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Abstract This paper deals with information retrieval and semantic indexing of
multimedia documents. We propose a generic scheme combining an ontology-
based evidential framework and high-level multimodal fusion, aimed at recognising
semantic concepts in videos. This work is represented on two stages: First, the
adaptation of evidence theory to neural network, thus giving Neural Network based
on Evidence Theory (NNET). This theory presents two important information for
decision-making compared to the probabilistic methods: belief degree and system
ignorance. The NNET is then improved further by incorporating the relationship
between descriptors and concepts, modeled by a weight vector based on entropy
and perplexity. The combination of this vector with the classifiers outputs, gives us a
new model called Perplexity-based Evidential Neural Network (PENN). Secondly,
an ontology-based concept is introduced via the influence representation of the
relations between concepts and the ontological readjustment of the confidence
values. To represent this relationship, three types of information are computed:
low-level visual descriptors, concept co-occurrence and semantic similarities. The
final system is called Ontological-PENN. A comparison between the main similarity
construction methodologies are proposed. Experimental results using the TRECVid
dataset are presented to support the effectiveness of our scheme.
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1 Introduction

The growing amount of image and video available either online or in one’s personal
collection has attracted the multimedia research community’s attention. There are
currently substantial efforts investigating methods to automatically organize, ana-
lyze, index and retrieve video information. This is further stressed by the availability
of the MPEG-7 standard that provides a rich and common description tool for
multimedia contents. Moreover, it is encouraged by TRECVid evaluation campaigns
which aim at benchmarking progress in video content analysis and retrieval tools
developments.

Retrieving complex semantic concepts such as car, road, face or natural disas-
ter from images and videos requires to extract and finely analyze a set of low-level
features describing the content. In order to generate a global result from the various
potentially multimodal data, a fusion mechanism may take place at different levels of
the classification process. Generally, it is either applied directly on extracted features
(feature fusion), or on classifier outputs (classif ier fusion).

In most systems concept models are constructed independently [34, 46, 55].
However, the binary classification ignores the fact that semantic concepts do not exist
in isolation and are interrelated by their semantic interpretations and co-occurrence.
For example, the concept car co-occurs with road while meeting is not likely to
appear with road. Therefore, multi-concept relationship can be useful to improve the
individual detection accuracy taking into account the possible relationships between
concepts. Several approaches have been proposed. Wu et al. [55] have reported
an ontological multi-classification learning for video concept detection. Naphade
et al. [34] have modeled the linkages between various semantic concepts via a
Bayesian network offering a semantics ontology. Snoek et al. [46] have proposed
a semantic value chain architecture for concept detection including a multi-concept
learning layer called context link. In this paper, we propose a generic and robust
scheme for video shots indexing based on ontological reasoning construction. First,
each individual concept is constructed independently. Second, the confidence value
of each individual concept is re-computed taking into account the influence of other
related concepts.

This paper is organized as follows. Section 2 reviews existing video indexing
techniques. Section 3 presents our system architecture. Section 4 gives the proposed
concept ontology construction, including three types of similarities. Section 5 reports
and discusses the experimentation results conducted on the TRECVid collection.
Finally, Section 6 provides the conclusion of the paper.

2 Review of existing video indexing techniques

This section presents some related works from the literature in the context of
semantic indexing. The field of indexing and retrieval has been particularly active,
especially for content such as text, image and video. In [2, 11, 45, 50, 52], different
types of visual content representation, and their application in indexing, retrieval,
abstracting, are reviewed.

Early systems work on the basis of query by example, where features are extracted
from the query and compared to features in the database. The candidate images are
ranked according to their distance from the query. Several distance functions can be
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used to measure the similarity between the query and all images in the database. In
Photobook [39], the user selects three modules to analyze the query: face, shape or
texture. The QBIC system [13] offers the possibility to query on many features: color,
texture and shape. VisualSeek [44] goes further by introducing spatial constraints on
regions. The Informedia system [53] includes camera motion estimation and speech
recognition. Netra-V [58] uses motion information for region segmentation. Regions
are then indexed with respect to their color, position and motion in key-frames.
VideoQ [9] goes further by indexing the trajectory of regions. Several papers touch
upon the semantic problem. Nephade et al. [33] built a probabilistic framework for
semantic video indexing to map low-level media features with high-level semantic
labels. Dimitrova [11] presents the main research topics in automatic methods for
high-level description and annotation. Snoek et al. [45] summarize several methods
aiming at automating this time and resource consuming process as state-of art.
Vembu et al. [52] describe a systematic approach to the design of multimedia
ontologies based on the MPEG-7 standard and sport events ontology. Chang et
al. [20] exploit the audio and visual information in generic videos by extracting atomic
representations over short-term video slices.

However, models are constructed to classify video shots in semantic classes.
Neither of these approaches satisfy holistic indexing, where a user wants to find
high level semantic concepts such as an office or a meeting for example. The
reason is, that there is a semantic gap [52] between low-level features and high-
level semantics. While it is difficult to bridge this gap for every high level concept,
multimedia processing under a probabilistic framework and ontological reasoning
facilitate, bridging this gap for a number of useful concepts.

3 System architecture

The general architecture of our system can be summarized in five steps as depicted
in Fig. 1: (1) features extraction, (2) classification, (3) perplexity-based weighted
descriptors, (4) classifier fusion and (5) ontological readjustment of the confidence
values. Let us detail each of those steps:

3.1 Features extraction

Temporal video segmentation is the first step toward automatic annotation of digital
video for browsing and retrieval. Its goal is to divide the video stream into a set
of meaningful segments called shots. A shot is defined as an unbroken sequence of
frames taken by a single camera. The MPEG-7 standard defines a comprehensive,
standardized set of audiovisual description tools for still images as well as movies.
The aim of the standard is to facilitate quality access to content, which implies
efficient storage, identification, filtering, searching and retrieval of media [31]. Our
system employs five types of MPEG-7 visual descriptors: Color, texture, shape,
motion and face descriptors. These descriptors are briefly defined as follows:

3.1.1 Scalable Color Descriptor (SCD)

is defined as the hue-saturation-value (HSV) color space with fixed color space
quantization. The Haar transform encoding is used to reduce the number of bins
of the original histogram with 256 bins to 16, 32, 64, or 128 bins [17].
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Fig. 1 General indexing system architecture

3.1.2 Color Layout Descriptor (CLD)

is a compact representation of the spatial distribution of colors [21]. The color
information of an image is divided into (8×8) block. The blocks are transformed into
a series of coefficient values using dominant color descriptor or average color, to ob-
tain CLD = {Y, Cr, Cb} components. Then, the three components are transformed
by 8×8 DCT (Discrete Cosine Transform) to three sets of DCT coefficients. Finally,
a few low frequency coefficients are extracted using zigzag scanning and quantized
to form the CLD for a still image.

3.1.3 Color Structure Descriptor (CSD)

encodes local color structure in an image using a structuring element of (8×8) dimen-
sion. CSD is computed by visiting all locations in the image, and then summarizing
the frequency of color occurrences in each structuring element location on four
HMMD color space quantization possibilities: 256, 128, 64 and 32 bins histogram [32].

3.1.4 Color Moment Descriptor (CMD)

provides some information about color in a way which is not explicitly available in
other color descriptors. It is obtained by the mean and the variance on each layer of
the LUV color space of an image or region.
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3.1.5 Edge Histogram Descriptor (EHD)

expresses only local edge distribution in the image. An edge histogram in the image
space represents the frequency and the directionality of the brightness changes in
the image. The EHD basically represents the distribution of 5 types of edges in
each local area called a sub-image. Specifically, dividing the image into (4×4) non-
overlapping sub-images. Then, for each sub-image, we generate an edge histogram.
Four directional edges (0◦, 45◦, 90◦, 135◦) are detected in addition to non-directional
ones. Finally, it generates a 80 dimensional vector (16 sub-images, 5 types of edges).
We make use of the improvement proposed by [38] for this descriptor, which consist
in adding global and semi-global levels of localization of an image.

3.1.6 Homogeneous Texture Descriptor (HTD)

characterizes a region’s texture using local spatial frequency statistics. HTD is
extracted by Gabor filter banks (6 frequency times, 5 orientation channels), resulting
in 30 channels in total. Then, computing the energy and energy deviation for each
channel to obtain 62 dimensional vector [31, 56].

3.1.7 Statistical Texture Descriptor (STD)

is based on statistical methods of co-occurrence matrix such as: energy, maximum
probability, contrast, entropy, etc [1], to model the relationships between pixels
within a region of some grey-level configuration in the texture; this configuration
varies rapidly with distance in fine textures, slowly in coarse textures.

3.1.8 Contour-based Shape Descriptor (C-SD)

presents a closed 2D object or region contour in an image. To create Curvature Scale
Space (CSS) description of contour shape, N equidistant points are selected on the
contour, starting from an arbitrary point and following the contour clockwise. The
contour is then gradually smoothed by repetitive low-pass filtering of the x and y
coordinates of the selected points, until the contour becomes convex (no curvature
zero-crossing points are found). The concave part of the contour is gradually flattered
out as a result of smoothing. Points separating concave and convex parts of the
contour and peaks (maxima of the CSS contour map) in between are then identified.
Finally, eccentricity, circularity and number of CSS peaks of original and filtered
contour are should be combined to form more practical descriptor [31].

3.1.9 Camera Motion Descriptor (CM)

details what kind of global motion parameters are present at what instance in time
in a scene provided directly by the camera, supporting 7 camera operations: fixed,
panning (horizontal rotation), tracking (horizontal transverse movement), tilting
(vertical rotation), booming (vertical transverse movement), zooming (change of
the focal length), dollying (translation along the optical axis), and rolling (rotation
around the optical axis) [31].

3.1.10 Motion Activity Descriptor (MAD)

shows whether a scene is likely to be perceived by a viewer as being slow, fast
paced, or action paced [48]. Our MAD is based on intensity of motion. The standard
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deviations are quantized into five activity values. A high value indicates high activity
and the low value of intensity indicates low activity.

3.1.11 Face Descriptor (FD)

detects and localizes frontal faces within the keyframes of a shot and provides some
face statistics (e.g, number of faces, biggest face size), using the face detection
method implemented in OpenCV. It uses a type of face detector called a Haar
Cascade classifier, that performs a simple operation. Given an image, the face
detector examines each image location and classifies it as “face” or “not face” [37].

3.2 Classification

The classification consists in assigning classes to videos given some description of its
content. The literature is vast and ever growing [24]. This section summarizes the
classifier method used in the work presented here: “Support Vector Machines”.

SVMs have become widely employed in classification tasks due to their gener-
alization ability within high-dimensional pattern [51]. The main idea is similar to
the concept of a neuron: Separate classes with a hyperplane. However, samples are
indirectly mapped into a high dimensional space thanks to its kernel function. In this
paper, a single SVM is used for each low-level feature and is trained per concept
under the “one against all” approach. At the evaluation stage, it returns for every
shots a normalized value in the range [0, 1] using (1). This value denotes the degree
of confidence, to which the corresponding shot is assigned to the concept.

y j
i = 1/ (1 + exp (−αdi)) (1)

Where (i, j) represents the ith concept and jth low-level feature, di is the distance
between the input vector and the hyperplane and α is the slope parameter which is
obtained experimentally.

3.3 Perplexity-based weighted descriptors

Each concept is best represented or described by its own set of descriptors. Intu-
itively, the color descriptors should be quite appropriate to detect certain concepts
such as: sky, snow, waterscape, and vegetation, while inappropriate for studio,
meeting, meeting, car, etc.

For this aim, we propose to weight each low-level feature according to the concept
at hand, without any feature selection (Fig. 2). The variance as a simple second order
vector can be used to give the knowledge of the dispersion around the mean between
descriptors and concepts. Conversely, the entropy depends on more parameters and
measures the quantity of informations and uncertainty in a probabilistic distribution.
We propose to maps the visual features onto a term weight vector via entropy and
perplexity measures. This vector is then combined with the original classifier outputs1

to produce the final classifier outputs. As presented in Fig. 2, we shall now define the
four steps of the proposed approach [6].

1We can also use the weight in the feature extraction step.
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Fig. 2 Perplexity-based
weighted descriptors structure
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3.3.1 K-means clustering

It computes the k centers of the clusters for each descriptor, in order to create a
“visual dictionary” of the shots in the training set. The selection of k is an unresolved
problem, and only tests and observation of the average performances can help
us to make a decision. In Souvannavong et al. [47], a comparative study of the
classification results vs the number of clusters used for the quantization of the region
descriptors of TRECVid 2005 data, shows that the performances are not deteriorated
by quantization of more than 1,000 clusters. Based on this result, our system will
employ kr = 2,000 for the clustering the MPEG-7 descriptors computed from image
regions, and kg = 100 for the global ones. This presents a good compromise between
efficiency and a low computation times.

3.3.2 Partitioning

Separating data into positive and negative sets is the first step of the model creation
process. Typically, based on the annotation data provided by TRECVid, we select
the positive samples for each concept.

3.3.3 Quantization

To obtain a compact video representation, we vector-quantize features. Based on
the vocabulary size kr = 2,000 (number of visual words) which has empirically shown
good results for a wide range of datasets. All features are assigned to their closest
vocabulary word using Euclidean distance.

3.3.4 Entropy measure

The entropy H (2) of a certain feature vector distribution P = (P0, P1, ..., Pk−1)

gives a measure of concepts distribution uniformity over the clusters k [27]. In [22], a
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good model is such that the distribution is heavily concentrated on only few clusters,
resulting in low entropy value.

H = −
k−1∑

i=0

Pi log(Pi) (2)

where Pi is the probability of cluster i on the quantized vector.

3.3.5 Perplexity measure

In [15], perplexity (PPL) or normalized perplexity value (PPL) (3) can be inter-
preted as the average number of clusters needed for an optimal coding of the data.

PPL = PPL
PPLmax

= 2H

2Hmax
(3)

If we assume that k clusters are equally probable, we obtain H(P) = log (k), and
then 1 ≤ PPL ≤ k.

3.3.6 Weight

In speech recognition, handwriting recognition, and spelling correction [15], it is
generally assumed that lower perplexity/entropy correlates with better performance,
or in our case, to a very concentrated distribution. So, the relative weight of the
corresponding feature should be increased. Many formula can be used to represent
the weight such as Sigmoid, Softmax, Gaussian, etc. In our paper, we choose
Verhulst’s evolution model (4). This function is non exponential, it allows a brake
rate αi to be defined, as well as reception capacity (upper asymptote) K, and βi

defines the decreasing speed of weight function.

wi = K
1

1 + βi exp (−αi(1/PPLi))
(4)

βi =
{

K exp (−α2
i ) if Nb+

i < 2 ∗ k
1 Otherwise

(5)

βi is introduced to decrease the negative effect of the training set limitation, due
to the low number of positive samples (Nb+

i << k) of certain concepts such as
weather, desert, mountain,... (see Table 2). We observe a lower perplexity value,
which could not be interpreted as a relevant relation between descriptor and concept.
So, we increase βi (5) to obtain a rapid weight decrease for each concept presenting
less than 2 ∗ k positive samples.

The relevance of the various descriptors at identifying high level concepts can
be obtained through the perplexity distribution (see Fig. 3). The Boxplot provides
a good visual summary of many important aspects of a distribution. The lower and
upper lines express the data range, the lower and upper edges of the box indicate
the 25th and 75th percentile. The line inside the box indicates the median value of
the data. Figure 3 shows the normalized perplexity for each descriptor and its best
concept presented by the minimum observation, such as: SCD is more effective to
detect the concept sky “13”, EDH for road “12”, etc. The first observation concerns
the same value of median perplexity obtained for SCD, CLD, CMD, CSD, where
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Fig. 3 Normalized perplexity Boxplot

color is more discriminant. Secondly, C-SD gives the smallest 25th percentile of
normalized perplexity for all data, followed by EDH and SCD. Thirdly, it seems
that EHD is very useful in the detection of the contour as in the sport and road
concepts. Identical observation is given for C-SD. Conversely, MAD presents a
large interval of perplexity but gives small value for the concepts walking-running,
people-marching where the motion activity can be detected. Finally, FD is a relevant
descriptor to detect face and person concepts which was to be expected from the
very nature of this descriptor.

This approach is proposed to weight each low-level feature per concept, within an
adaptive classifier fusion step (Section 3.4). The combination provides a new clas-
sification system that we call PENN “Perplexity-based Evidential Neural Network”.
We will now present the classifier fusion step.

3.4 Classifier fusion

Classifier fusion is an important step of the classification task. It improves recog-
nition reliability by taking into account the complementarities between classifiers,
in particular for multimedia indexing and retrieval. Several schemes have been
proposed in the literature according to the type of information provided by each
classifier as well as their training and adaptation capacity. The state of the art and the
comparison study about the effectiveness of the classifier fusion methods are given
in [4].

In [12], Duin et al. have distinguished the combination methods of different clas-
sifiers and the combination methods of weak classifiers. Another kind of grouping
using only the type of classifiers outputs (class, measure) is proposed in [57]. Jain [18]
built a dichotomy according to two criteria of equal importance: the type of classifiers
outputs and their capacity of learning. This last criteria is used by [25, 26] for grouping
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the combination methods. The trainable combiners search and adapt the parameters
in the combination. The non trainable combiners use the classifiers outputs without
integrating another a priori information of each classifiers performances.

In this part, we describe our proposed neural network based on evidence theory
(NNET) [5] to address classifier fusion (Fig. 4).

1. Layer Linput: Contains N units. Identical to the RBF (Radial Basis Function)
network input layer with an exponential activation function φ. d: distance
computed using training data. α ∈ [0, 1] is a weakening parameter associated to
unit i.

{
si = αiφ(di)

φ(di) = exp (−γ i(di)2)
(6)

2. Layer L2: Computes the belief masses mi (7) associated to each unit. The units
of module i are connected to neuron i of the previous layer.

{
mi({wq}) = αiui

qφ(di)

mi(�) = 1 − αiφ(di)
(7)

where ui
q is the membership degree to each class wq, q class index q = {1, ..., M}.

3. Layer L3: The Dempster–Shafer combination rule combines N different mass
functions in one single mass. It is given by the conjunctive combination (8):

m(A) = (m1 ⊕ ... ⊕ mN) =
∑

B1
⋂

...
⋂

BN=A

N∏

i=1

mi(Bi) (8)
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The activation vector of modules i is defined as
→
μi. It can be recursively computed

using:
⎧
⎨

⎩

μ1 = m1

μi
j = μi−1

j mi
j + μi−1

j mi
M+1 + μi−1

M+1mi
j

μi
M+1 = μi−1

M+1mi
M+1

(9)

4. Layer Loutput: In [10], the output is directly obtained by O j = μN
j . The experi-

ments show that this output is very sensitive to the number of prototype, where
a small modification in the number can change the classifier fusion behavior.
To resolve this problem, we use normalized output (10). Here, the output is
computed taking into account the activation vectors of all prototypes to decrease
the effect of an eventual bad behavior of prototype in the mass computation.

O j =
∑N

i=1 μi
j∑N

i=1

∑M+1
j=1 μi

j

(10)

Pq = Oq + OM+1 (11)

The different parameters (�u, �γ , �α, �P, �s) can be determined by gradient
descent of output error for an input pattern x. Finally, the maximum of plausibil-
ity Pq of each class wq is computed.

Therefore, the combination between perplexity-based weighted low-level feature
per concept, within the adaptive NNET classifier fusion provides a novel system that
we call PENN “Perplexity-based Evidential Neural Network”.

4 Concept ontology construction

The ontology has been historically used to achieve better performance in the
multimedia retrieval system [8]. It defines a set of representative concepts and
the inter-relationships among them. It is therefore important to introduce some
constraints to the development of the similarity measures before proceeding to the
presentation of our method. Psychology demonstrates that similarity depends on the
context, and may be asymmetric [30]. However, when ontologies have been defined
for multimedia they have not been extensively used at the decision making stage of
high level concept detection.

Most indexing models are based on binary classification, ignoring possible re-
lationships between concepts. However, concepts do not exist in isolation and are
interrelated by both their semantic interpretations and co-occurrence. Wu et al. [55]
have reported an ontological multi-classification learning for video concept detec-
tion in the NIST TREC-2003 Video Retrieval Benchmark.2 Ontology-based multi-
classification learning consists of two steps. At the first step, each single concept
model is constructed independently based on SVM (Support Vector Machine). At

2NIST TREC-2003 Video Retrieval Benchmark defines 133 video concepts, organized hierarchically
and each video data belong to one or more concepts [35].
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Fig. 5 An example of ontology used by Wu et al. [55]

the second step, ontology-based concept learning improves the accuracy of individual
classifiers based on updating confidence scores from single concept models. Two
kinds of influences have been defined: confusion factor β and boosting factor λ.
The confusion factor β is the influence between concepts that can not be co-existent.
The boosting factor λ is the top-to-down influence from big to small concepts in the
ontology hierarchy. A small example of such influence is presented in Fig. 5. The
factors are obtained using a correlation study of the training data. Then, an update
of the novel confidence is applied, as shown in (12) and (13).

⎧
⎪⎨

⎪⎩

p(x/Ci) = p(x/Ci) +
∑

j∈ψ
λi

j p(x/C j)

λi
j =

A
B + exp (C|p(s/Ci) − p(s/C j)|)

(12)

⎧
⎪⎪⎨

⎪⎪⎩

p(x/Ci) = p(x/Ci)

β

β = 1

f (p(x/Ci) − max j∈θ (p(x/C j)))

(13)

The parameters A, B and C of (12) are empirically obtained as described in the
works of Li et al. [28]. f (.) is a positive and increasing function for the (13).

Naphade et al. [34] have modeled the linkages between various semantic concepts
via a Bayesian network offering a semantics ontology. The central theme to this
approach is the concept of Multijects or Multimedia Objects. A Multiject has a
semantic label and summarizes a time sequence of low level features of multiple
modalities in the form of a probability. It has 3 main aspects: The first aspect is
the semantic label. The second aspect of a Multiject is, that it summarizes a time
sequence of low level features. The detection of a certain Multiject can increase
or decrease the probability of occurrence of other Multiject. For example, if the
Multiject beach is detected with a very high probability, then the probability of
occurrence of the Multiject yacht or the Multiject sunset increases. This is the third
aspect of Multijects, i.e. their interaction in a network.
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Authors assume that all concepts have the same semantic level, related by the
conditional dependence relation with the associated low-level descriptors.

Fan et al. [14] have proposed a hierarchical classification for image annotation.3

This approach introduce the contextual dependences of the WordNet ontology and
the co-occurrence relationship, as presented by the following equation:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

λ(Cm, Cn) = ρ(Cm, Cn)π(Cm, Cn)

ou ρ(Cm, Cn) = log
(

P(Cm, Cn)

P(Cm)P(Cm)

)

et π(Cm, Cn) = −log
(

dist(Cm, Cn)

2D

)
(14)

with ρ(Cm, Cn) is the joint probability between two concepts. It is obtained by the
computation of the frequency for the co-occurrence of the relevant Cm and Cn.
π(Cm, Cn) is the contextual dependency, extracted in the ontology structure (dist is
the length of the shortest path between two concepts, and D is the maximum depth
of the WordNet).

Hauptmann et al. [16] have presented a comparison between the unimodal and
the multimodal indexing. The multimodal system learn the dependence between
concepts using the following graphical models: Conditional Random Field “CRF”
and Bayesian network. The two models provide closer results in term of precision
but are better than the unimodal approach. Koskela et al. [22] have exploited the
correlations between the concepts to build a clustering method.

In another development, Li et al. [29] have proposed a study of various linear and
non-linear functions S = f ( f1, f2, f3) depending on the shortest path length l, depth
of subsumer concept in the hierarchy h, and the local semantic density d, as shown
in (15).

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

f1 = exp (−αl)

f2 = eβh − e−βh

eβh + e−βh

f3 = eδd − e−δd

eδd + e−δd

(15)

where α is a constant, β > 0 is a smoothing factor. δ = maxc∈CS(cm,cn)(− log p(c))
represents the semantic similarity measured by the information content.

Several combinations have been applied and evaluated such as: S1 = f1, S2 =
f1 f2, S3 = S2 f3, S4 = S2 + f3, etc. The obtained results with different parameters (α
and β) indicate that different functions have satisfactory performances, particularly
those that use the three influences.

Discussion The work of Wu et al. [55] uses a confidence update using the cor-
relation of data, and a fixed ontology structure. Naphade et al. [34] have trained
the low-level features, and the co-occurrence between concepts. Koskela et al. [22]
have included the co-occurrence and visual information in the construction of

3Three image datasets are used: Corel Images, Google Images, and LabelMe.
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this relationship. Fan et al. [14] as in Li et al. [29] have incorporated contextual
dependencies of the WordNet ontology, and co-occurrences. This paper extends
preceding works in term of the inter-concepts similarity construction. We use the co-
occurrence in the corpus, the visual information outcome from low-level description,
and finally the hybrid semantic similarity obtained from the ontology architecture.

In LSCOM-lite ontology4 [35], we notice positive relationships such as (road,
car), (vegetation, mountain), and negative relationships like (building, sports),
(sky, meeting).

Here, we will investigate how the relationship between different semantic con-
cepts can be extracted and used. One direct method for similarity calculation is to
find the minimum path length of connecting two concepts [40]. For example, Fig. 6
illustrates a fragment of the semantic hierarchy of LSCOM-Lite. The shortest path
between vegetation and animal is vegetation-outdoor-location-root-objects-
animal. The minimum length of a path is 5. Or, the minimum path length between
vegetation and outdoor is 1. Thus, we could say in LSCOM-lite ontology, outdoor
is more similar semantically to vegetation than animal. But, we should not say
animal is more similar to car. In an other way, outdoor contains many different
concepts such as “desert, urban, road,etc” each with different colors and textures
scene descriptions. Therefore, the linking of concepts can infer new and more
complex concepts, or improve the recognition of concepts previously detected. Thus,
the presence or absence of certain concepts suggests a high or low capability to
find other concepts (e.g. detection of sky and sea increases the probability of the
concept Beach and reduces the likelihood of desert). For this, more information
between the concepts are introduced, so that it becomes a function of attributes

4The LSCOM-lite (Large-Scale Concept Ontology for Multimedia) [36] annotations include 39
concepts, which are interim results from the effort in developing a LSCOM. The dimensions consist
of program category, setting/scene/site, people, object, activity, event, and graphics. A collaborative
effort among participants in the TRECVid benchmark was completed to produce the annotations.
Human subjects judge the presence or absence of each concept in the video shots.
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“co-occurrence, low-level visual descriptors, path length, depth and local density”
to boost the performance of specific indexing system, as:

λ(Cm, Cn) =
∑

i={Cos, Vis, Sem}

(Simi(Cm, Cn)) (16)

Below, we explain with more details the similarity forms used in our architecture.

4.1 Co-occurrence

The first similarity is obtained by considering the co-occurrence statistics between
concepts, where the presence or absence of certain concepts may predict the presence
of other concepts. Intuitively, documents (video shots) that are “close together” in
the vector space relate to similar things. Many methods are proposed in literature
to represent this proximity such as: Euclidean, Hamming, Dice, etc. Here, we use
Cosine similarity because it reflects similarity in terms of relative distributions of
component. Cosine is not influenced by one document being small compared to
others like the Euclidean distance tends to be [23]:

Simcos(Pm, Pn) =
∑k−1

i=0 Pm
i Pn

i√∑k−1
i=0 (Pm

i )2
∑k−1

i=0 (Pn
i )

2
(17)

4.2 Visual similarity

The second similarity is based upon low level visual features. In Section 3.3, we have
used perplexity to build a weighted descriptor per concept. Now, in order to compute
the visual similarity dvis, we are interested in mutual information presented as a
measure of divergence. To this end, several measures are proposed in the literature:
Jensen–Shannon (JS), Kullback–Leibler (KL), etc. We decided to use dJD Jef frey
divergence [23] which is like dKL, but is numerically more stable.

dJD(Pm, Pn) =
k−1∑

i=0

(
Pm

i log
Pm

i

P̂i

+ Pn
i log

Pn
i

P̂i

)
(18)

where P̂i = Pm+Pn

2 is the mean distribution. The visual distance between two concepts
is:

Simvis(Cm, Cn) = 1
∑Nb f eatures

i=1
1
2 (wm

i + wn
i )di

JD(Pm, Pn)
(19)

where wm
i is the ith perplexity-based weighted descriptors for the concept m.

4.3 Semantic similarity

The semantic similarity between the concepts has been widely studied in the litera-
ture and can be classified in three major approaches [43]:

4.3.1 Distance-based approach

It estimates the distance (edge length) between nodes which correspond to the
concepts being compared. Two concepts Cm and Cn are similar if their path is short,
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Fig. 7 The concept similarity
measure

presented by the minimum number of edges that separates the two concepts. Rada
et al. [40] propose the following equation:

Simsem(Cm, Cn) = 1/ (1 + distRada(Cm, Cn)) (20)

Wu and Palmer [54] propose a similarity-based (see Fig. 7) on the depth of the
concept subsumes CS5 and the two concepts (21).

Simsem(Cm, Cn) = 2 ∗ depth(CS)

depth(Cm) + depth(Cn)
(21)

The drawbacks of this approach are its dependence on the concepts position in
the hierarchy, and that all edges have the same weight, which imposes difficulties in
defining and controlling the distance edges.

4.3.2 Information content-based approach

It takes into account the information shared by the concepts in terms of entropy
measure. Two methods exist. The first uses a learning corpus and compute the
probability p(Ci) to find the concept Ci or one of its descendants. For Resnik [41], the
semantic similarity can be obtained per the frequency of appearance in the corpus,
and defined by:

Simsem(Cm, Cn) = max (IC(CS(Cm, Cn))) (22)

with IC(Ci) = − log(p(Ci)) is the information content of the concept Ci (i.e, the
entropy of a class Ci). The probability p(Ci) is computed by dividing the number
of instances of Ci by the total number in the corpus. This measure does not seem
complete and precise because it depends on the specific subsumed concept only.

The second method computes the information content of nodes from WordNet
instead of a corpus. Seco et al. [42] use descendant hyponyms of the concepts to
obtain the information content. This approach can produce a similarity between two
neighbor concepts of an ontology, exceeding the value of two concepts contained in
the same hierarchy. This is inadequate in the context of information retrieval.

5The concept subsumes is the most common specific concept.
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4.3.3 Hybrid approach

The hybrid approach combines the two previous approaches. Often, it reuses the
information content of nodes and the smallest common ancestor, as with the equation
of Lin et al. [30], or with the distance of Jiang and Conrath distJ&C [19].

SimsemLin(Cm, Cn) = 2 ∗ log P(CS)

log P(Cm) + log P(Cn)
(23)

{
distJ&C(Cm, Cn) = IC(Cm) + IC(Cn) − 2 ∗ IC(CS(Cm, Cn))

SimsemJ&C (Cm, Cn) = 1/ (distJ&C(Cm, Cn))
(24)

For the ontology presented in the Fig. 8, we compare the last two hybrid ap-
proaches with the novel one as presented in the (26), that it is the combination of
Rada [40] and J&C [19].

{
SimsemJ&C (Cm, Cn) = 1/dJ&C(Cm, Cn)

dJ&C(Cm, Cn) = IC(Cm) + IC(Cn) − 2 ∗ IC(CS(Cm, Cn))
(25)

Simsem(Cm, Cn) = 1/ (dRada(Cm, Cn) + dJ&C(Cm, Cn)) (26)

where dRada(Cm, Cn) is the length of the shortest path between Cm and Cn.

Fig. 8 Hierarchical ontology model
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4.4 Concept-based confidence value readjustment (CCVR)

The proposed framework (Fig. 1) introduces a reranking or confidence value read-
justment to refine the PENN results for concept detection [7], and is computed using:

P (x/Ci) = P (x/Ci) + 1

Z

Nb arc∑

j=1

λi, j(1 − ζ j)P (x/Cj) (27)

where P (x/Ci) corresponds to the multi-modal PENN result, λi, j is the causal
relationship between concepts Ci and C j, ζ j is the classifier error in the validation
set and Z is a normalization term.

5 Experimentations

The experiments provided here are conducted on the TRECVid 2007 dataset [49]
containing science news, news reports, documentaries, etc. Of the 100 hours of
video segmented into shots and annotated [3] with semantic concepts from the 36
defined labels. Half is used to train the feature extraction system and the other half is
used for evaluation purposes. The evaluation is realized in the context of TRECVid
using mean average precision MAP in order to provide a direct comparison of the
effectiveness of the proposed approach with other published work using the same
dataset. Precision provides a measure of the ability of a system to present only
relevant sequence.

AP =
(

number of relevant video sequences retrieved
total number of video sequences retrieved

)

total number of relevant video sequences
(28)

Other metrics are introduced in our evaluation to have a global comparison: F-
measure, classification rate CR, and balanced error rate BER.6 The classifier results
can be represented in a confusion matrix (Table 1), where a, b, c and d represent the
number of examples falling into each possible outcome:

F-measure = 2
P.R

P + R
(29)

BER = 1

2
(

b
a + b

+ c
c + d

) (30)

Figure 9 shows the variation of average precision results vs semantic concepts,
for three systems: NNET,7 PENN,8 and Onto-PENN.9 First, we observe that PENN

6The balanced error rate is the average of the errors on each class. BER is used in “Performance
Prediction Challenge Workshop”.
7NNET: Neural Network based on Evidence Theory.
8PENN: Perplexity-based Evidential Neural Network.
9Onto-PENN: Ontological readjustment of the PENN. The results presented in the rest of paper for
the Onto-PENN, are given by (26) for the semantic similarity computation.
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Table 1 Confusion matrix
representation

Prediction

Class 0 Class 1

Real Class 0 a b
Class Class 1 c d

and Onto-PENN systems have the same performance on average for several con-
cepts, and present a significant improvement compared to NNET for the concepts
4,6,17,18,19,23,31 and 32. This is not surprising considering the manner the MAP
(Mean Average Precision) is computed (using only the first 2,000 returned shots as
in TRECVid) (see Table 2). Furthermore, low performances on several concepts can
be observed due to both numerous conflicting classification and limited training data
regardless of the fusion system employed. This also explains the rather low retrieval
accuracy obtained for concepts 3, 22, 25, 26, 33 and 34.

To evaluate the inter-concepts similarity contribution in the video shots indexing
system, we need to study the results in all test set. For this, the comparisons of the
detection performances are carried out by thresholding the soft-decisions at the shot-
level before and after using the inter-concepts similarity via F-meas, CR+ and BER.
Note that the MAP is not sensitive to Threshold values τ . Figure 10 compares the
three experimental systems along with the variation of τ ∈ [0.1, 0.9], by step of 0.1.
We can clearly see that for any τ value the Onto-PENN dominates and obtains
higher performances for F-meas, CR+ as well as lower BER comparing to PENN
and NNET. The BERmin = 40.38% is given by τ = 0.2, for F-meas= 16.98% and
CR+ = 34.48%. The best results are obtained for τ ∈ [0.2, 0.5]. With τ = 0.40, the

Fig. 9 Average precision evaluation
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Table 2 Id of the TRECVid
2007 concepts

Id Concepts Neg.train Pos.train Pos.test

1 Sports 11,974 106 42
2 Weather 12,029 51 34
3 Court 11,967 113 5
4 Office 11,159 921 453
5 Meeting 11,532 548 270
6 Studio 11,722 358 468
7 Outdoor 8,643 3,437 1,812
8 Building 10,964 1,116 477
9 Desert 12,019 61 15
10 Vegetation 10,615 1,465 499
11 Mountain 12,004 76 17
12 Road 11,420 660 297
13 Sky 10,777 1,303 853
14 Snow 12,044 36 91
15 Urban 10,746 1,334 537
16 Waterscape 11,725 355 414
17 Crowd 11,159 921 552
18 Face 6,596 5,484 2,325
19 Person 4,981 7,099 2,972
20 Pol. security 11,824 256 63
21 Military 11,848 232 74
22 Prisoner 12,067 13 7
23 Animal 11,675 405 271
24 Computer Tv 11,617 463 202
25 US Flag 12,070 10 0
26 Airplane 12,052 28 7
27 Car 11,663 417 187
28 Bus 12,033 47 40
29 Truck 11,985 95 19
30 Boat/ship 11,979 101 151
31 Walk. running 11,221 859 385
32 Peop. marching 11,960 120 82
33 Exp. fire 11,068 12 19
34 Nat. disaster 12,061 19 21
35 Maps 12,030 50 31
36 Charts 11,954 126 80

CR+ is improved by 10.14% to achieve 22.07%, and decreasing the BER of 2.91%
compared to NNET.

Figure 11 presents the performance evolution per concepts using τ = 0.4. Some
points can be noticed: The three systems produce a certain non-detection (F-meas =
0, CR+ = 0) for the concepts 2, 3, 9, 11, 25, 26, 28, 29, 33, 34, and 36. Then, NNET can
not detect any of the following concepts 1, 5, 6, 20, 21, 22, 31, 32, and 35. Identically,
for PENN in 5,20,22, and 35. Finally, Onto-PENN resolves the limitation previously
mentioned and achieves a high improvement for the concepts 1, 4, 7, 8, 10, 12, 13, 15,
16, 17, 18, 19, 22, 23, 24, and 31, due to the strong relationship between the connected
concepts, allowing for better, more accurate decision-making.
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Fig. 10 Evaluation of the
metrics (CR+, BER and
F-measure) vs Threshold
τ ∈ [0.1, 0.9]
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Fig. 11 F-measure and CR+ evaluation

As an example, to detect face, person, meeting, or studio concepts, PENN
gives more importance to FaceDetector, ContourShape, ColorLayout, ScalableColor,
EdgeHistogram than others descriptors. For the “Person” concept, the improvement
was as high as 11%, making it the best performing run. The Onto-PENN system
introduces the relationship between the connected concepts (i.e. concepts that are
likely to co-occur in video shots), increasing the performance in term of accuracy (see
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Fig. 12 Inter-concept connections graphical model for the concept office. We observe that 20
concepts are connected with office, but only 5 are strong and significant (meeting: 6.65%, studio:
5.06%, face: 33.92%, person: 38.52%, and computerTV: 4.77%) presenting 88.92% of the global
information

Fig. 12). The co-occurring concept constitute some type of contextual information
about the content of the shot under consideration.

Table 3 summarizes the overall performances for the content-based video shots
classification systems using a fixed Threshold(τ = 0.4). We compute the above
mentioned statistics for all concepts, and for a subset composed of the 10 most
frequent concepts in the dataset. All hybrid semantic similarities-based Onto-PENN
allow an overall improvement of the system and a significant increase of F-meas
and CR+. They achieve a respectable result for MAP, and significantly decrease the
balanced error rate “BER” compared to NNET and PENN. Finally, the results given
by the two equations (25 and 26) are very close, with a slight advantage for the (26).
However, it can be observed that the MAP declines using the equations of Rada,

Table 3 Performance comparisons between the three experimental systems: NNET, PENN and
Onto-PENN

Methods/ NNET PENN Onto-PENN

eval. (%) Rada Lin J&C B&H

MAP 12.70 13.29 12.94 13.01 13.31 13.37
MAP@10 33.70 35.30 34.12 34.91 35.30 35.36
F-meas 11.84 14.10 15.97 16.17 17.07 17.30
F-meas@10 38.75 40.79 41.83 43.41 44.67 44.74
CR+ 11.93 13.43 18.12 20.58 21.76 22.07
CR+@10 40.69 41.74 53.76 57.80 59.45 59.71
BER 45.02 44.13 43.93 43.62 42.32 42.11
BER@10 38 36.52 36.02 35.45 34.03 33.96

We present in term of accuracy the effect of each similarity method (Rada (20), Lin (23), J&C (25)),
and our proposed method B&H (26) in the Onto-PENN system, for τ= 0.4
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and Lin compared to the two equations used, which underlines the importance of the
semantic similarity choice.

6 Conclusions

In this paper, we have presented a generic and robust ontology-based video shots
indexing scheme. One of the particular aspect of the proposed framework is to em-
ploy contextual information during the classification phase. To learn the influence of
the relation between concepts, three types of influence are computed: co-occurrence,
visual descriptors and hybrid semantic similarity. A comparison of some approaches
to automatically construct the semantic similarity has been presented. Based on the
newly defined simulated user principle, we evaluate the results of four alternative
methodologies. We demonstrate through statistical study and empirical testing the
potential of multimodal fusion, to be exploited in video shots retrieval. In TRECVid
2007 benchmark, a significant improvement is obtained with our system, about
18.75% in terms of correct positive recognition rate (CR+), 5.99% for the F-measure,
1.66% for the mean average precision (MAP), and decreases the balanced error rate
of 2.91% on average. Our proposed “Onto-PENN” method outperforms clearly both
the NNET and PENN methods which are not using any contextual information. In
addition, we have shown that perplexity-based weighted vector integration in the
indexing papeline increases the performances of our system.

In the future works, we plan to extend application to WordNet instead of a corpus,
integration of richer semantics and broader knowledge.
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