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Abstract The dramatic growth of video content over modern media channels (such
as the Internet and mobile phone platforms) directs the interest of media broad-
casters towards the topics of video retrieval and content browsing. Several video
retrieval systems benefit from the use of semantic indexing based on content,
since it allows an intuitive categorization of videos. However, indexing is usually
performed through manual annotation, thus introducing potential problems such
as ambiguity, lack of information, and non-relevance of index terms. In this paper,
we present SHIATSU, a complete system for video retrieval which is based on the
(semi-)automatic hierarchical semantic annotation of videos exploiting the analysis
of visual content; videos can then be searched by means of attached tags and/or visual
features. We experimentally evaluate the performance of SHIATSU on two different
real video benchmarks, proving its accuracy and efficiency.

Keywords Content-based video annotation · Video segmentation ·
Hierarchical semantic video annotation · Visual features

1 Introduction

The recent boom of video net traffic, sparkled by the widespread availability of
broadband technology and the emergence of multimedia sharing web portals, such as
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Fig. 1 Tagging videos using textual labels

YouTube (www.youtube.com) and Google Videos (video.google.com), and of pay-
per-view services over the Internet, mobile phones, and television introduces a set
of new challenges. According to a recent survey,1 video traffic over the Internet
amounts nowadays to over 40% of globally transmitted data, surpassing peer-to-
peer traffic for the first time. Besides the obvious technological advances needed
to store and transmit such ever-increasing amount of data, the problem of correctly
indexing and categorizing video data is particularly important, in order to allow the
development of efficient and user-friendly browsing tools. The main challenge is to
find an effective way to obtain needed information (such as visual content and genre)
from large collections of videos in a (semi-)automatic way, in order to allow a generic
user to reliably retrieve videos of interest. The two commonly used approaches,
exemplified by the above mentioned systems, exploit user-defined tags (YouTube)
or the text surrounding the video (Google). Since it is not always possible to analyze
the context where the video is enclosed (which could be missing or simply unrelated
to the information contained in the video), many studies focus on video retrieval
based on visual content [16]. At present, the most common way to describe the
video content is represented by annotation (tagging) techniques, aiming to express
such content through a series of textual labels (refer to Fig. 1 for an example). In
this way, the semantic concept conveyed by each textual label can be transferred
to the video and used later for retrieval purposes. This approach has however
some serious drawbacks, preventing its use in several applications: (1) tagging could
be incomplete, because some concept contained in a video may be missing from
the description of such video (e.g., since the user who tagged that video was not
interested in that particular concept); (2) the existence of synonymy makes it hard to
retrieve videos relevant for a given concept, because they might have been labeled
with synonymous labels; (3) on the other hand, the existence of homonymy/polysemy
does not allow to distinguish between the different meanings a single label may have.
A common approach to avoid the above problems is to have videos indexed by
experts, who are allowed to tag resources by only using a controlled set of labels,

1http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-
481360.pdf, retrieved on Nov. 17, 2011.
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with the understanding that no synonymy and homonymy/polysemy are included in
the vocabulary. Such solution, which is commonly used by media producers, however
puts a burdensome load on experts, since a lot of effort is required to manually index
large data collections.

To overcome the previous limitations, the approach we pursue here is the
(semi-)automatic tagging of videos using concepts drawn from multidimensional
taxonomies. Bounding labels to be part of a common knowledge (represented by
taxonomies) alleviates problems of ambiguity and synonymy, while the exploitation
of automatic techniques provides the possibility of labeling large collections of videos
in a complete way. Towards this end, we apply image tagging techniques on video
frames to generate an appropriate description of the content of video scenes [12, 34].
Existing approaches for video tagging [14, 27, 42] are usually able to achieve satisfy-
ing levels of accuracy only for specific domains or for short video sequences. Indeed,
videos included in large general purpose collections usually are several minutes long
and have a heterogeneous content, making it hard to automatically derive significant
labels for such videos. For example, a news broadcasting program contains several
individual “stories”, each focusing on a particular subject: such stories would be
different among each other and also with respect to the intermediate sequences
depicting the anchorman.

Our approach to solve the above problem is to first divide a video into sequences
of visually coherent frames: each sequence, being homogeneous in content, could
then be automatically labeled using the previously described techniques. Finally, tags
associated with frames sequences can be, in a way, propagated to the whole video,
thus obtaining a hierarchical technique for video tagging.

The issue of segmenting a video into scenes sharing the same visual features,
usually called shot detection, has been an important topic of video retrieval research
throughout the last 20 years [41]. This goal is commonly achieved by detecting hard
cuts and gradual transitions (such as fade-in/fade-out, wipe, and dissolve), a task
which involves the computation of visual differences between consecutive frames
and the subsequent application of criteria to declare the presence of a shot cut (see
Fig. 2 for an example).

SHOT

VIDEO

SHOT

CUT CUT CUT

SHOT SHOT

Fig. 2 Segmenting a video in shots, i.e., visually coherent sequences of frames
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In this context, we note that segmenting a video into a sequence of frames for
video tagging purposes is inherently different with respect to other video segmenta-
tion tasks. In fact, some scenarios, like video editing, need a great amount of accuracy
in detecting the precise timing of a transition. On the other hand, automatic tagging
does not require an extremely precise detection of shot cuts, since we basically want
to identify the frames carrying the visual “content” of a sequence. A quicker, but
slightly less accurate, shot detection algorithm could be then preferred over a very
precise, yet slower, one. Our solution to the problem of shot detection offers a
balanced trade-off, giving very fast, yet fairly accurate, results.

In this paper, we present SHIATSU (Semantic HIerarchical Automatic Tagging
of videos by Segmentation Using cuts), a complete video processing/retrieval system
which offers an accurate description of video content by means of textual labels.2

Contributions of this manuscript are the following:

1. we present the overall integrated architecture of SHIATSU (Section 2), includ-
ing a description of the multidimensional taxonomies that convey the semantics
of video annotations;

2. we detail the process of video annotation (Section 3), including the tasks of shot
detection, shot tagging, and hierarchical video tagging;

3. we introduce the functionality of video retrieval based on high-level concepts
and/or visual features (Section 4);

4. we provide experiments (based on two video benchmarks) to evaluate perfor-
mance of shot detection, shot tagging, and shot/video retrieval facilities and to
asses accuracy of our hierarchical approach to video tagging (Section 5);

5. after reviewing the literature on video labeling and retrieval (Section 6), we
discuss future improvements and real use scenarios for our prototype system
(Section 7).

2 SHIATSU architecture and principles

SHIATSU offers two different use modalities: when a video is first submitted to
the system, it can be (semi-)automatically annotated by exploiting semantic tags
extracted from several concept taxonomies; alternatively, the user can search for
videos of interest by using different retrieval paradigms, some of which are based
on semantic tags. The user is allowed to search for both videos and shots. In the
example of Figure 3, the top video would be retrieved as result for the video query
“forest”, while one of the bottom shots would be returned for the shot query “bee”.

The architecture of SHIATSU is composed of three software layers. The top layer
consists of the Graphical User Interface of the two main tools available in SHIATSU:

– The Annotation Tool is used to semi-automatically assign textual labels to shots
and whole videos.

– The Retrieval Tool is exploited to search for videos/shots of interest for a
particular information need.

2This article is a substantially extended and revised version of [6], where only the annotation
component of SHIATSU was described.
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Fig. 3 Retrieval of videos/shots using associated tags

The bottom (data) layer consists of the three databases containing data of interest:

– The Video DB contains raw video data together with other meta-information
like shots timestamps, and so on.

– The Feature DB stores the visual features of frames representing shots.
– The Tag DB collects the associations between labels and videos/shots.

Finally, the middle (engine) layer consists of three main components:

– The Visual Features Extractor is used to automatically extract visual features
from video frames so as to assess similarity between two given frames.

– The Annotation Processor implements algorithms for the automatic tagging of
shots/videos, by exploiting video features.

– The Query Processor contains the logic for retrieval of videos/shots based on
semantics (tags) and/or similarity (features).

Figure 4 depicts the interaction between components of the SHIATSU architec-
ture. Solid arrows represent a flow of data between components (e.g., the Visual
Features Extractor retrieves data from the Video DB storing results into the Feature
DB), while dashed arrows denote that a component requests a service to another one
(e.g., the Annotation Processor may ask to the Visual Features Extractor to assess
the similarity between two given video frames).

SHIATSU is based on three main principles, which will be discussed in the
following: hierarchical annotation, similarity-based labeling, tagging and retrieval
based on multidimensional taxonomies.

2.1 Hierarchical annotation

The basic assumption at the core of automatic tagging in SHIATSU is that frames
with a similar visual content also convey the same semantic content. According
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Fig. 4 Architecture of the SHIATSU system

to this principle, tagging of a video in SHIATSU is performed in a hierarchi-
cal way:

1. First videos are automatically segmented into shots, i.e., sequences of consecu-
tive frames that share a common visual content.

2. So-obtained shots are then (semi-)automatically labeled using high-level con-
cepts, according to the above mentioned similarity principle.

3. Finally, tags assigned to videos shots are used to appropriately annotate the
whole video.

SHIATSU exploits this two-level tagging procedure (see Section 3) so as to pro-
vide accurate labels also for long videos. Indeed, the visual content of long sequences
could be so diverse to make automatic summarization an extremely hard task. On the
other hand, the segmentation process of SHIATSU ensures that shots have a visually
coherent content, which can be effectively labeled using automatic tools originally
designed for the realm of still images (see below). A real example, drawn from one
of the benchmarks used in our experiments, of hierarchical annotation in SHIATSU
is depicted in Fig. 5: labels automatically suggested for frames are propagated first at
the shot level; then, shot labels are summarized into video tags.

2.2 Similarity-based labeling

As said, labeling of shots (and thus videos) in SHIATSU is based on the principle
that objects that share a similar visual content also have the same semantic content,
thus similar objects should be tagged using the same labels. This paradigm, that has
been proficiently used for the automatic annotation of images [4, 22], is exploited in
SHIATSU for automatically suggesting to the user labels at the shot level. For this,
the Annotation Processor (see Fig. 4) retrieves the tags assigned to shots containing



Multimed Tools Appl (2013) 63:357–385 363

Fig. 5 Hierarchical annotation in SHIATSU: labels suggested for frames are summarized into shot
and video tags

frames that are most visually similar to frames contained in the shot currently under
examination. This is performed by automatically extracting from frames a number
of visual features that are compared to visual features contained in the Feature DB
(a metric index allows to efficiently retrieve only the most relevant features for each
frame). The whole process of tagging is described in details in Section 3.

2.3 Tagging and retrieval based on multidimensional taxonomies

The typical approach for annotating multimedia objects exploits user-defined textual
labels [4, 24, 38]. However, this is commonly performed by drawing tags from a
unstructured set, thus not taking into account their intended meaning (i.e., the
meaning such tags convey in the context where their associated multimedia data
are found: this gives a sort of meaning vagueness to labels [29]). To deal with this,
in order to connect each tag with its intended meaning, we exploit the coexistence
of multiple, independent classification criteria [15]. According to this “multidi-
mensional” approach, labels belonging to different dimensions may have separate
meanings, while each dimension will represent the meaning of high-level concepts
contained therein, providing a disambiguation of their semantics.3 Moreover, each

3Our dimensions are therefore quite different with respect to those used in other semantic indexing
approaches, like bag-of-words or Latent Semantic Indexing (LSI), where each dimension corre-
sponds to a single, basic concept.
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Fig. 6 A 6-dimensional scenario: the “landscape” dimension is selected on the left and (part of) its
concept tree is shown on the right-hand side

dimension takes the shape of a tree, where each concept is represented within a
taxonomy node and terms are linked with a parent/child relationship. More precisely,
each concept is denoted as a semantic tag, represented as a path in a tree. To each
tree node is therefore associated a single label; the label of the root node corresponds
to the name of the dimension itself. This model of hierarchical faceted categories has
been successfully used in a variety of applications to provide a coherent and complete
description of data [3, 19, 40].

Following the multidimensional approach, SHIATSU is able to describe each
video by using labels drawn from several independent dimensions. For instance,
Fig. 6 shows some dimensions for a real-world scenario: these include “animal”,
“landscape”, “geographic location”, and so on. Each node in a tree path corresponds
to a more specialized concept with respect to its parent node, so that moving up/down
within a tree a user encounters more/less abstract semantic concepts. This means that
if a video is tagged with a given semantic concept t, it is also associated to all ancestors
of t. In the example of Fig. 6, the label “landscape/sky/rainbow” also includes the
semantic concept “landscape/sky”.

SHIATSU allows the user to either use already available dimensions, e.g., (parts
of) established ontologies (like those included in Swoogle4), or to create her own
“custom” dimension. At any time, the user can also add new semantic tags to existing
dimensions: every time a new tag is added, it becomes available to be used as a label
for a video. We also note that, in line of principle, a same label could appear in several
different trees: this allows to distinguish between the different uses and/or meanings
that different occurrences of a same label could convey. For example, it is possible
that the label “turkey” will appear as a node within both the dimension “geographic
location” (e.g., used to describe videos according to the location they were shot) and
the dimension “animal”, associated to videos about the gallinaceous bird. Extending
the example, we could conceive the existence of a “sports” dimension (associated
to videos related to sport events), where the same “turkey” label could appear in
several places, for example, “sports/soccer/turkey” and “sports/basketball/turkey”,
representing, respectively, the soccer and basketball Turkish national teams. Clearly,
the fact that each semantic tag corresponds to a single complete path within a tree

4http://swoogle.umbc.edu/

http://swoogle.umbc.edu/
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allows the disambiguation of the different uses of a same label, as illustrated by the
previous example.

In order to ensure compatibility with unstructured (“flat”) dimensions, such as
those used in systems like YouTube or Flickr, SHIATSU also supports 2-level
taxonomies, with all tags appearing as children of the single tree root node (in
Fig. 6, this is represented by the “default” dimension). This fact allows SHIATSU
to also exploit another technique to solve label ambiguity, i.e., label co-occurrence.
On the other hand, label co-occurrence is not able, alone, to solve problems of
homonymy/polysemy. For example, suppose the user wants to retrieve videos about
the animals of the Eurasian country of Turkey: it is quite likely that querying the
system using the flat concepts “animal” and “turkey” would primarily return videos
concerning the gallinaceous bird, due to the polysemy of the term “turkey”. The
system is therefore not able to satisfy this particular information need of the user by
using label co-occurence only.

Each video can be assigned a variable number of semantic tags. If a dimension
is not relevant for a video, then no semantic tag from such dimension is used to
characterize content. On the other hand, a video could be characterized by multiple
semantic tags from the same dimension, if this is appropriate. For instance, a shot
containing a dog and a cat might be assigned the two semantic tags “animal/dog”
and “animal/cat”, both from the “animal” dimension. Thus, although each dimension
provides a means to classify videos/shots, this classification is not exclusive at the
instance level, a fact that provides the necessary flexibility to organize videos.

Before proceeding with details on the main components of SHIATSU, we would
like to highlight here the fact that, in our context, videos are usually medium-long
sequences (more than 1 min for each video) containing heterogeneous visual content,
so that several high-level concepts could be attached to each video. For tagging,
videos are internally segmented into shots (containing keyframes with a same visual
content), tags are automatically assigned to shots and are finally propagated to the
whole video. Then, such tags could be exploited by the user during the video retrieval
phase. As a matter of fact, a user could be as well unaware of the existence of
shots. Since SHIATSU models videos as sequences of shots, it offers to the user the
additional feature of retrieving shots using tags and/or visual features, but this should
not be viewed as the main ingredient of the system.

3 Annotation

In this section we detail how the Annotation Processor is able to derive a number
of high-level concepts (semantic tags) that can be attached to shots/videos. This
is depicted by Fig. 7, where the three main modules included in the Annotation
Processor are listed: the Shot Detection Module (in charge of segmenting the video
into shots), the Shot Tagging Module (that suggests labels for video shots), and the
Video Tagging Module (which performs the hierarchical propagation of shot tags to
the whole video).

It is worth noting that, although the process described here is fully automatic, the
GUI of SHIATSU allows the user to check proposed tags at both shot and video
level, so as to discard tags that were inaccurately suggested (see Fig. 8). The lower
right panel in the SHIATSU GUI includes the complete path of suggested tags in
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Fig. 8 The Annotation Tool in SHIATSU
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the currently selected dimension. In the example of Fig. 8 six tags are suggested: all
of them are child nodes of the dimension root node (for ease of display, the name
of the root node is excluded from the tag path). When clicking on one of such tags,
the dimension panel shows the position of such tags into the taxonomy. Clearly, the
GUI also gives the user the possibility of manually inserting new tags, by typing or
clicking on them in existing semantic taxonomies.

3.1 Shot detection

The SHIATSU Shot Detection Module exploits color histograms and object edges
to compare consecutive frames by applying two different distance metrics: this is
because usually a shot transition produces a change in both the color and the texture
structure of the frames. A double dynamic threshold system is then used in order
to take into account possible dissimilarities in the content of different video types.
A frame cut is detected by first using differences in color features and then in edge
features. For the shot detection process, we chose a balanced approach in order to
mediate between effectiveness, efficiency, and ease of implementation.

3.1.1 HSV color histogram

The color information of each frame is represented using the distribution of HSV
values of its pixels. Each frame is characterized using three histograms (we have 12
bins for Hue, 5 for Saturation and 5 for Value). The difference between histograms
of two frames h and h′ is computed using a L1 bin-to-bin metric [23]:

db2b (h, h′) = 1
2N

∑

i

|h[i] − h′[i]| (1)

where N denotes the number of frame pixels. From (1), the HSV distance between
two consecutive frames k and k + 1, dHSV(k, k + 1), is defined as the sum of bin to
bin differences for the three HSV histograms:

dHSV(k, k + 1) = 1
6N

∑

i

|hk[i] − hk+1[i]| (2)

With respect to [31], where an histogram intersection formula is used to measure
frame similarity, (2) allows a better discrimination between cut and non-cut frames.
This happens because distance values between non-cut frames generally remain in
the same range throughout the whole video: distances computed using (2) will, thus,
maintain the same average value in different parts of a video, making it easier to
correctly select video cuts.

3.1.2 Edge change ratio

A scene transition usually exhibits a modification in edges of frame objects. We can
therefore compute how many entering (new) edges and exiting edges exist between
two consecutive frames, so as to detect the occurrence of a shot cut. We define as
entering edges those new edges which have appeared with respect to the previous
frame and as exiting edges those edges which are present in the actual frame but not
in the next frame. We compute edge pixels using a Canny filter [7] and determine
entering and exiting edges by analyzing the difference of edge pixels between frames:
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edge pixels which are at most three pixels away from edges in the previous/next frame
are not counted as changed edges to compensate for object motion into the scene.
The Edge Change Ratio (ECR) [21] between frames k and k + 1 is calculated as
follows:

ECR(k, k + 1) = max

(
Xout

k

σk

X in
k+1

σk+1

)
(3)

where σk is the number of edge pixels in frame k, Xout
k and X in

k+1 are the exiting
and entering edge pixels in frames k and k + 1 respectively. In [31] edge density and
average gray variation are used to detect object edges: we believe that the use of
ECR could help in better defining frame differences and avoiding a large amount of
false positive cuts in the result.

3.1.3 Cut selection process

The process of cut selection, i.e., determining the timestamps where a scene cut
occurs, can start once all the M frames have been processed. Note that this has an
O(M) complexity, since each frame is only compared with the next frame. Distances
between consecutive frames are compared with threshold values: whenever a dis-
tance exceeds the threshold a cut is declared. The choice of the threshold value is
therefore of utter importance: a too small value would produce over-segmentation,
while a too high value would result in no cuts. Three alternatives currently exist
in literature: fixed thresholds [21, 28, 31, 35, 43], clustering [2, 26], and dynamic
thresholds. The use of fixed threshold values generally cannot deal well with videos of
different types, while clustering performs poorly when differences calculated around
probable cuts are not very high, compared to the mean of differences between non-
cut frames. In such case, grouping the frames in two clusters (normal frames and
cut frames) could lead to miss a large number of shots (false negatives). The best
available option seems therefore to be dynamic thresholding, i.e., the computation
of a threshold value based on the content of each processed video. An interesting
approach is the one described in [31], where edge features and HSV histograms are
used with a double dynamic threshold system. Although the performance exhibited
by the system are adequate in most cases, the similarity metrics used in [31] to
evaluate HSV histograms and the proposed edge features lead in some cases to an
excessive number of false positives (detecting a transition between shots belonging
to a same scene). For SHIATSU, we appropriately modified the approach presented
in [31] to improve the accuracy of shot detection, while keeping the complexity of
the process at reasonable levels.

To determine the HSV threshold θHSV , SHIATSU computes the mean of the
highest (M/ f ) HSV distances:

θHSV = βHSV

M/ f

M∑

i=M−M/ f+1

LHSV(i) (4)

where βHSV is a sensitivity parameter (the default value is 1), M is the total number
of video frames, f is the video framerate, and LHSV is the ascendingly ordered list of
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HSV distances among all consecutive shots. To determine the ECR threshold θECR,
the average of the highest 2(M/ f ) ECR values is computed:

θECR = βECR

2M/ f

M∑

i=M−2M/ f+1

LECR(i) (5)

where βECR is a sensitivity parameter (the default value is 1) and LECR is the
ascendingly ordered list of ECR values. We consider a larger window of data for
the computation of θECR because ECR distances are usually sparser than HSV
distances. Our algorithm filters out all frames having HSV distance ≤ θHSV and
considers ECR values of the remaining candidates: they are again excluded from the
result if ECR ≤ θHSV ; the frames that exceed both thresholds are considered as shot
cut frames. The approach described in [31] uses two different dynamic thresholds
to detect abrupt shot cuts and gradual cuts: as we will show in the experimental
section, SHIATSU is able to detect both hard and gradual cuts and is also easier
to implement.

3.2 Video tagging

For tagging purposes, SHIATSU exploits the Imagination system [4], using a set of
pre-annotated images/frames as a knowledge base. Every image/frame is used by the
system as an example of the semantic concepts attached to it; in this way, all and only
concepts included in the knowledge base could possibly be suggested as relevant for
a given video. The system extracts a set of visual features from each image and saves
the information in a database, indexing them efficiently with an implementation of
the M-Tree metric index [9]. When provided with a frame to be labeled, the tagging
module extracts its visual features, exploits the M-Tree index to efficiently retrieve
images having similar features and proposes semantic concepts depending on the
similarity of the shot with the images in the knowledge base (more details can be
found in [4]). Every time a new image/shot is processed and tagged, its information
is inserted into the database, hence improving the system accuracy and quality. For
simplicity, what follows assumes the existence of a single classification dimension
although, as said, SHIATSU supports multiple dimensions; the GUI allows the user
to specify, at tagging time, which dimension(s) she is interested in for the particular
video at hand.

3.2.1 Shot tagging

For each shot, SHIATSU extracts a set of representative keyframes, by using the
cuts timestamps. Visual features of such keyframes are then computed and compared
with those contained in the knowledge base. We experimented with three different
policies for selecting keyframes representative of a shot:

– The first alternative is to select just the first video frame as representative for the
whole shot.

– Another possibility is to select three keyframes, namely the first, the middle, and
the last frame of the shot.

– The last alternative is to select a number of keyframes Nk depending on the shot
length l(s), Nk(s) = c · l(s)/ f , where c is a constant value.
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We experimented with all the three strategies, with results included in the experi-
mental Section 5.2.

Each keyframe is then fed to the Visual Feature Extractor module that extracts its
visual features. In details, this module exploits the Windsurf features [1, 5], i.e., each
keyframe is first segmented into visually coherent regions, then color/texture features
are extracted and stored for each keyframe region (details about the segmentation
process and features can be found in [1]). Features of each keyframe are then
exploited by the annotation module to retrieve, from the Feature DB, images that
are visually similar to the given keyframe; again, this is efficiently carried out by
way of an M-tree index built over the Feature DB, thus avoiding a costly sequential
scan of the whole DB. Tags associated to retrieved images are then suggested for
the given keyframe and this procedure is repeated for all keyframes of a given shot:
only terms recurring in the majority of keyframes are selected as suitable concepts
to describe the whole shot. To avoid producing an overwhelming number of tags for
each shot, only the most frequent tags retrieved for each keyframe in the sequence
are presented to the user as relevant tags. The proposed tags can then be reviewed
by the user and, if she is satisfied with them, these are finally stored into the Tag DB.
Note that the frequency of each tag t in shot s is also stored within the Tag DB, so
as to maintain the relevance of t for s; this is exploited both in the tagging of whole
videos (as will be shown in the following paragraph) and in the tag-based retrieval of
shots (see Section 4).

3.2.2 Hierarchical tagging

Shot tags can be used to browse frame sequences across different videos. However,
for video indexing purposes, they could be too specific, particularly in the case of
long videos, containing a wide range of different visual content. Propagating tags
from shots to videos is an activity of summarization, i.e., the description of the video
is a compact sum of the tags associated with its shots. A simple criterion to select
video tags from the set of shot tags is to weigh every tag depending on its frequency
and the length of the shot it is associated with. We first compute the relevance of
each shot s as the length of s with respect to the whole video V:

W(s) = l(s)
l(V)

(6)

Then, we define the rank R(t) for every shot tag t as:

R(t) = 1
Ns

∑

s

W(s)A(t, s) (7)

where Ns is the total number of shots and A(t, s) is the relevance of tag t for shot s
(A(t, s) ∈ [0, 1] with 0 meaning that shot s does not contain tag t). Tags are ordered
by descending R(t) values and the first 10 tags (if available) become video tags. The
rationale behind the proposed propagation method relies on the fact that concepts
extracted from long shots and/or that appear in several shots are probably more
relevant, to describe the content of a whole video, than concepts occurring rarely
or in short sequences. Finally, video tags are stored in the Tag database (together
with shot tags), thus the user can exploit them when searching for videos of interest
(see Section 4).



Multimed Tools Appl (2013) 63:357–385 371

For tag propagation, we also considered the use of tf-idf weights in (7). The use
of inverse document frequency would exclude from video description tags that are
commonly found in the DB, introducing rarer tags, which are however less represen-
tative of the content of the video. Although using idf could favor searching videos
containing less frequent tags, we note here that such tags are nevertheless associated
with shots, thus the search would succeed when looking for shots containing such
tags.

4 Retrieval modalities

The Query Processor is the component of SHIATSU that is in charge of managing
user requests so as to efficiently return the videos of interest. The user should first
choose whether she is interested in whole videos or in just shots. Then, results can be
retrieved according to one of three available query paradigms: keyword-based (KS),
feature-based (FS) and keyword&feature-based (KFS) searches.

The KS paradigm is the easiest and most popular query modality, used by
traditional search engines, where the user enters a set of keywords as query semantic
concepts. According to this query paradigm, the result list only includes those
videos/shots containing at least one tag among those submitted by the user. The
list of returned objects is sorted according to the number of tags that co-occur
in each video/shot. This means that, if q tags are specified in the user query, the
first ranked videos/shots would be those (if any) that include all q tags, followed
by those that only contain q − 1 of such tags, and so on. Among videos/shots
that contain the same number of tags, results are ranked for decreasing relevance
of such tags. Finally, the user could specify a maximum result cardinality, k, so
that the ranked list is limited to the top-k results. Due to the very hierarchical
nature of semantic tags, a user requesting videos/shots labeled with a given tag t,
would also receive videos/shots annotated with any concept descendant of t. For
instance, considering the sample dimensions shown in Fig. 6, a KS query requesting
for the semantic tag “landscape/sky” would also retrieve objects labeled with tags
“landscape/sky/rainbow” and “landscape/sky/sun”, if any.

With the FS modality, the user is looking for those shots whose representative
keyframes are similar to an input query image. Since an entire video generally holds
a large range of heterogeneous visual content, we believe it is not useful for the
user to perform FS at the video level. Again, the user could specify a limit on the
number of retrieved results, k. It has to be noted, at this stage, that performing a
simple k-nearest-neighbor (k-NN) search on the Feature DB could lead to miss some
relevant results. Indeed, since a shot is usually represented by several keyframes,
only retrieving the k keyframes that are most similar to the query image could lead
to retrieve less than k distinguished shots. To overcome this problem, we exploit
another feature of the underlying M-tree index, retrieving keyframes in decreasing
order of similarity to the query image. Such sorted access modality is efficiently
performed by the index thanks to algorithms of general applicability [20]. Then,
a number k′ ≥ k of sorted accesses is performed until it is guaranteed that the k′
retrieved keyframes belong to k different shots.

Finally, KFS queries combine the KS and FS modalities, returning shots in the
intersection of both KS and FS results first, followed by shots in the KS list only and,
finally, by shots in the FS result only. This query modality is particularly convenient
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Fig. 9 The Retrieval Tool in SHIATSU

when the keyword-based search involves concepts that are poorly represented in
knowledge base, i.e., shots annotated with requested concepts are less than k. In this
case, by only applying KS we would not be able to return k shots, thus we enrich the
result by including also shots that contain keyframes visually similar to the provided
query image. Even in the case when KS is able alone to provide the desired number
of objects, adding features in the query process could still be useful: indeed, it can
be exploited to re-rank shots within the result set, e.g., among shots containing all
the query tags, those that also contain keyframes visually similar to the query image
are listed first. As for FS, the use of a query image restricts results to shots (i.e., this
query modality cannot be applied to entire videos).

Figure 9 shows the retrieval tool of the SHIATSU GUI. In this example, the
result of a KFS query concerning the concepts “sky” and “waterscape/waterfront”
is depicted. The user has then clicked on the seventh result shot, and the bottom-left
part of the GUI is showing tags associated to that shot and the corresponding video.
On the bottom-right part of the GUI, previews of the shot and the whole video are
shown, so as to allow their playback.

5 Experimental evaluation

In this section, we present results about effectiveness and efficiency of SHIATSU.
For this, we used two different real video datasets: the video set for the Item
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Segmentation task of the Mammie system5 and the video set for the High-Level
Feature task of the TRECVID-2007 benchmark.6 The Mammie dataset consists of
43 videos containing a total of almost 2 millions video frames for a playback time of
over 1075 min; this dataset also provides a ground truth of 4225 shot cuts, so we used
it to test the accuracy of the segmentation module of SHIATSU (Section 5.1). On the
other hand, the TRECVID dataset contains 110 videos with about 4.5 millions video
frames (resulting in approximately 9000 shot cuts) for a total of around 3000 minutes;
each shot in the dataset is described by means of textual tags representing 36 semantic
concepts. Such 36 concepts, that were included into a single flat “default” dimension,
represent our ground truth for tagging, allowing us to provide non-subjective results
on the accuracy of SHIATSU. Experiments on tagging (Section 5.2) and retrieval
(Section 5.3) were performed on 7 videos in the Test Set of the TRECVID dataset
(about 120 min, 180000 frames, 680 shots) that are tagged using the same 36 labels,
so that it is possible to evaluate precision of tagging/retrieval. Since TRECVID only
provides a ground truth at the shot level, i.e., no tags are given for full videos, we
are not able to give any non-subjective results at the video level. A final experiment
(Section 5.4) involves a set of ten real users, who were requested to evaluate the
usefulness of video retrieval and the accuracy of our hierarchical approach to video
tagging.

Regarding efficiency, SHIATSU was implemented in Java JDK 6.0 and all experi-
ments have been run on a an AMD 3.1 GHz Dual Core processor with 2GB of RAM
running the Windows 7 Professional OS; the DBMS used was MySQL Server 5.1.

5.1 Shot detection performance

Performance of the shot detection module of SHIATSU is evaluated using classical
precision/recall metrics:

P = CC
CC + FC

R = CC
CC + MC

(8)

where CC denotes the number of cuts correctly detected, MC the number of missed
cuts, and FC the number of false (erroneously detected) cuts, respectively. We accept
a tolerance of 250 msec from shot boundaries timestamps indicated in the ground
truth to declare a correct cut.

We compare results of SHIATSU on the Mammie dataset with those obtained by
the technique proposed in [31] (named QLR in the following). Table 1 shows the
performance of SHIATSU (using default and optimal sensitivities values) compared
with those of the QLR technique.

SHIATSU clearly outperforms the reference algorithm in both recall and preci-
sion and achieves good overall values with default and optimal sensitivity values.
The use of bin to bin differences for HSV histograms and of ECR for frame
object edges dramatically reduce the number of false shot boundaries detected:

5http://media.ibbt.be/mammie
6http://trecvid.nist.gov

http://media.ibbt.be/mammie
http://trecvid.nist.gov
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Table 1 Video segmentation results

Parameters SHIATSU QLR
βHSV = 1, βECR = 1 βHSV = 1.2, βECR = 1

CC 3784 3721 3625
FC 672 494 1612
MC 441 504 600
Recall % 89.56 88.07 85.8
Precision % 84.92 88.28 69.22

experimental results prove how our choice of image features leads to significantly
better performances. We also evaluated how recall and precision values change when
modifying one of the sensitivity parameters βHSV and βECR, keeping the other at the
default value (Fig. 10).

As expected, increasing sensitivity parameters leads to increasing values of preci-
sion and decreasing values of recall (since we obtain higher thresholds, thus a lower
number of cuts). After tweaking sensitivity parameters, the most balanced setting
seems to be βHSV = 1.2 and βECR = 1 where the segmentation algorithm achieves a
recall of 88.07% and a precision of 88.28%; we however note that SHIATSU is quite
robust in performance since a variation of 20% in sensitivity parameters does not
lead to a dramatic drop in neither recall nor precision.

Regarding efficiency of the segmentation task, SHIATSU is quite inexpensive,
processing frames at a rate of 15 FPS (note that this is achieved on an average
machine, not on a high-end system, where the segmentation task would be even
faster).

5.2 Shot tagging performance

We evaluate the accuracy of the annotator in terms of classical precision (fraction
of suggested tags that are correct for the shot) and recall (fraction of relevant tags
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Fig. 11 Average accuracy of the annotator in terms of (a) precision and (b) recall vs. number of
predicted tags

that are suggested by the annotator) metrics over the Test Set of the TRECVID
dataset. As noted in Section 3.2.1, we tested three different alternatives for choosing
the keyframes that represent a shot. Figure 11 shows the performance of such
alternatives: f-kf (first keyframe) denotes the strategy that selects only the first
shot frame, fml-kf (first, middle, last keyframe) denotes the strategy that chooses
the first, the middle, and the last keyframe, while cs-kf denotes the policy that
picks a keyframe every c sec (e.g., 2s-kf means that a keyframe is selected every
2 sec). For every shot, we request SHIATSU to provide the ktag (ktag ∈ [1, 8]) most
frequent tags, evaluating their precision/recall against the benchmark ground truth.
As expected, when requesting for more tags, recall is increased at the expenses of
precision, as Fig. 11 shows.

As to efficiency of the tagging task, each keyframe selection alternative has an
impact on the time needed to suggest labels for a shot. Since, on average, about
331 msec are required to process a single keyframe and the mean shot length is
10.54 sec, we obtain the average shot tagging times shown in Table 2, which also
shows the ratio of processing time to real time, i.e., the average shot length.

Finally, we analyzed the impact of segmentation on tagging accuracy: for this we
evaluated how precision/recall measures were affected when varying the sensitivity
parameters of our shot detection algorithm (see Section 5.1). Results obtained in this
experiment, however, exhibit no statistically relevant difference, with a maximum
deviation of around 1%, and are thus not shown here. Again, this should be viewed
as a proof of the robustness of both the segmentation and the similarity-based tagging
algorithms used in SHIATSU.

Table 2 Average shot tagging time and ratio of tagging time over shot time vs. keyframe selection
policy

Keyframe selection policy 2s-kf 4s-kf 6s-kf fml-kf f-kf

ms per shot 1744.37 872.18 581.46 993.00 331.00
% of shot time 16.55 8.27 5.52 9.42 3.14
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Conclusions of these experiments are the following:

1. The strategy that selects a keyframe every 2 sec is the one that attains the best
accuracy, far better than all other alternatives.

2. The same strategy is also the worst when considering tagging costs, five times
than the cheapest f-kf alternative.

3. Absolute costs are consistently very low, thus we can easily trade off tagging time
for achieving the best accuracy, considering that the processing speed is 6–30×
quicker than average video playback.

Figure 12 summarizes precision and recall, when varying the number of predicted
tags, for the 2s-kf policy, which is the one that will be used for the remainder of this
section. The current implementation of SHIATSU attaches six tags to each shot: we
believe that this represents a good trade-off between accuracy (precision is about
55%), recall (over 70%), and usability (a larger number of tags would be hardly
manageable by a single user).

Although our experiments on tagging were conducted using a single dimension
(due to the fact that there was no correlation among tags available in the ground
truth), they would still remain valid also in presence of multiple hierarchies. This is
because the result of the tagging process for a given dimension is independent of
the co-existence of other dimensions. However, when several hierarchies exist, the
user is given much more expressive power. For example, suppose that two different
dimensions exist, A and B. The user could ask for tags in both dimensions A and B,
or even only in dimension A (or B). Clearly, this freedom is not allowed in the case
where such dimensions are included into a new single hierarchy, say C.

5.3 Shot retrieval performance

In order to measure the effectiveness of video retrieval in SHIATSU, we performed
tests using a query workload of seven different search labels (namely: outdoor
scenes, scenes containing persons, faces, roads, sky views, vegetation, and water-
scape/waterfront views) drawn for the original 36 concepts in the benchmark. Our
first experiment aims at measuring the accuracy of the two main search modalities in

Fig. 12 Average accuracy of
the annotator in terms of
precision and recall vs. number
of predicted tags
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SHIATSU: keyword-based and feature-based search. For the former, the retrieval
engine was queried using the exact concept, thus performance is expected to reflect
the accuracy of the annotator; for the latter, on the other hand, we submitted
an image (not drawn from the dataset) exemplifying one of the seven concepts.
Retrieval precision is measured as the fraction of returned shots for which the ground
truth exhibits the query concept.

Figure 13 (a) shows the average accuracy of the video retrieval vs. the number
of returned shots. We recall that for keyword-based (KS) searches, the order of
returned shots is given by the relevance of the query tag in each shot, while for
feature-based search (FS) shots are sorted in decreasing order of similarity to the
query image. As the graphs show, KS performs very well (about 80% of precision
for five retrieved shots and 58% for 25 retrieved shots); this again demonstrates the
accuracy of the annotation in SHIATSU. On the other hand, performance of FS is
worse than KS (as expected, because of the semantic gap problem), yet it remains on
a satisfactory level.

To demonstrate the usefulness of FS, we performed a final test assuming a poor
annotation scenario. For example, in our ground truth the concept “Car” appears in
31 shots, but our annotator is able to only predict it for seven shots (five of which
are correct, thus precision is 71%). In this case, recall is clearly limited, reaching
5/31 = 16% and cannot be increased further by KS. On the other hand, we can
request additional shots using KFS. Figure 13 (b) shows that the contribution of
the visual features can indeed increase the recall: when 30 shots are retrieved, 12
of them contain cars, giving a recall level of around 40%. The graph also shows
the precision of KFS: although we have deliberately chosen a situation where the
SHIATSU annotator performs not very well, this is never less than 40%, making this
a “remarkably good” worst-case scenario.

As to efficiency of the retrieval in SHIATSU, Fig. 14 depicts average retrieval time
of KS and FS. While the latter exploits the M-tree index (see Section 4), the former
takes advantage of indexing structures of the underlying DBMS. Indeed, graphs show
that retrieval times follow a trend which is linearly dependent on the number of
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Fig. 14 Average retrieval time
vs. number of returned shots
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retrieved shots. However, the M-tree index has to pay a major overhead (about half
a second) for retrieving the first shot, but its cost per retrieved shot (around 3.5 ms)
is cheaper than that exhibited by the MySQL index structure (6.5 ms). These last two
results demonstrate that visual features offer a cheap support whenever keyword-
based search is unable to provide satisfactory recall levels.

5.4 Evaluation of video tagging and retrieval

Our final experiment concerns the evaluation of tagging and retrieval of full videos.
As said, for this we requested ten users to evaluate the performance of SHIATSU
when tagging/searching for full videos, as opposed to shots. Every user was shown
some videos from the TRECVID benchmark and was then asked to evaluate the
accuracy of tags suggested by SHIATSU for each video. Then, we let each user
interact with the SHIATSU Retrieval Tool, asking her to perform some keyword-
based searches at both video and shot level.

For the first experiment, after watching a video, the user was asked to provide
ten tags (drawn from the overall 36 concepts in the TRECVID benchmark) for
describing the video and such tags were then compared with the ten tags suggested
by SHIATSU. Assessment of tagging at the video level was then averaged over
all videos and users (note that in this experiment, since the number of user tags
coincides with the number of suggested tags, precision equals recall), obtaining an
overall accuracy of 73%. This result is consistent with the average precision of shot
tagging, demonstrating the accuracy of hierarchical video tagging.

In the second experiment, each user was first asked to utilize the Retrieval Tool
to search for whole videos using semantic tags, assessing the relevance of returned
videos. Then, the users were made aware of the existence of shots and were asked to
perform keyword-based searches on shots, evaluating their experience. Finally, we
requested the users to indicate whether they found useful to search for videos and
shots. Each user answered to a questionnaire, giving grades ranging from 0 (“strongly
disagree”) to 4 (“strongly agree”).

Table 3 shows individual and average scores for the four statements. We note
that there is a strong agreement on the accuracy of the system, with an average
score of 3.75/4. The last two questions have the goal to understand whether users
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Table 3 Mean satisfaction scores across participants, using 0 as “strongly disagree” and 4 as “strongly
agree”

Statement Agreement Average
0 1 2 3 4 score

a) “Retrieved videos are relevant to the query concept” 0 0 1 2 7 3.6
b) “Retrieved shots are relevant to the query concept” 0 0 0 2 8 3.8
c) “Video retrieval is a necessary component of the system” 0 0 1 1 8 3.7
d) “Shot retrieval is a necessary component of the system” 0 1 3 5 1 2.6

deem important to search for videos and shots. Considering that videos in the
benchmark have an average length of 27.3 min while shots are about 10 sec long,
it is not surprising that there is an overall preference of users for video retrieval,
because retrieved shots were often considered too short to be interesting. Only one
user considered shot retrieval almost unnecessary, grading it 1. When requested
to comment on this, she answered: “When using several keywords for searching,
very few shots were relevant for all query concepts, while I found it easier to
retrieve relevant videos”. Indeed, this user has highlighted the fact that shots, being
homogeneous in their content, are also necessarily short and usually described with
very few concepts. On the other hand, video tags represent a summary of the most
representative shot tags, thus it is more likely that, when using several query tags, a
video will contain all of them.

We finally remark that although the result of this experiment proves the usefulness
of video retrieval, shot retrieval has nevertheless to be considered an important
feature of SHIATSU. Since shot retrieval is also significant in a variety of scenarios,
several of which recur in the field of media production, we believe that SHIATSU
is the first system which is able to provide the users with the best of both (video and
shot retrieval) worlds.

6 Related work

Video tagging has become a popular field of study due to the emergence of video
sharing platforms such as YouTube. However, in the vast majority of cases, the
task of indexing videos by content is usually neglected; this can be only performed
by typing meta-information (normally, by means of textual labels) when a user
uploads a video. This could generate ambiguity (because a label could carry different
meanings due to polysemy or homonymy), lack of information (because a video
could miss some of its information), and problems of synonymy/mistyping. On the
other hand, the use of automatically extracted visual features is known to lead
to misinterpretation of such extracted data. The distance between visual features
and the image/video meaning has been termed the semantic gap problem, and
frequently appears when attempting to automatically interpret complex media [32].
To overcome this, the (semi-)automatic tagging of multimedia objects based on
semantic concepts is usually exploited [17, 18]: for the video domain this is commonly
carried out using annotation of keyframes [12, 16, 25], so as to detect and categorize
objects in video scenes. This also allows the use of annotation tools originally devised
for the realm of still images [4, 11, 12].
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Concerning the segmentation of videos into shots, one of the basic problems is
the selection of the appropriate set of features to be used to detect shots: every
frame is described by a vector of properties and differences between those vectors
represent differences in content for video frames. Color histograms [21, 23, 31]
are widely used to describe frames, because they are easy to compute and mostly
insensitive to translational, rotational, and zooming camera motions, hence being
quite effective to represent frame content difference. Edges extracted from frame
objects [8, 21, 31, 43], although more computational-intensive than color histograms,
are also commonly used to detect scene changes with good results, often in conjunc-
tion with color features. We chose to limit ourselves to a combination of these two
features: the use of other features, like motion vector detectors [21, 35] or wavelet
filters [2, 26], might improve the accuracy of video segmentation at the cost of a much
higher computational overhead. As said, the shot detection task is, in our case, only
half of the picture, our video tagging results being sufficiently accurate even without
a perfect segmentation.

The task of automatic shot tagging is commonly carried out either by exploiting a
knowledge restricted to a domain [14, 27] or by applying similarity search principles
that have a more general applicability [4, 42]. Since the former is usually based
on specific descriptors and/or on machine learning tools, their validity is limited to
the existence of a very specific understanding of the underlying domain, which is
clearly not the case for general purpose systems, like those commonly used by media
producers (e.g., TV broadcasters). On the other hand, the basic idea of similarity-
based annotation tools is to exploit automatically extracted low-level features to
suggest labels for multimedia objects. This aims to overcome the semantic gap by
introducing the user in the loop, with the limited burden of only checking the
suggested tags.

The final step to overcome the semantic gap is then to unambiguously attach
meaning to tags. Free tags, however, are not a viable solution, due to the exis-
tence of synonymy (a single concept represented by several, different labels) and
homonymy/polysemy (a single label representing several, different concepts). For
this, it is well known that concept hierarchies represent a simple, yet powerful, way
of organizing concepts into meaningful groups [15, 19]. For example, Yahoo uses a
topic-based hierarchy to organize web sites according to their topic and allows users
to quickly identify web pages of interest, while Wikipedia contents are based on a hi-
erarchy of categories (http://en.wikipedia.org/wiki/Portal:Contents/Categories). The
biggest drawback of this approach is the fact that, while categorization of items can be
performed (semi-)automatically, the hierarchies should be manually built, although
studies have also focused on the automatically derivation of hierarchies [10].

When the number of categories is large, organizing them into a single taxonomy
is detrimental for the usability of the overall structure. To this end, faceted hierar-
chies [15] are used in a variety of scenarios as a very flexible, and simple, way to
represent complex domains [19, 40]. For example, they are successfully exploited in
the domain of image retrieval (e.g., in the Catalyst image searching engine7) and
browsing [3].

Regarding video retrieval, this is one of the most challenging task of nowadays
information technology research [16]. Most of the existing video retrieval systems

7http://www.gettyimages.nl/Catalyst

http://en.wikipedia.org/wiki/Portal:Contents/Categories
http://www.gettyimages.nl/Catalyst
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exploit either contextual information, like textual information included in the same
web page containing the video in Google Videos, or additional user-provided infor-
mation, like description, comments, categorizations, in YouTube. A rather different
approach is represented by content-based video retrieval which uses different types
of features to derive annotations to describe videos. The main problem of content-
based video search is related to the selection of the essential set of features that best
represent each of the video shots (also referred as the video indexing problem). Such
features include visual characteristics, like color and texture, temporal features (e.g.,
motion and audio), and high level concepts, such as event, person, indor/outdoor, etc.
Towards this goal, as early as 2001 TRECVID has defined video search similarity as
one of the tasks for evaluation, even if the retrieval accuracy achieved by state-of-
the-art techniques is still deemed as unsatisfactory [36, 37].

Examples of systems that rely on visual features only to index the data are [33, 39].
Even if the latter approach has the great advantage to be completely automatic, it
inherits from the image domain the limits given by the semantic gap problem [11].
Semantic indexing based on textual annotation of the video content seems to
be a better option than visual features [16] because users usually search videos
based on their meaning and not on visual features. Recent works, such as [13, 30],
focus on multi-modal video retrieval allowing semantic concept search, feature-
based search (through video clustering on low-level features and/or the query by
example paradigm) and a combination of the two approaches. Since the annotation
process exploited to assign labels to the video content usually makes use of visual
features itself, it is quite intuitive to derive that the combination of the two search
modalities does not bring much improvement to the final retrieval accuracy: low-
level information, in fact, are already embedded into the semantic annotations.
The keyword&feature-based search we included in SHIATSU aims to alleviate this
inconvenience, so as to effectively exploit the feature-based search to expand the
query result whenever the semantic (keyword-based) search is not able to return a
sufficient number of results (this happens in those cases when the annotator performs
poorly for some given concepts).

7 Conclusions and extensions

In this paper, we have presented SHIATSU, a system for the categorization and
retrieval of videos. In designing it, our goal was to provide video producers with
a tool able to combine a good accuracy with efficiency, so that produced videos
can be processed in real time. The main functionalities of SHIATSU are the
(semi-)automatic labeling of videos (which is performed by means of segmentation
of videos into shots, similarity-based tagging of shots using multidimensional tax-
onomies, and hierarchical propagation of tags to whole videos) and their retrieval
using (semantic) tags, visual features, or a combination of both.

Experimental results on two video benchmarks prove that SHIATSU indeed
fulfills its requirements, achieving good precision levels for both annotation and
retrieval without sacrificing efficiency: in particular, tagging of a video typically
requires a time which is almost equal to the video length, while retrieval is performed
in real time.
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The segmentation module of SHIATSU, although based on a very simple al-
gorithm, combines a nice accuracy with a good efficiency. We also note that the
segmentation of videos is not the key feature in SHIATSU, but just a first step
towards the automatic labeling of videos. Replacing the simple segmentation algo-
rithm of SHIATSU with a more sophisticated one could improve the accuracy of
shot detection (likely at the expense of speed), but its impact on tagging accuracy
would be questionable. Yet, we are considering a modification of our keyframe
selection strategy by clustering all frames of a shot, so as to reduce the complexity
of tagging (note that two very similar keyframes would be likely tagged in the same
way, although the tagging cost has to be paid twice).

As a final consideration, we highlight the fact that, with respect to other existing
automatic video labeling tools, SHIATSU only considers the visual content of each
video in order to suggest description labels: this can be easily complemented with
other (more complex) techniques that analyze audio and speech, so as to provide a
more accurate tagging of videos. For the moment, we stress the fact that (as shown
in the experimental section) SHIATSU is able to obtain a good tagging accuracy,
in spite of its simplicity and efficiency. Clearly, we are interested in extending our
labeling technique so as to encompass this, otherwise neglected, video content.

Among the issues that we are currently considering, we would like to highlight:

– Currently, SHIATSU only allows to retrieve either videos or shots; some applica-
tion scenarios, on the other hand, could benefit in a combined retrieval of videos
and shots, thus we need to devise a technique for merging such heterogeneous
result lists.

– Since the goal of this paper was to present the features of the SHIATSU
system and to prove its effectiveness in helping the user retrieving videos of
interest in a generic use scenario, we have somehow neglected a thorough
analysis of the efficiency of video retrieval. Our preliminary experiments on this
(included in Section 5.3) prove that, in our experimental scenario, SHIATSU
is able to process queries in real time (<1 sec), but it might be the case that
more complex indexing techniques are needed for databases containing large
numbers of videos/shots and tags. In tackling this issue, we plan to exploit our
decennial experience in query processing algorithms for similarity searching in
large multimedia collections [5, 9].

– We are currently working to apply SHIATSU for the tagging/retrieval of videos
in a real world application in the domain of cultural heritage. We would also like
to experiment with a variety of other different contexts, like media production
and personal collections.
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