan D, Aaron A, Girod B (2005) Rate-adaptive distributed source coding using low-
density parity-check codes. In: Proc. Asilomar conf. signals, syst., comput., Pacific Grove, CA

24. Vatis Y, Klomp S, Ostermann J (2007) Inverse bit plane decoding order for turbo code based
distributed video coding. In: International conference on image processing (ICIP)—2007, San
Antonio, Texas, USA, 16–19 September 2007

25. Westerlaken R, Borchert S, Klein Gunnewiek R, Lagendijk I (2006) Dependency channel mod-
eling for a LDPC-based Wyner-Ziv video compression scheme. In: International conference on
image processing (ICIP)—2006, Atlanta, USA, 8–11 October 2006

26. Westerlaken RP, Borchert S, Gunnewiek RK, Lagendijk I (2007) Analyzing symbol and bit
plane-based LDPC in distributed video coding. In: International conference on image processing
(ICIP)—2007, San Antonio, Texas, USA, 16–19 September 2007

27. Wyner AD, Ziv J (1976) The rate-distortion function for source coding with side information at
the decoder. IEEE Trans Inf Theory 22:1–10

28. Yang Y, Cheng S, Xiong Z, Zhao W (2003) Wyner–Ziv coding based on TCQ and LDPC codes.
In: Proc. Asilomar conference on signals, systems and computers

29. Zhao Y, Garcia-Frias J (2006) Turbo compression/joint source-channel coding of corre-
lated binary sources with hidden Markov correlation. EURASIP Signal Process J (Elsevier)
86(11):3115–3122

Lucian Ciobanu was born in Iasi, Romania, in 1978. He graduated in software engineering at
the Faculty of Automatic Control and Computer Engineering, the “Gheorghe Asachi” Technical
University of Iasi, Romania. He is researcher at the Institute for Systems and Computer Engineering
(INESC) Porto, Portugal, since 2002. He received the PhD degree in electrical and computer
engineering from the Faculdade de Engenharia da Universidade do Porto, Portugal, in 2011. His
research interests include image/video coding and processing.

Multimed Tools Appl (2013) 64:731–755 755

Luís Corte-Real was born in Vila do Conde, Portugal, in 1958. He graduated in electrical engineering
from the Faculdade de Engenharia, Universidade do Porto, Portugal, in 1981. He received the
M.Sc. degree in electrical and computers engineering in 1986 from Instituto Superior Técnico,
Universidade Técnica de Lisboa, Lisbon, Portugal and the Ph.D degree from the Faculdade de
Engenharia, Universidade do Porto, in 1994. In 1984 he joined Universidade do Porto as a lecturer
of telecommunications. He is currently associate professor at the Departamento de Engenharia
Electrotécnica e de Computadores da Faculdade de Engenharia da Universidade do Porto. He is
researcher at the Institute for Systems and Computer Engineering (INESC) Porto, Portugal since
1985. His research interests include image/video coding and processing.

	Multi-view codec with low-complexity encoding for Distributed Video Coding
	Abstract
	Introduction
	Multi-view Wyner--Ziv codec (IWZ)
	Evaluation methodology for encoder complexity
	Evaluation of the high-level encoding
	Evaluation of the entropy coding

	Results
	Conclusions
	References

