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Abstract Local feature extraction of 3D model has become a more and more important
aspect in terms of 3D model shape feature extraction. Compared with the global feature, it is
more suitable to do the partial retrieval and more robust to the model deformation. In this paper,
a local feature called extended cone-curvature feature is proposed to describe the local shape
feature of 3D model mesh. Based on the extended cone-curvature feature, salient points and
salient regions are extracted by using a new salient point detection method. Then extended
cone-curvature feature and local shape distribution feature calculated on the salient regions are
used together as shape index, and the earth mover’s distance is employed to accomplish
similarity measure. After many times’ retrieval experiments, the new extended cone-
curvature descriptor we propose has more efficient and effective performance than shape
distribution descriptor and light field descriptor especially on deformable model retrieval.
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1 Introduction

Since the fast development of 3D technologies and computer graphics at the end of the
twentieth century, 3D model has been widely used, such as computer games, movies,
mechanical CAD, virtual reality and so on. At the same time, the Internet provides another
platform to facilitate its wide application Therefore, the amount of 3D models becomes
larger and larger. 3D model has been regarded as the fourth-generation multimedia infor-
mation after voice, image and video.

However, 3D modeling with a high precision is still a difficult and time-consuming
procedure. If we can reuse the existing models, it will bring a great improvement of the
modeling efficiency. But how can we find the exact models from millions of 3d models
within the shortest time?

Keyword-based 3D model retrieval has been used to assist users to find desired models
initially. Every model in 3D model database is labeled by one or more keywords. Although
this method has high retrieval speed and accurate results, two disadvantages prevent it from
being widely applied. Firstly, it’s a very time-consuming and laborious task to label all 3d
models if the database is huge. Secondly, the keywords can be easily affected by humans’
subjective thoughts. Different people may have different concepts for the same model. So
this traditional method cannot meet all users’ demands.

The content-based 3D model retrieval has been a research hotspot since 2000. It
breaks through the constraints of the keyword-based method and makes use of the
visual feature of the models as the model index directly. At present there are several
content-based 3D model retrieval systems for instance, the Princeton University’s 3D
model retrieval system [6]. There are five main modules in these retrieval systems: the
user interface, 3D model database, feature database, feature extraction and similarity
computation. The structure of the system is shown in Fig. 1. At first, features of all
the models in the model database are extracted offline by using feature extraction
algorithm and then saved in the feature database. When user submits a query model
through the user interface, the feature of the query model is calculated soon. Then the
similarity between the query model and all models in the database are computed by
the distance between the feature of the query model and the features in the feature
database. After that, the database models are ranked by the distance. The models
ranked in the most top are the most similar to the query model. The rank list is
returned graphically to the user interface where the retrieval result is displayed.

Feature extraction of 3D models definitely plays a very important role in the retrieval
system. Although there have been tremendous feature extraction methods, none of them can
be fit for all situations. Many feature descriptors from these methods usually are non-
topological features that can be affected by shape deformation easily. Sometimes topological
features such as graph or skeleton are hired to solve the problem, but they need more
computation and are very sensitive to model noise which will be analyzed in the related
work section. In this paper a local shape feature extraction method called extended cone-
curvature is proposed.

The rest of this paper is organized as follows. The related work is described in
section 2. In section 3 extended cone-curvature is defined and the algorithm to
compute extended cone-curvature of each triangular mesh is also explained. Section 4
gives the algorithm to detect the salient points and salient regions of 3D models and
Section 5 introduces the earth mover’s distance to compute similarity between these
salient features. Then the experimental results are shown in the section 6. Finally,
conclusions are given in section 7.
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2 Related work

2.1 Global feature extraction methods

At present, many feature extraction methods have been proposed to precisely describe 3D
models. Generally, these methods can be divided into three categories: the geometry-based
methods, the topology-based methods and the view-based methods.

Geometry-based methods mainly analyze the geometry properties of 3D models. Statis-
tical strategies are very often employed by these geometry-based methods. Horn proposed
the extended Gaussian image method to describe the 3D model [8]. Its principle is to count
the normal vector distribution according to their directions. Cord-based method was pro-
posed to describe the relationship between the model vertex and principal axis [13]. Firstly,
the principal axes are computed through principal component analysis. Then the angle
between model vertices and the first principal axis, the angle between model vertices and
the second principal axis are all counted to obtain the feature vector. One more method using
statistical strategy, like the shape histogram proposed in 1999 mainly analyzes the spatial
distribution of model vertices [4]. Three partition methods are given to divide the model into
several parts. The feature vector is computed by counting the vertex number of every part.
One disadvantage of these methods is that the feature vector is not invariant to different
model resolutions. Afterwards, Osada et al. [12] proposed a method using the probability
distribution of geometry properties computed from random vertices sampled on the model
surface as a descriptor, which is called shape distribution. Five shape functions are applied to
compute the geometry properties including area, angle, distance and volume. Among them,
D2 which measures the distance between any pair of random vertices on the surface of 3D
model describes the model feature best. Shape distribution is invariant to the model
translation, rotation, resolution and noise. And it is easy to compute. But it still cannot
solve the problem of model deformation.

Topology-based method usually represents the model by tree or graph structure so that the
model structure can be well described. Amenta used skeleton tree calculated by voronoi
graph to represent models [3]. Then the similarity of models can be computed by matching
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Fig. 1 The structure of 3D model retrieval system
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these skeleton trees. Hilaga et al. proposed a method call multi-resolution reeb graph (MRG)
[7]. By using the geodesic distance as the morse function, every model can be represented as
several reeb graph in different resolutions. Then the similarity of models can be obtained by
comparing their corresponding reeb graphs. Gary K. L. Tam et al. extracted the topological
points and topological rings to represent models [18]. Topological feature and geometric
feature are joined together to compute the similarity of the models. The main advantage of
topology-based methods is that they are robust to the model translation, rotation, scaling and
especially to model deformation that most of the other methods cannot solve well. However,
extraction of model skeleton or graph is time-consuming and very sensitive to the fine
components of models. In addition, graph matching is a NP-complete problem with large
computation.

View-based method is also an important category among feature extraction methods.
They are in line with human’s visual perception and robust to model noise, simplification,
and refinement. Ohbuchi et al. proposed the depth buffer image method to extract model
feature [11]. 42 viewpoints located on the model’s bounding box are used to obtain 42 depth
buffer images of the model. Then the generic Fourier descriptors are extracted from these
images as the index of the model. The similarity of models can be obtained by computing
these generic Fourier descriptors. Chen proposed the light field descriptor method [5].
Similar to depth buffer image, it uses 20 viewpoints located on the bounding sphere of the
model to obtain the projection images. Then the zernike moments features are calculated
from these images and the Fourier descriptors are extracted from the contour of these
images. The principal plane was first used in the model feature extraction by Chen-Tsung
Kuoa [9]. After the principal plane was computed, every vertex of the model can be
projected on the plane. According to the distribution of these projection vertices, feature
vector is extracted. Although view-based methods are easy to understand and compute, they
cannot deal with model deformation. That’s because projection of the deformed model is
mostly different from that of the original model.

2.2 Local feature extraction methods

All the methods mentioned above are global feature based methods describing the model
from the view of the whole model shape. Local features have been paid more attention
because their good quality; for example they can be used in partial retrieval. In recent years
several local feature extraction methods have been proposed. But how to define the local
region is still a problem unsolved.

Philip Shilane et al. proposed a method using the distinction of local mesh to extract
salient feature [16, 17]. The local region is defined as the surface region bounded by a sphere
centered on vertices sampled from model surface with one radius, which is proportional to
the radius of the model (for example 0.5). When these local regions are defined, harmonic
shape descriptors are extracted as the local features are used to do retrieval. The retrieval
results are evaluated by discounted cumulative gain which is defined as the distinction of the
local region. The local features of the region with the greatest distinction are selected as the
salient features to index the model. This method tried to find the local regions, which are
partial similar to models in the same class while different from models in the other classes.
Its disadvantage is that the radius of the sphere is hard to get. And the region bounded in the
sphere is likely to be several parts that are not connected. In addition, huge amount of
computation cost has to be considered on calculating the distinction of the local region.

Liu Yi et al. proposed a partial retrieval method [10]. At first, spin image features are
extracted from all the models in the database. By making use of the bag of words algorithm,

674 Multimed Tools Appl (2013) 64:671–693



all these features are used to cluster to get some visual words. Then every model can be
represented by a word frequency histogram. Kullback–Leibler divergence is selected to do
the partial similarity measure. It saves a lot of space because it does not need to save all these
spin image features. And the representation of feature is simple, which also makes the
similarity measure much easier. However, by transforming these spin image features to a
frequency histogram, some space shape information would be lost. Furthermore, when
model’s database changed, the visual words need to be computed once again.

S. Shalom et al. gave a model segmentation method to extract model local feature [15].
Based on the shape diameter function, every model can be segmented into several compo-
nents at different levels. So the model can be represented by a level tree. The deeper in the
level tree the model locates, the more refined the model is segmented. After segmentation,
local features are extracted from these components. Not only local geometric feature, but
also the context of the local feature in the level tree is considered to compute the similarity in
partial retrieval. It has good retrieval results. But it depends on the model segmentation
results.

Antonio Adán made use of Cone-Curvature as the local feature to compute similarities
between models [1]. Every model needs to be approximated by a unit sphere shown in
Fig. 2. Cone Curvature is defined on the deformed sphere around every vertex. Then the
cone-curvature matrix composed of all cone-curvatures is used to index the model and
compute the similarity.

The author extended the cone-curvature to standard triangular mesh to cluster models [2].
However the models must be regularized and resampled to a fixed number of nodes. Then
Modeling Wave (MW) used to compute cone-curvature organizes the rest of the nodes of the
mesh in concentric groups spatially disposed around some source point. But the preprocess-
ing step such as regularization and resample made it not so adaptable and not easy to
compute. So we extend the cone-curvature to compute directly on triangular mesh models.
Based on it salient features are extracted and used to retrieve 3D models.

In this paper we propose a novel local descriptor extraction method. The novelty of this
paper is three-fold. At first we extend the cone-curvature and propose an algorithm to
compute it on the triangular mesh directly; Second based on the extended cone-curvature
a salient point detection method is proposed to extract the salient local feature of 3D models;
Third the earth mover’s distance is employed to compute the similarity of models which are
indexed by a set of salient features. Details are explained as the following.

3 Extended cone-curvature

As mentioned before the cone-curvature proposed in [1, 2] cannot be used directly on
standard 3D models which are usually triangular meshes. It needs a preprocessing step

Fig. 2 Definition of cone-curvature
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including regularization and complex resample. In addition, it uses all of the cone-curvature
features to represent a model which needs a lot of storage space with the growing number of
vertices and feature dimension. So we propose an extended cone-curvature to extract the
salient features used in 3D model retrieval. It works as following.

(1) Compute all the extended cone-curvature of all the model vertices based on the
definition of the extended cone-curvature.

(2) K-means clustering algorithm is used to cluster all extended cone-curvature features
and choose the initial salient point candidates.

(3) An optimization step is adapted to select the final salient points by eliminating the
closing candidates.

(4) Extract the shape distribution feature of every local region indexed by the salient point.
(5) Earth mover’s distance is used to compute the distance between models.

3.1 Definition of extended cone-curvature

Extended cone-curvature is used to describe the convexity of the local area. When a vertex
of the model is selected as the source point, the local region surrounding the source point is
needed to define ECC. Before introducing the definition of ECC, we explain some other
definitions at first.

Definition 1 Geodesic Wave (GW) is defined as the closed curve constructed by connect-
ing the points on the model surface with same geodesic distance to the source
point orderly. A GW with source point s on 3D model S3 is represented as
follows:

GWs ¼ v G v; sð Þ ¼ g; v 2 S3
��� � ð1Þ

Where G(v, s) is the geodesic distance function on the model, g is the
geodesic distance value.

When a source point is selected, the GW with certain geodesic distance
can be computed by tracing the geodesic distance iso-line. With the increase
of geodesic distance, the GWexpands surrounding the source point. Then the
geodesic wave set is defined.

Definition 2 All the geodesic waves with the same source point are called a Geodesic
Wave Set (GWS). Formally:

GWSs ¼
X1
i¼1

GWi
s ð2Þ

WhereGWi
s represents the ith GWof the source point s, i is the ID of theGW.

There are infinite geodesic waves in the continuous case. And the infinite
GW can approximate the local region surrounding the source point very well.
However, it is impossible to compute all the GWs, and several GWs of the
source point which can describe the local shape well in practice. In Fig. 3, the
red spheres are source points on the model surface. And the yellow closed
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curves are GWS of the source points separately. According to the figure, even
using 10 GWs, the local region can be described well.

It is obvious that if the local region is sharp, the cone constructed by the
source points and GW is also sharp. We can use the angle between the height
and element of the cone to describe the convexity of the local region. But
sometimes error is unavoidable and leads to inaccurate result when the local
region deformed showed in Fig. 4. S is the source point, and the cone con-
structed by S and the ith GW has been deformed.

Definition 3 Provided S is the source point on the model surface and Oi is the central point
of the ith GW, the distance from the ith GW to the source point is defined as
the sum of distances between the central points of the GWs, which is
formulated as below:

Di
s ¼

SO1k k; i ¼ 1
Di�1

s þ Oi�1Oik k; i > 1

�
ð3Þ

Where �k kis the Euclidean distance between points.

Fig. 3 GW and GWS on the
mesh. The red spheres are source
points and yellow rings
surrounding the source points
are geodesic waves

O1

O2

Oi

'S

S 

Fig. 4 Definition of extended
cone-curvature. S is the source
point and S′ is the corrected
source point for the ith GW
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Definition 4 Let S be the source point, the corrected source point S′ of the ith GW is the
point with a distance equals Di

s along the normal of the ith GW.
Definition 5 Let S be the source point and Oi be the central point of the ith GW, the ith

extended cone-curvature (ECC) is defined as the average angle between the
height and the element of the cone constructed by S′ and the ith GW, which
can be described as the below formula:

ai ¼ p
2
� 1

Ni

XNi

j¼1

!OiS
0Wj ð4Þ

where Ni is the point number of the ith GWandWj is the point of ith GW. The
ECC value lies in � p

2 ;
p
2

� �
.

As shown in Fig. 4, S is the source point and S′ is the corrected source
point for the ith GW. Oi is the central points of the GWS. When computing
the ith ECC, the corrected source point S′ is computed at first. Then ECC is
calculated by the cone constructed by S′ and ith GW. According to the
definition of ECC, the larger the ECC value is, the sharper the local region
surrounding the source point is.

Definition 6 The set of extended cone-curvature in local region is call the ECC feature or
vector that is shown as follows.

a1; a2; . . . an
� 	 ð5Þ

Where n is the number of GW in a GWS.
The norm of the ECC feature is very big when the source point

locates in the sharp part of the model while the norm of the ECC
feature is closer to zero in the smooth part. Therefore, the ECC feature
can be used to describe the shape of the local region of one 3D model.
Using the cone-curvatures of different resolution to describe a local
region surrounding the source point, which makes this region based
descriptor, has more powerful ability to describe a region than those
only using the curvature.

Furthermore, the definition of ECC is independent of the mesh
structure. It is a general definition facing to all kinds of meshes. In
this paper, we focus on a new algorithm of computing the ECC on
triangular meshes.

3.2 Computation of ECC feature

There are two important elements in the definition of ECC: the source point and the GW.
Every vertex of the model could be selected as a source point. The GW computation is the
key step of the ECC computation. In the following subsections, we mainly give algorithms
of how to extract the GW and calculate the ECC finally.

3.2.1 Computation of geodesic distance in local region

Once the source point is selected, we only need to extract the GWS in the local region
surrounding the source point. One vertex on the model is selected as the source point one
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time. Every GW is a geodesic distance iso-line. If we can get the size of the local region or
get the span of the value of geodesic distance, it would be helpful to calculate the exact GWS
of each source point. However, it is difficult to decide this range. While the size is set to the
maximal geodesic distance to the source point, the computation of geodesic distance will
become a real time-consuming procedure; otherwise the size is set to a very small value, the
ECC feature cannot describe the local region precisely. After preprocessing period, every
model is normalized into a unit sphere. To determine a consistent local size properly, a size
Dg lies in 0 and 1 is given as the local size. According to experiments results, Dg with value
0.3 performs well.

Then a modified Dijkstra algorithm is used to compute the geodesic distance of among
vertices in the local region. Dijkstra algorithm is a graph search algorithm that solves the
single-source shortest path problem for a graph with nonnegative edge path costs. For a
given source vertex, the algorithm finds the path with lowest cost between that vertex and
every other vertex. At present, it has been used to approximate the geodesic distance on the
3D mesh.

But not all the vertices of the mesh need to compute their geodesic distances in our
problem. Only the vertices located in the local region surrounding the source point that is
selected at first are required to compute their geodesic distance. We modify the Dijkstra
algorithm to solve our problem. A minimum of geodesic distance is checked if it is bigger
than the size of the region in every loop of the algorithm. The modified Dijkstra algorithm is
explained into five steps as below.

1) Assign to every vertex an initial distance value. Set it to 0 for the source point and to
infinity for all the other vertices of the mesh. We do not know whether the vertices are in
the local region or not, so every vertex except the source point is assigned an infinity
value.

2) Mark all vertices as unvisited and the source point as current. Set the minimal geodesic
distance Min to 0 initially.

3) Check whether theminimal geodesic distance ‘Min’ is larger than given size. If true, break.
4) Mark the current vertex as visited. For current vertex, consider all its neighbors and

calculate their distances to the current vertex. Update the geodesic distance of the
current vertex’s neighbors. For example, if the current vertex C has a distance of m,
and a neighbor of it N has a distance of n to C. The distance through C to N is (m + n). If
(m + n) is less than the previously recorded distance of N, overwrite the distance of N.

5) Find the vertex with minimal distance from the unvisited vertices. Mark the vertex that
is found as current and set Min to the minimal. Turn to step 3).

Once the source point is selected and the size is given, after running this modified
Dijkstra algorithm, a local region with the maximal geodesic distance larger than the size
is extracted. Then, the GWS can be computed on this region.

3.2.2 Tracing of geodesic wave set

As mentioned before, GWS can be used to describe the shape of local region. The number of
GW in GWS that is the dimension of the ECC feature is set to 10 in our experiment. We label
this number as N conveniently. Then the ith GW is computed by iso-line tracing algorithm
with the geodesic distance value i*Size/N and i lies in [1, N].

A 3d iso-line tracing algorithm is implemented to extract the GW. Given a geodesic
distance, the points of the GW can be traced one by one. The details of the tracing algorithm
are explained as below.
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1) Preprocessing of the model. The topological relationship of the vertices and triangles
are used in the tracing algorithm to improve the speed. So the neighbor vertices and
neighbor triangles of the vertices are added in the data structure.

2) Given a geodesic distance, the first triangle whose edges have iso-point is found. Every
triangle of the mesh is tested if its edges have iso-points. Mark the found triangle as
current.

In Fig. 5, OAB is the first triangle that is going to be tested. Take the edge OA as an
example. If the given distance is larger than the geodesic distance of O and smaller than
the geodesic distance of A, then there is an iso-point on it. OB and AB are tested in the
same way. The iso-points found on OA and OB are saved in an array. OA is labeled as
in-edge and OB is labeled as out-edge.

3) Check if the current triangle is null, then break the loop. That means that there is no iso-
line on the local region.

4) Trace the next triangle which has iso-points. In the step 1), the topological relationship
has been preprocessed. The next triangle that is the neighbor triangle of the current
triangle can be found easily with the help of the topological relationship. The next
triangle is tested if there are iso-points on its edges, mark it as current.

Also in Fig. 5, the iso-line traverses the current triangle OAB from OA to OB which
is labeled as out-edge. And it must traverse the neighbor triangle OBC that can be found
according to their topological relationship. There is an iso-point on OC which is marked
as out-edge. Add the iso-point into the iso-point array.

5) If the current equals the first triangle, the tracing algorithm is terminated. A closed curve
that is also the GW is obtained. And if false, turn to step 4).

Using the iso-line tracing algorithm, GWS can be extracted easily. However, with the
expanding of the GW, ECC does not always describe the local region well, see Fig. 6
shows. When computing ECC, the GW is required as flat as possible. It might not be on
a plane in most cases. So a flat degree is defined to restrain the expanding of GW not
flat enough. The flat degree is defined as the average distance to the approximated plane
of GW. How to get the approximate plane of GW? Firstly, the average of the points of
GW is computed as one point on the plane. Secondly, the average normal of the
triangles constructed by the average point and two neighboring point on GW is
calculated as the plane normal. Finally the approximated plane is represented by the
average point and the average normal. Compute the distances of points on GW to the
plane and check if it is larger than a given degree, continue expanding. Else, stop GW
expanding. The local region size is reduced to current geodesic distance of GW. GWS is
recomputed in the reduced region correspondingly.

O

A B

C

Fig. 5 The isoline of geodesic
distance tracing algorithm
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In addition, sometimes GW may be expanded into branches as the right picture
shown in Fig. 6. If it happens, the GWexpanding will stop and also the local region size
is reduced to current geodesic distance of GW and GWS is recomputed in the reduced
region.

3.2.3 Computation of ECC feature

After the calculation of GWS, ECC computation became easy to realize. Considering the
possibility of deformation of the 3D model, a corrected source point S′ needs to be calculated
before computing the ECC of every GW. According to its definition, the normal of GW and
the distance between GW and the source point can be computed. GW is represented as a
closed polygon. Every edge and the center of the polygon set up a triangle whose normal can
be computed by cross product of any two edges of this triangle. The average of these
triangles’ normal is regarded as the normal of GW. The distance of GW to the source point
which is the height of the cone is computed as mentioned in the formula (3). Then a
corrected source point S′ is found in the direction of GW normal with a same distance away
from the GW as that of the source point. S′ and GW construct a cone and ECC is computed
on this GW. After computing the ECC of every GW of the source point, ECC feature is
obtained.

As mentioned before, if the source point locates at a tip position of a sharp area,
the norm of ECC vector must be very large and it is nearly 0 in flat area. It is
because the source point and GW are nearly coplanar. So the tip points that can be
regarded as the salient points can be detected based on this characteristic. A salient
point detection algorithm is proposed.

4 Salient point detection and salient feature extraction

4.1 Salient points detection

The salient points of the mesh model are the vertices with cone-curvature extremum. When
people watch something the parts with curvature extremum are more impressive. The ECC
feature analyzed in section 3 can depict these salient points very well. If the vertices whose
ECC feature vectors has big norms, they can be regarded as the salient points.

Figure 7 gives the basic steps of the proposed salient point detection method. At first,
ECC features of all the mesh vertices are extracted. The Fig. 7a shows the process of ECC
feature for one vertex. The green region is the local region where GWS is extracted. GW is
represented as the red closed curves. Then, a K-means cluster algorithm is employed to

Fig. 6 Two conditions that stop the GW from expanding
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obtain the salient point candidates showed as the blue spheres in Fig. 7b. All the ECC
features are clustered and the cluster whose cluster center has the bigger norm is selected as
the candidates. As the Fig. 7b shows, all these candidates are located at the tips of the sharp
area, but some of them which have the similar ECC feature concentrate in a small area. So an
optimization step is needed to eliminate some neighboring candidates. All the candidates are
sorted according to the norm of their ECC feature vector and saved in an array. The one with
the biggest norm ranks at the top and it is marked as a salient point. Then a salient point is
selected and all the candidates behind it are tested if their distances to the salient point are
bigger than a given distance De, then the candidate is not a salient point and deleted from the
array. The process is terminated until every salient point is tested. The left points in the array
are all the salient points we detected. Figure 7c is the optimized salient points of the dog
mesh model.

K is an important parameter in the K-means cluster algorithm that determines the effect of
salient point candidates. In our experiment, when k is set to 5, it is suitable to most of the
tested models. Here the given distance is set to 0.15.

4.2 Salient region and SD descriptor

The salient region of salient point is defined as the region where GWS overlays. But not all
the salient region is necessary and useful. Because of the mesh noises, some salient points
with a small salient region should be eliminated. In our experiment, we obliterate by this
settings: if a salient region area of a salient point is smaller than 0.3 times of the biggest
salient region area, the salient point is deleted. For example, In Fig. 7c, salient point at the
mouth that has very small region is deleted after the optimization step.

For building a more powerful and more precise descriptor of the 3D mesh model,
besides the salient points and salient regions, the shape distribution method is also
employed to extract the salient feature. Shape distribution with a lower computation,
invariant to model translation, rotation and robust to noises, is very appropriate to
combine with our method.

Every salient region is re-sampled by the Monte-Carlo method at first. Then shape
diagram is built by counting the D2 distances of the samples. In our experiment, the sample
number is 2000 and the dimension of the shape diagram is set to 64. Figure 8 shows the

Fig. 7 The process of salient point detection. First, all the ECC features are computed. Second, the features
are clustered using k-means algorithm and the cluster with biggest norm of cluster center is selected as the
salient point candidates. Third, an optimization step is needed to delete some candidates and obtain the salient
points at last
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shape distribution plot of the salient regions. Every local salient region has two features: the
ECC feature and the shape distribution feature. It can be formulated as:

SF ¼ ECC þ SD ð6Þ

5 Similarity computation

After the calculation of the salient features, every model can be indexed by a set of salient
features consisting of the shape distribution and ECC. The Earth Mover’s Distance (EMD) is
chosen to compute the “distance” between two sets of salient features. It tries to compute the
minimum cost to transform one feature distribution to the other instead of distance, which
avoids the quantification process and lowers the error. So it is often used in content-based
image or 3D model retrieval as the dissimilarity function.

5.1 Earth mover’s distance

The Earth Mover’s Distance (EMD) [14] is a method to evaluate dissimilarity between two
multi-dimensional distributions in some feature space where a distance measure between
single features is what we called, the ground distance. The EMD “lifts” this distance from
individual features to full distributions. A distribution can be represented by a set of clusters
where each cluster is represented by its mean (or mode), or by the fraction of the distribution
that belongs to that cluster. We call such a representation the signature of the distribution.
The two signatures can have different sizes, for example, simple distributions have shorter
signatures than complex ones. So EMD distance is fit for our similarity computation
between the multi-dimensions salient features. Suppose two models are represented as:

P ¼ p1;wp1

� 	
; p2;wp2

� 	
; � � � ; pm;wpm

� 	� � ð7Þ

Q ¼ q1;wq1

� 	
; q2;wq2

� 	
; � � � ; qn;wqn

� 	� � ð8Þ
Where P is the first signature with m features, p is the salient feature of the first model; Q

is the second signature with n features, q is the salient feature of the second model. W is the
weight of each feature.

The EMD computation is based on the solution of the transportation problem. The
features in the first signature can be seemed as several suppliers, each with a given amount

Fig. 8 The shape distribution features of the salient regions. Left is the original model with detected salient
regions. And according D2 feature plot are shown in right figure. In the order of left to right: the feature curve
of salient region at tail, then four curves representing four legs and two curves representing ears
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of goods are required to supply several consumers that is the features of the second
signatures, each with a given limited capacity. For each supplier-consumer pair, the cost
of transporting a single unit of goods is given. The transportation problem is then to find a
least-expensive flow of goods from the suppliers to the consumers that satisfy the consum-
ers’ demand. That is to find a flow F 0 [ fij], with fij be the flow between pi and qj that
minimizes the overall cost:

Work P;Q;Fð Þ ¼ Pm
i¼1

Pn
j¼1

fijdij, subject to conditions:

fij � 0; 1 � i � m; 1 � j � nPn
j¼1

fij � wpi; 1 � i � m

Pm
i¼1

fij � wqi; 1 � j � n

Pm
i¼1

Pn
j¼1

fij ¼ minðPm
i¼1

wpi;
Pn
j¼1

wqjÞ
ð9Þ

Once the transportation problem is solved, and we have found the optimal flow, the earth
mover’s distance is defined as the work normalized by the total flow:

EMD P;Qð Þ ¼
P

m
i¼1

P
n
j¼1fijdijP

m
i¼1

P
n
j¼1fij

ð10Þ

5.2 Similarity computation

In our experiment, the ground distance is defined as the sum of the distances of the shape
distribution and ECC feature.

d ¼ W �ECC þ 1�Wð Þ�SD;W 2 0; 1½ � ð11Þ
Where ECC is the distance between ECC features, and SD is the distance between the

shape distribution. In addition, every salient feature of the model is regarded to be equal and
the weight of the salient feature is defined as:

P ¼ p1; 1=Nsð Þ; p2; 1=Nsð Þ; . . . ; pNs ; 1=Nsð Þf g ð12Þ
where Ns is the number of the salient features.

Some models different in the global shape may have same local parts sometimes. A
penalty-factor that equals max(m, n)/min(m,n) shown in formula (13) is multiplied to the
EMD Distance. If the two models have similar salient features, while different numbers,
their distances are enlarged.

SIM P;Qð Þ ¼ max m; nð Þ=min m; nð Þ�EMD P;Qð Þ ð13Þ

6 Experimental results

The McGill university benchmark database (MSB) for articulated shapes[14] is chosen as
the database to detect salient points and evaluate the performance of 3D model retrieval
based on our proposed method. It is chosen because all the models of it are all watertight
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which is required to compute the ECC feature. In addition all the articulated shapes are
deformable non-rigid models which are needed to demonstrate the robustness of our method
to deformation. The MSB consists of 255 models in 10 categories. Models in MSB are
articulated shapes, such as “human”, “octopus”, “snake”, “pliers”, and “spiders” and all of
them are watertight deformable models. The categories of MSB with their number of models
are shown in Table 1. Figure 9 shows some models of MSB.

6.1 Salient point detection

We use our salient point detection algorithm to detect salient points of the MSB models. Every
vertex of the model is selected as a source point to extract its ECC feature. In this process, the
size Dg of the local region where GWS is computed is set to 0.3 and the dimension of ECC
feature is set to10 which means that 10 GWs is computed for every vertex on the mesh. Then all
the ECC features are clustered using K-means clustering algorithm. The value of K is set to 5.
All the vertices in the cluster whose cluster center has the biggest norm are selected as the salient
point candidates. After the optimization step, all the salient points are obtained. Figure 10 shows
some models with their detected salient points represented by a red point. Even if the model is
deformed, the salient points are still detected precisely.

To test the robustness of our proposed salient point detection algorithm, another exper-
iment is done. Models of various resolutions are tested to detect the salient points. In our
experiment, a mesh simplification algorithm is used to compute five various resolutions
meshes with simplification rate 20%, 40%, 60%, 80% and 99.4%. The rate itself is not
special and we just want to show the robustness to model resolution of our method. The
vertex number and triangle number are shown in Table 2. The salient point detecting results
are shown in Fig. 11.

Figure 11 shows the results of salient point detection of one model in multi-resolutions.
Every salient point is detected from these various resolution models, even the model with the
simplification rate 99.4%. According to the definition of ECC, ECC is computed based on
the cone constructed by the source point and the GW. GW is constructed by the iso-points of
the geodesic distance which is robust to the resolution of the model. So our salient point
detection is robust to model resolutions.

Also the salient feature is analyzed in Fig. 12. The salient feature of the left antenna for
this ant mesh model is shown in plots of the shape distribution. From these curves, the
salient feature stays nearly the same for the first five models. However, the last curve for the
model with simplification rate 99.4% goes far away from other curves. That is partly because
the model has been simplified too much and the local region shape has been changed.

We also tested the computation efficiency of salient point detection. Table 3 shows the
time-consuming to the computation of salient point detection of various meshes. The biggest
model with 14,800 vertices and 29,596 triangles costs nearly 7 min to detect the salient

Table 1 Categories of MSB. Nc is the number of model in a category

Category name Nc Category name Nc

Ants 31 pliers 20

Crabs 29 snakes 25

Hands 20 spectacles 25

Humans 29 spiders 31

Octopuses 25 teddy-bears 20
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points. And when the model is simplified by 99.4, it only needs 0.141 s. In the total
computation process, the Dijkstra algorithm to compute the geodesic distances of the local
region costs the most of the computation time. When the mesh has a high resolution, the
local region may have more vertices to increase the computation time of the Dijkstra
algorithm. To improve the computation efficiency is what we will focus on in our future
work. GPU or Cuda could also be used to improve it.

6.2 Performance of 3D model retrieval

To evaluate the effectiveness of the salient features extracted by our new method, a 3D
model retrieval system is implemented to retrieve 3D models based on their similarity
measured by EMD distance described in section 5.2.

Fig. 9 The categories of the MSB database

Fig. 10 The salient point detection results of some MSB models. Detected salient points in the model are
represented by the red spheres while GWs in yellow color surrounded them
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Table 2 The information of various resolution meshes. Nv is the number of vertices, and Nt is the number of
triangles

Simplification rate Nv Nt

Original mesh 14800 29596

20% 11840 23676

40% 8881 17758

60% 5921 11838

80% 2962 5920

99.4% 102 200

Original 20% 40%

60% 80% 99.4% 

Fig. 11 The salient points detection experiments on various resolutions. Simplification rate labeled below
models ranges from 20% to 99.4%. Even with 102 vertices at the simplification rate of 99.4% the salient
points are still extracted accurately. We can infer from the results that extended cone-curvature feature is
robust to model resolution
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The retrieval experiments are designed as following: A query model q in one category C
is submitted to the system and the system will find the models in the database similar to the
query model q. If the retrieved model r belongs to the category C, it is a successful retrieval.
If not, it fails. The system returns a ranked list of models where the most similar models rank
at the top. Figure 13 shows some retrieval results.

In our experiments all the distances between the query model and the models in database
are evaluated. Each of the 255 models is used as a query and retrieved models are ranked by
the distance and returned. So the ranked list is large enough to contain all the models. Here
we only list the first 12 models in the ranked list. The models marked by red rectangle are the
query models. And the others behind the query models are the retrieved models. According
to the results, most of the retrieved models are in the same category with the query model,
which means that this retrieval results are pretty well.

In addition, we can see that even if the models have been deformed, our method can still
find them out exactly. For example, in Fig. 13, a hand with three fingers bended is used as a
query model, and the retrieval models are all hands in different deformation. This cannot be
achieved by many of the retrieval methods at present.

Another two feature descriptors are compared with our proposed method. They are D2
shape distribution methods and light filed descriptor. Shape distribution proposed by Osada
[12] is computed by counting some geometry properties, such as angle, distance, area,
volume. Among them, the D2 that measures the distance of any pair of model sample
vertices performs well in model retrieval. D2 shape distribution is implemented by us. N
vertices are sampled from the model surface at first, and the distances of (N-1)*N/2 pairs of
sample vertices are counted to generate a distance diagram. N is set to 2000 and the number
of diagram bins is 64.

The light field descriptor [5] is a view-based feature extraction method. 20 viewpoints
located on the bounding sphere are used to generate depth images of the model. Because of
symmetry, 10 images are obtained at last. Zernike moment and fourier descriptor that are

Table 3 The computation time of
various resolution meshes Simplification rate Time

Original mesh 405,094 ms

20% 219,047 ms

40% 98,078 ms

60% 37,000 ms

80% 9,312 ms

99.4% 141 ms

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61

original
20%
40%
60%
80%
99.40%

Fig. 12 The shape distribution
plot of the same salient region
on models in Fig. 11 are
analyzed in this figure

688 Multimed Tools Appl (2013) 64:671–693



used as the index of the model are extracted from these images. This descriptor uses many of
the shape information and can describe the model well.

Precision- Recall plot which is well known in the literature of the content-based search
and retrieval is used to evaluate the retrieval results. In the recall-precision plot, a curve
closer to the upper right corner means a better retrieval performance. Ideal retrieval perfor-
mance would be the precision value of 1.0 for all the recall values.

Shape distribution and Light field descriptor are two classic methods in 3D model feature
extraction. They are very robust to the model noise and resolution. According to the
precision-recall plot in Fig. 14, our method performs much better than the other two
methods. It is reasonable to say the new descriptor proposed in this paper, the salient feature,

Fig. 13 The retrieval results using our proposed method. It can retrieve the models that have been deformed
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really play a critical role than these two features popular used at present. In addition, current
methods still need to be compared and we will try to continue it in our future work.

7 Conclusion

This paper proposes an excellent feature descriptor, the salient feature combined with the SD
descriptor, for 3D model partial retrieval. Our work can be concluded into four aspects.
Firstly, cone-curvature is extended to apply on the general mesh model and the ECC
(extended cone-curvature) is calculated on the general mesh. Secondly, we propose an
algorithm to compute extended cone-curvature feature on the triangular mesh. Thirdly, an
extended cone-curvature based algorithm is proposed to detect the salient points on the mesh
model. These salient points are used to build the salient regions and salient features. Finally,
an improved EMD distance is implemented to compute the similarity between models.

McGill university shape benchmark is utilized to test our proposed method. At first,
salient point detection algorithm is tested on these models. The results of the salient point
detection are very accurate and robust to model deformation, resolution and noise. Then, 3d
model retrieval experiments are also done on the same database. Precision-recall plot is used
to evaluate the retrieval results. According to the p-r plot, our proposed method is more
effective and efficient than the D2 descriptor and the light field descriptor.

For further work, we would like to add the topological feature to get one more powerful
feature descriptor for a much better retrieval performance. In addition, 3D partial retrieval is
still a new field of research with several of unknown difficulties together with a lot of
interesting points as well.. How to make use of the existing local features to do 3D partial
retrieval is another future challenge work.

Fig. 14 The precision-recall plot of our method and two other methods are compared with ours
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