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Abstract To improve the retrieval performance on a classified 3D model database,
we propose a 3D model retrieval algorithm based on a hybrid 3D shape descriptor
ZFDR and a class-based retrieval approach CBR utilizing the existing class informa-
tion of the database. The hybrid 3D shape descriptor ZFDR comprises four features,
depicting a 3D model from different aspects and it itself is already comparable to
or better than several related shape descriptors. To compute the distance between a
query model and a target model within a class of a database, we define an integrated
distance metric which takes into account the class information. It scales the distance
between the query model and the target model according to the distance between the
query model and the class. Our class-based retrieval approach CBR is general, it can
be used with any shape descriptors to improve their retrieval performance. Extensive
generic and partial 3D model retrieval experiments on seven standard databases
demonstrate that after we employ CBR, the retrieval performance of our algorithm
CBR-ZFDR is evidently improved and the result is better than that achieved by the
state-of-the-art method on each database in terms of most of the commonly used
performance metrics.

Keywords 3D model retrieval · Hybrid shape descriptor · Class information ·
Integrated distance

1 Introduction

With the growth in computer graphics and digital media applications, more and
more 3D models are created and many professional or generic 3D model databases
are available, such as Engineering Shape Benchmark (ESB) [21], Bonn University
Architecture Databases Benchmark [45], Princeton Shape Benchmark (PSB) [35],
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National Taiwan University Shape Benchmark (NTU) [9], CCCC [43] and Shape
Retrieval Contest (SHREC) datasets [1]. Many business and non-profit websites
also provide 3D model databases for 3D models shopping or free downloading, such
as 3DCafe (http://www.3dcafe.com/), 3DStudio (http://www.the3dstudio.com/) and
High Polygon Models Crash3D (http://www.crash3d.net/) (provides free models).

3D model retrieval is a common and important operation on a 3D model database.
Many shape descriptors and techniques have been proposed for 3D model retrieval.
They can be classified into three categories: geometry-based, view-based and hybrid
techniques. In general, hybrid shape descriptors can achieve better retrieval perfor-
mances. However, it is still difficult to find a shape descriptor which performs well
on all types of shape benchmarks.

Usually, existing shape descriptors represent a 3D model as a 3D shape descriptor
and compare the shape descriptors of different models directly. However, we believe
another promising approach to achieve a better retrieval performance is by exploit-
ing the shape descriptors guided by the database classification information. That is,
the available class information is utilized to improve the retrieval performance. In
fact, all the 3D databases mentioned above are already classified. As such, in this
paper we present a new retrieval algorithm which considers the class information of
the target database when retrieving relevant models.

We propose a 3D model retrieval algorithm CBR-ZFDR which is based on
a hybrid 3D shape descriptor named ZFDR and a class-based retrieval (CBR)
algorithm. Motivated by the fact that different types of features are effective in
characterizing different types of models [7], we develop the hybrid feature ZFDR
by taking the advantages of both view-based and geometry-based techniques. ZFDR
consists of four components, which are Zernike moments, Fourier descriptor, Depth
information and Ray-based features, each represents a 3D model from a different
angle, either visually or geometrically. It itself has a better performance than the
most related view-based shape descriptor Light Field [9] and hybrid shape descriptor
DESIRE [44]. Its performance is also close to the state-of-the-art shape descriptors
on several databases. To further improve the retrieval performance, we propose
a CBR algorithm which incorporates the class information of the target database
by defining an integrated distance which scales the model distance using the corre-
sponding class distance. We show an apparent improvement in almost all commonly
used performance metrics can be achieved after adopting the integrated distance.
Moreover, the CBR approach can be used with any shape descriptors for enhancing
their performance. Extensive experiments, for generic and partial retrieval, on seven
standard 3D databases demonstrate the best performance of our retrieval algorithm
CBR-ZFDR compared to those achieved by previous methods.

The rest of this paper is organized as follows. In Section 2, we review the related
work in 3D model retrieval. The hybrid shape descriptor ZFDR is presented in
Section 3. In Section 4, we present the details of our class-based 3D model retrieval
algorithm CBR-ZFDR. Extensive experiment results are demonstrated in Section 5.
Section 6 contains the conclusions and the future work.

2 Related work

Natraj et al. [19] and Tangelder et al. [38] reviewed and classified current typical 3D
model retrieval techniques in their respective survey. In this section, we review the
related techniques in generic and partial 3D model retrieval.

http://www.3dcafe.com/
http://www.the3dstudio.com/
http://www.crash3d.net/
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2.1 Generic 3D model retrieval

Geometry-based techniques This approach uses the distribution of 3D features to
characterize the geometric information of a 3D model. The 3D features can be
either global, such as shape distribution [31] and shape histogram [2], or local,
such as Extended Gaussian Images (EGI) [17] and conformal factor [4]. Shape
distribution is defined as the statistics of the distances between any two points
on the surface of a 3D model, while shape histogram measures the global radial
distance distribution of a 3D model. Ben-Chen and Gotsman [4] proposed a 3D
shape descriptor named conformal factor which depicts the amount of local work
involved to transform a model into a sphere. Recently, Shih and Chen [34] proposed
an angular radial transformation-based elevation descriptor (ART-ED) that encodes
both external and internal information of a 3D model. Graph-based methods [16, 37]
use skeleton or topology graph to represent a 3D model and employ a graph
matching method to measure the distance between two graphs. Spherical harmonics
[22] can be applied on the extracted rotation-dependent 3D features to make them
rotation-invariant.

View-based techniques Rather than extracting the 3D features directly as the
geometry-based techniques, view-based techniques represent a 3D model using a
set of views. A typical view-based technique is Light Field [9], which computes
the minimum distance between 10 corresponding views of two models. Salient
local visual feature-based retrieval method [30] adopts the Bag-Of-Features (BoF)
framework to accumulate the Scale Invariant Feature Transform (SIFT) [29] features
of multiple depth views into an occurrence histogram to represent a 3D model.
Recently, Lian et al. [26] proposed a view-based descriptor which adopts the BoF
approach to extract the SIFT features of a view and utilizes an efficient multi-view
shape matching approach to find the minimum distance between the corresponding
views of two models. They considered the 24 axes permutations of a normalized 3D
model. Axenopoulos et al. [3] also adopted a view-based approach but relied on a
more accurate 3D model alignment method.

Hybrid techniques Hybrid approach employs both the visual and geometric infor-
mation of a 3D model. DESIRE [44] is a hybrid shape descriptor which comprises
three shape descriptors: depth buffer-based descriptor, silhouette-based descriptor
and ray-based with spherical harmonic representation descriptor. DESIRE achieves
superior performance over several famous view-based or geometry-based tech-
niques, such as Light Field [9] and Spherical harmonics [22]. Papadakis et al. [32]
proposed another hybrid 3D shape descriptor by combining both depth buffer-
based 2D features and spherical harmonics-based 3D features. Papadakis et al. [33]
presented another novel hybrid 3D shape descriptor named PANORAMA using a
set of panoramic views of a 3D model. The panoramic views not only capture the
visual information of the 3D model but also contain the geometric information, such
as the 3D location and orientation of the model’s surface. The views are generated by
projecting the model to three axis-aligned cylinders respectively and then unfolding
the projection images into 2D images. They used Fourier and wavelet transforms
to extract the features for each panoramic view. Recently, Leng and Xiong [25]
proposed a hybrid shape descriptor named TUGE which combines the two-view
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version of the depth buffer-based shape descriptor in [43] and the GEDT shape
descriptor in [13]. It has a slightly better performance than DESIRE.

According to our knowledge, PANORAMA achieves the best overall perfor-
mance on several 3D model databases, including PSB [35], ESB [21], CCCC [43] and
NIST [12], among the available existing shape descriptors. Our experiments show
that our retrieval algorithm CBR-ZFDR can achieve better retrieval performance
than that of PANORAMA in terms of most commonly used performance metrics on
the above databases.

Using class information Class-based retrieval scheme has been used in document
retrieval or classification [15, 28]. For example, Han et al. [15] first applied centroid-
based classifier to automatic text categorization and it achieved good performance.
With the growth in 3D model retrieval research, it was introduced to improve its
retrieval performance. For instance, Hou et al. [18] proposed a retrieval approach
based on semantic labeling: first assign the relevant class for a query model based on
the Support Vector Machine (SVM) clustering information of the target 3D model
database and then rank all the models belonging to the relevant class based on a
feature vector selection technique which is also dependent on the clustering results.
Apparently, the accuracy of the first several nearest neighbors is highly dependent
on the semantic clustering results. Xu and Li [46] defined the distance between two
models by adding the weighted difference between their back propagation neural
network (BPNN) 3D model classification output vectors and the Euclidian (L2)
distance between their 3D moment feature vectors. Biasotti et al. [6] proposed a 3D
model classification approach by comparing a query model with several prototypes
selected to represent a class and applied the prototype-based scheme into a 3D
model retrieval application. They made a comparison study of the Nearest Neighbor
(NN)-based and two prototype-based retrieval methods and the results show that
NN achieves the best retrieval accuracy, though may be slower.

Tatsuma and Anon [39] designed a hybrid shape descriptor named multi-Fourier
spectra descriptor (MFSD) by applying 2D or 3D Fourier transform to the contour,
silhouette and depth images or the voxelization representation of a 3D model. They
also utilized a spectral clustering method to cluster the models before retrieval. To
measure the distance between the query model and a target model in a clustered
database, they used an addition operator to combine the minimum distance between
the query model and the models in the most relevant cluster as well as the model
distance between the query model and the target model. According to our knowl-
edge, this is the only existing algorithm that directly combines the cluster distance
and model distance to form a joint distance for 3D model retrieval. In this paper,
we propose an integrated distance which outperforms the above mentioned additive
one. Moreover, none of the existing 3D model retrieval algorithms utilize the already
available class information of a classified 3D model database. Thus, in this paper we
propose a new 3D model retrieval algorithm by taking into account the existing class
information.

2.2 Partial 3D model retrieval

Partial retrieval techniques can be mainly classified into two groups: (1) graph-
based, such as Tierny et al.’s [40] Reeb Pattern Unfolding (RPU) method, Biasotti
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et al.’s [5] Extended Reeb Graph (ERG) approach, and Cornea et al.’s [11] skeleton
matching-based approach (CORNEA); (2) local feature-based, such as Toldo et al.’s
[41] Bag-of-Words component Feature based approach (BoF). The main idea and
performance of the above partial retrieval techniques are as follows.

RPU [40] is a graph-based partial 3D retrieval method based on the reeb graph
representation. First, it segments the model based on reeb graph and encodes the
relationship of parts into a dual reeb graph. Then, the concept of “reeb pattern”
on a reeb graph is introduced to speed up the process of partial matching. It needs
4∼30 sec to process a query on the AIM@Shape Watertight Models Benchmark
(WMB) database with a 3 GHz P4 PC.

ERG [5] is a graph-based approach based on Extended Reeb Graph (ERG)
shape descriptor, which contains not only structural but also geometrical information
of a model. A directed attributed graph matching method is adopted to find the
maximum common sub-parts between two ERGs. It can be roughly estimated based
on the provided performance data [5] that ERG needs at least 3∼11 sec (1.4 sec for
feature matching, and 1.5∼10 sec for the preprocessing of feature matching) using a
3.4 GHz PC.

CORNEA [11] is a graph-based approach which extends the skeleton-based
matching framework by Sundar et al. [37] with more robust and efficient skeletoniza-
tion and matching algorithms. The skeletonization is performed by propagating nor-
mals to the interior of a 3D model and the matching is based on a distribution-based
graph matching method utilizing a distance measure between distributions called
Earth Mover’s Distance (EMD) [10]. There is no computational time information
provided in the paper.

BoF [41] is a local feature-based approach by extending the 2D Bag-of-Words
(BoW) features to represent 3D components. First, it segments a 3D model into
several subparts and then extracts a local feature for each subpart. Next, the local
features are clustered to define a 3D vocabulary. Finally, it uses an occurrence
histogram as the shape signature for a subpart or a complete model to do the
matching. It needs about 5.5 sec to process a query model on a 1.66 GHz laptop.

In experiment section, we compare our retrieval algorithm with these four partial
similarity shape descriptors in terms of accuracy and speed. The results show
that our hybrid shape descriptor ZFDR itself already outperforms the above four
shape descriptors and after applying our CBR algorithm we achieve an even better
performance. In addition, our shape descriptor is also efficient to compute.

3 Hybrid shape descriptor ZFDR

We define a hybrid shape descriptor, which we named ZFDR, to represent a
3D model. ZFDR comprises four components: Zernike moments feature, Fourier
descriptor feature, Depth information feature and Ray-based feature. It contains
both visual and geometric information of a 3D model. The computation of the shape
descriptor consists of two steps: first normalize the 3D model and then compute the
descriptor. Figure 1 graphically shows the ZFDR feature extraction process. For the
normalization part, we first compute the bounding sphere of the 3D model. Then,
we translate the model so that the center of the bounding sphere coincides with
the origin of the coordinate system and then uniformly scale the model to make
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Fig. 1 ZFDR feature extraction process

the radius of its bounding sphere equal to 1.0. Next, we utilize Continuous Principle
Component Analysis (CPCA) [43] alignment algorithm to align the 3D model. For
shape descriptor computation, we present the details as follows.

3.1 Visual information features

In this section, we first introduce the view sampling method for extracting the two
visual information features and then present each feature respectively.

Cube-based view sampling To balance between the computational time for feature
extraction and retrieval performance, we sample 13 silhouette views to represent
a 3D model. We set cameras at 13 sampled locations on a cube: (1, 0, 0), (0, 1, 0),
(0, 0, 1), (1, 1, 1), (−1, 1, 1), (−1,−1, 1), (1,−1, 1), (1, 0,−1), (0, 1,−1), (1, 1, 0),
(0, 1, 1), (1, 0, 1), (1,−1, 0). As shown in Fig. 2a, they are composed of three adjacent
face center views (magenta squares), four top corner views (red squares) and six
middle edge views (blue squares), respectively. Figure 2b shows an example of 13
silhouette views of a chair model.

To characterize the features of a silhouette view, we adopt an image descriptor
proposed by Zhang and Lu [48]. It is composed of Zernike moments and Fourier
descriptors.
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Fig. 2 View sampling. a Camera locations; b An example of 13 silhouette views of a chair model

Zernike moments feature (Z) Zernike moments depict the region-based features
of a silhouette view. We compute the Zernike moments [23] (up to the 10th order,
totally 35 moments) of each view image and concatenate them orderly according
to the order of the view sequence to form a 13 × 35 matrix to define the Zernike
moments feature of a 3D model.

Fourier descriptor feature (F) Fourier descriptor represents the contour informa-
tion of a silhouette view using a series of Fourier coefficients (one dimensional
vector). Fourier descriptors can be defined on different features of the contour, such
as curvature and centroid distance. However, Fourier descriptor defined on centroid
distance was proved [47] to have better performance than other types in retrieving
2D shapes and thus we also adopt the centroid distance-based Fourier descriptor [47].
We use the first 10 Fourier coefficients as the Fourier descriptor. By combining the
Fourier descriptors of 13 views, we forms a 13 × 10 matrix as the Fourier descriptor
feature of a 3D model.

3.2 Geometric information features

Zernike moments and Fourier descriptor features capture the visual information
of a 3D model. These types of features are found to be effective in characterizing
some certain types of models like “sea animal” models, but for other certain types
of models, such as “car models”, depth buffer-based features is more effective [7].
That is, different types of features have advantages in measuring different types of
models. Motivated by this, we also extract the geometric information features to form
a hybrid shape descriptor that can represent more types of models effectively. Vranic
[43] defined a depth buffer-based feature and a ray-based with spherical harmonic
representation feature. These two features characterize the geometric information
from different perspectives and we integrate them into our hybrid shape descriptor.

Depth information feature (D) This feature is composed of 2D Fourier coefficients
of six depth buffer images. We first render the six depth views of a 3D model and
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then apply 2D Fourier Transform to them and finally 438 Fourier coefficients are
used as the depth features of a 3D model.

Ray-based feature (R) First, the ray-based feature vector in the spatial domain is
extracted based on the outmost intersections between the model and a set of rays
emanating from the center of the model. Then, the obtained radial distance feature
vector is transformed from the spatial domain to the spectral domain using Spherical
Harmonics Transform [22]. We use a 136-dimensional feature vector to depict the
ray-based features.

3.3 Combining the visual and geometric features

We define the hybrid shape descriptor of model mi by combining Zernike moments
feature Zi, Fourier descriptor Fi, Depth information feature Di and Ray-based
descriptor Ri as ZFDR.

To compute the hybrid descriptor distance dZFDR between two models mi and
m j, we first assign appropriate distance metrics to measure the component distances
dZ , dF , dD and dR, then we combine the four component distances to determine
the hybrid descriptor distance dZFDR. After comparing the performance of different
distance metrics [24], such as city block distance (L1), Euclidean distance (L2),
Canberra distance [24], correlation distance, divergence distance and scaled-L1
distance [43], we choose the scaled-L1 distance metric for Zi, Di and Ri and the
Canberra distance metric for Fi, respectively. Scaled-L1 means scaling or normalizing
the feature vector by its L1-norm before applying the L1 distance metric. We find it
improves the retrieval performance for our features of Z, D and R. While, Canberra
distance is only applied to the Fourier descriptor F is also based on the performance
comparison in terms of the overall performances of the complete shape descriptor
ZFDR on several 3D model benchmarks. Now, we give the definitions for the four
component distances dZ , dF , dD and dR.

dZ = 1

13

13∑

p=1

35∑

r=1

∣∣∣∣∣
Zi(p, r)∥∥Zi,p

∥∥
1

− Z j(p, r)∥∥Z j,p
∥∥

1

∣∣∣∣∣, (1)

where Zi and Z j are the Zernike moments feature matrices of models mi and m j.
Zi,p and Z j,p represent the p-th row vector of Zi and Z j. ‖.‖1 represents the L1-norm
of a vector. Here, we apply the scaled-L1 distance metric on the corresponding views

(a) Bird1 (b) Bird2:1.570 (c) Cup1:3.736

Fig. 3 An example of ZFDR distances. The number is the ZFDR distance between the model Bird1
and the respective model
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Table 1 Z, F, D, R component distances for the example in Fig. 3

Distances dZ dF dD dR dZFDR

Bird2 0.352 0.450 0.275 0.494 1.570
Cup1 0.912 0.956 0.673 0.912 3.736

of two models and use the average distance of view pairs to represent the Zernike
moments distance between the two models, dZ ∈ [0, 1].

dF = 1

13 × 10

13∑

p=1

10∑

r=1

∣∣Fi(p, r) − F j(p, r)
∣∣

Fi(p, r) + F j(p, r)
, (2)

where Fi and F j are the Fourier descriptors of mi and m j, dF ∈ [0, 1].

dD = 1

438

438∑

p=1

∣∣∣∣∣
Di(p)

‖Di‖1
− Dj(p)∥∥Dj

∥∥
1

∣∣∣∣∣, (3)

where Di and Dj are the Depth information descriptor vectors of mi and m j, dD ∈
[0, 1].

dR = 1

136

136∑

p=1

∣∣∣∣∣
Ri(p)

‖Ri‖1
− R j(p)∥∥R j

∥∥
1

∣∣∣∣∣, (4)

where Ri and R j are the Ray-based descriptor vectors of mi and m j, dR ∈ [0, 1].
Then, we define the hybrid descriptor distance dZFDR between model mi and

model m j as follows,

dZFDR = dZ + dF + dD + dR. (5)

The four component features Z, F, D, R depict a model from different aspects and
they have the same contribution for the hybrid descriptor distance computation.
Therefore, we linearly combine them. In addition, the pair feature distances for
the four features fall in the same range of [0, 1], as such, we assign the same
weight for each component feature. An example showing the hybrid shape distance
computation is demonstrated in Fig. 3 and Table 1.

4 3D model retrieval algorithm using class information

In this section, we propose a 3D model retrieval algorithm named CBR-ZFDR which
utilizes a new Class-Based Retrieval algorithm CBR and the ZFDR hybrid descriptor
presented in Section 3. For CBR, we define an integrated distance to fuse the model
and class distances. One advantage of our CBR scheme is that it is general, that is,
we can use any shape descriptors to represent 3D models when we apply the CBR
scheme.

The scenario for our retrieval is that given a query model q and a classified 3D
model database M = {mi|i = 1 · · · n}, where mi are the models in the database, we
retrieve similar target models in database M. Both the query and target 3D models
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are defined as triangular meshes. Our 3D model retrieval algorithm CBR-ZFDR is
composed of the following five steps.

(1) Shape descriptors extraction. We extract the ZFDR shape descriptors of query
model q (on-line processing) and all the models {mi} in the database M (off-line
preprocessing), based on the method in Section 3.

(2) Model distance computation. We compute the shape descriptor distance
d(q, mi) between query model q and every model mi in the database based on
(1–5).

(3) Class distance computation. To measure the dissimilarity between query model
q and a class in the database, we can use minimum, average or centroid
distances.
The classified 3D model database M has a number of classes, each of which
contains some models. We denote C j as the j-th class of database M and assume
model m ∈ C j. The minimum distance between query model q and all models
in class C j is defined as the class distance dc(q, C j),

dc(q, C j) = min
m∈C j

{d(q, m)} (6)

Average distance is computed by averaging all the distances between query
model q and the models in C j. Centroid distance [15] is determined by first
computing the shape descriptor centroid of class C j by averaging the shape
descriptors of the models in C j and then computing the distance between this
shape descriptor centroid and the shape descriptor of query model q to define
the centroid distance. In our experiments, if the query model is selected from
the database, to avoid bias we exclude this model from C j when computing the
class distance. Based on experiments (Section 5.1.1), we found that minimum
distance performs the best and thus we adopt this class distance.

(4) Integrated distance computation. To measure the distance between query
model q and target model mi (assume mi ∈ C j), we scale its model distance
d(q, mi) using the corresponding class distance dc(q, C j) to define a class-based
distance dcbr,

dcbr(q, mi) = dc(q, C j)
α × d(q, mi), (7)

where α (α > 0) is a constant to adjust the relative weight of the class distance
with respect to the model distance. We set α to be 3 in our retrieval algorithm
based on experimental results (Section 5.1.1). This definition of integrated
distance is general and can be used with any shape descriptors to improve their
retrieval performance.

(5) Ranking and output. Sort all the models in the database in ascending order
based on their integrated distances and output the retrieval lists accordingly.

5 Experiments

To investigate the generic 3D model retrieval performance as well as the char-
acteristics of our retrieval algorithm CBR-ZFDR, we selected the following six
representative standard benchmark databases,
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– Princeton Shape Benchmark (PSB) [35]. It contains 1,814 models totally, which
are classified into two parts: test and train datasets. Both datasets contain 907
models and the test dataset is classified into 131 classes and the train dataset is
classified into 129 classes. We use the train dataset only in Section 5.2.2 and for
other cases we only use the test dataset.

– Engineer Shape Benchmark (ESB) [21]. This is a CAD model database which
contains 867 models, classified into 45 classes.

– National Taiwan University database (NTU) [9]. This database contains 1,833
3D models and only 549 3D models are grouped into 47 classes and the rest 1,284
models are assigned as the “miscellaneous”. Thus, we only use the 549 classified
models as the NTU database.

– Konstanze 3D Model Benchmark (CCCC) [43]. CCCC comprises 1,838 models
and 473 models are grouped into 55 types and other 1,365 models are unclas-
sified. Thus, we only use the 473 classified models as the CCCC database.

– McGill 3D Shape Benchmark (MSB) [36]. This database is to test the per-
formance of articulated or non-rigid models, such as humans and ants. It is
composed of 19 classes and 457 models.

– NIST Generic Shape Benchmark (NIST) [1, 12]. This database is to overcome
several shortcomings or biases of previous benchmarks, such as different sizes of
each class. It contains 800 models, classified into 40 classes, 20 models each.

To comprehensively evaluate the generic 3D model retrieval results, we employ
six metrics including Precision-Recall, Nearest Neighbor (NN), First Tier (FT),
Second Tier (ST), Discounted Cumulative Gain (DCG) [35] and Average Precision
(AP). Precision indicates how much percentage of the top K models belongs to the
same class as the query model while recall means how much percentage of a class has
been retrieved among the top K retrieval list. NN measures the percentage of the
closest matches that are relevant models. FT is the recall of the top C − 1 list, where
C is the cardinality of the relevant class of the query model. Similarly, ST is the recall
of the top 2(C − 1) list. DCG is defined as the summed weighted value related to
the positions of the relevant models. AP is to measure the overall performance and
it combines precision, recall as well as ranking positions. A good AP needs both
high recall and precision. AP can be computed by counting the total area under the
Precision-Recall curve.

To assess our algorithm’s ability in partial 3D model retrieval, we choose the 3D
model database benchmark used in the SHREC 2007 partial matching track [42],

– AIM@Shape Watertight Models Benchmark (WMB) [42]. The target dataset
has 400 watertight models, divided into 20 classes, 20 each. The query dataset
contains 30 models by combining the parts of two or more models of the target
database (two typical examples are the query models in Figs. 10 and 11).

We use the Normalized Discounted Cumulative Gain (NDCG) [20] metric to eval-
uate the performance of partial retrieval results. This metric is explained in Section
5.3 which is dedicated for partial 3D model retrieval experiments.

5.1 Comparative evaluation with respect to algorithm configurations

In this section, we justify our choice of class distance, where ZFDR is used as the
shape descriptor and the evaluation of our hybrid shape descriptor ZFDR.
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5.1.1 Choices of class distance and parameter α

Three different types of class distance, which are minimum, average and centroid
distances, are mentioned in Section 4. To justify our choice of using minimum
distance, for each of the seven databases, we perform a comparison of our class-
based retrieval algorithm with respect to different class distances. Two representative
examples for PSB and NIST databases are shown in Fig. 4. In general, we find that
the best performance is achieved by using the minimum class distance for all the
databases.

The parameter α controls the relative weight of the class distance. To set an
appropriate weight value for α for our CBR algorithm, we perform a comparison
experiment for each database by selecting five values (1, 2, 3, 4, 5) for parameter α.
We have found that bigger α will evidently improve the metrics of FT, ST, DCG

Fig. 4 Precision-Recall plots
comparison in terms of
different class distance
definitions. “Minimum”,
“Average” and “Centroid”
denote the class-based
retrieval approaches using
minimum, average and
centroid class distances,
respectively
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and AP. However, the front part (e.g. recall ≤0.2 for PSB when using CBR-ZFDR)
of the Precision-Recall plots with the biggest α does not give the best result in
terms of precision. Based on the fact that the front part of the Precision-Recall
plot is relatively more important than the rear part in retrieval applications and
we also need to consider other performance metrics such as FT, ST, DCG and AP,
we set α = 3 in our class-based algorithm because it can achieve the best overall
performance.

The weight value selection for α is directly related to our formulation of the
integrated distance and is insensitive to the descriptors employed. Thus, there is no
need to adjust a chosen weight value for parameter α each time we use CBR with a
new shape descriptor. For example, we also verify the above property of our CBR
algorithm with PANORAMA.

5.1.2 Analysis of our hybrid shape descriptor ZFDR

To justify the feature selection for our hybrid shape descriptor, we analyze the
contribution of visual and geometric features by performing experiments on all the
seven databases. To find the intrinsic properties of the hybrid shape descriptor
ZFDR, in the experiments, we use only the shape descriptor itself and do not
employ the class-based retrieval approach. We also compare ZFDR with the two
most related shape descriptors: DESIRE [44] and LF [9]. For DESIRE, we generate
the results based on their provided execution files [43]. For LF, we refer to the
experiment results in PSB [35] and PANORAMA [33]. Some “DCG” results are
not provided in these papers and are indicated by “–”. Two representative results
are shown in Fig. 5 and Table 2 and others are very similar.

As can be seen in both Fig. 5 and Table 2, firstly, ZFDR has a better perfor-
mance compared to only visual information-based descriptor ZF or only geometric
information-based descriptor DR. Therefore, our hybrid shape descriptor containing
both the visual and geometric features outperforms the ones using the visual or
geometric features alone. Secondly, ZFDR also outperforms DESIRE and LF.
ZFDR exceeds DESIRE in NN, FT, ST and AP by 6.1%, 8.7%, 7.0% and 5.8%
on PSB, 4.9%, 8.1%, 4.9% and 5.6% on NIST. This is contributed to our carefully
selecting and integrating different types of features as well as related distance metrics
to make them complement with each other and thus the hybrid shape descriptor can
represent more types of models comprehensively and effectively.

5.2 Generic 3D model retrieval

5.2.1 Standard benchmark databases

To compare the performance of our retrieval algorithm CBR-ZFDR, we consider
the following three state-of-the-art algorithms,

– 2D-3D [32]: a 2D/3D hybrid descriptor based on 2D depth images and 3D
spherical harmonics.

– MFSD [39]: a multi-Fourier spectra descriptor (MFSD) by integrating depth in-
formation, contour and silhouette features of rendered views as well as a 3D
Fourier features through voxelization. It adopts a cluster-based approach by
clustering the target models before retrieval. An addition operator is used to
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Fig. 5 ZFDR features
contribution analysis on PSB
and NIST databases. ZF and
DR are the two main features
of the hybrid descriptor ZFDR
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Table 2 Other performance
metrics for the ZFDR features
contribution analysis on PSB
and NIST databases

Methods NN FT ST DCG AP

PSB
ZFDR 69.8 43.9 54.9 0.691 60.6
DESIRE 65.8 40.4 51.3 0.663 57.3
LF 65.7 38.0 48.7 – 50.2
DR 64.7 37.2 48.1 0.637 54.0
ZF 62.1 37.3 48.3 0.638 54.3

NIST
ZFDR 87.8 55.0 68.1 0.821 66.2
DESIRE 83.7 50.9 64.9 – 62.7
LF 84.1 43.9 56.0 – 55.1
DR 80.3 48.0 61.7 0.771 59.2
ZF 83.6 47.5 60.7 0.775 58.6
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combine the spectral clustering (SC) distance and model distance to form a
MFSD+SC algorithm.

– PANORAMA [33]: a hybrid 3D shape descriptor that performs best by uti-
lizing a set of panoramic views. A local relevance feedback (LRF) is devel-
oped to further improve the retrieval performance and the method is named
PANORAMA+LRF.

PANORAMA and 2D-3D do not utilize class information, but they represent the
state-of-the-art performances that have been achieved on the six databases and thus
we can know which performance level we can reach if incorporating the already
available class information based on our class-based retrieval algorithm CBR-ZFDR.
Figure 6 and Table 3 compare the performance of our CBR-ZFDR algorithm and the
above mentioned three shape descriptors. To demonstrate the superior performance
of our integrated distance, we compare CBR-ZFDR with a modified CBR-ZFDR
algorithm which applies the addition operator to fuse the class and model distances
and we denote it as CBR-ZFDR-A. To evaluate the effectiveness of our CBR
algorithm, for comparison, we also list the performances when using only the ZFDR
shape descriptor. For the performances of 2D-3D and PANORAMA, we mainly
refer to the experiment results in 2D-3D [32], PANORAMA [33] and PSB [35].
For the performance of PANORAMA on NTU, MSB and NIST, we performed
experiments based on their provided executable files [33]. Some “DCG” results that
are not provided in these papers are indicated by “–”.

As can be seen in Fig. 6 and Table 3, firstly, by comparing the performance of
CBR-ZFDR and CBR-ZFDR-A, we can conclude that by using the scaling operation

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

ci
si

on

PSB database

 

 

CBR−ZFDR
CBR−ZFDR−A
ZFDR
PANORAMA+LRF
PANORAMA
MFSD+SC
MFSD
2D−3D

0 0.2 0.4 0.6 0.8 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Recall

P
re

ci
si

on

NTU database

 

 

CBR−ZFDR
CBR−ZFDR−A
ZFDR
2D−3D
PANORAMA

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

ESB database

 

 

ZFDR
PANORAMA+LRF
PANORAMA
MFSD+SC
MFSD

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

ci
si

on

CCCC database

 

 

CBR−ZFDR
CBR−ZFDR−A
ZFDR
PANORAMA+LRF
PANORAMA
2D−3D

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

ci
si

on

MSB database

 

 

CBR−ZFDR
CBR−ZFDR−A
ZFDR
PANORAMA
MFSD+SC
MFSD

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

ci
si

on

NIST database

 

 

CBR−ZFDR
CBR−ZFDR−A
ZFDR
PANORAMA+LRF
PANORAMA
2D−3D

CBR−ZFDR−A
CBR−ZFDR

2D−3D

Fig. 6 Performance comparison: Precision-Recall plots of our retrieval algorithm CBR-ZFDR and
three state-of-the-art shape descriptors. “CBR-ZFDR” denotes our retrieval algorithm that utilizes
the CBR algorithm described in Section 4 and the ZFDR shape descriptor presented in Section 3.
“CBR-ZFDR-A” denotes a variation of CBR-ZFDR algorithm which uses addition to fuse the class
and model distances. “ZFDR” means using only our hybrid shape descriptor ZFDR and do not use
the CBR algorithm
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Table 3 Performance metrics
of our CBR-ZFDR algorithm
and three state-of-the-art
shape descriptors

“CBR-ZFDR” denotes our
retrieval algorithm that utilizes
the CBR algorithm described
in Section 4 and the ZFDR
shape descriptor presented in
Section 3. “CBR-ZFDR-A”
denotes a variation of
CBR-ZFDR algorithm which
uses addition to fuse the class
and model distances. “ZFDR”
means using only our hybrid
shape descriptor ZFDR and
do not use the CBR algorithm

Methods NN FT ST DCG AP

PSB
CBR-ZFDR 69.8 69.5 77.0 0.801 79.2
CBR-ZFDR-A 69.8 60.8 71.3 0.773 74.5
ZFDR 69.8 43.9 54.9 0.691 60.6
PANORAMA+LRF 75.2 53.1 65.9 – 69.4
PANORAMA 75.3 47.9 60.3 – 64.5
MFSD+SC 71.1 50.9 63.1 0.723 67.4
MFSD 71.6 45.3 59.1 0.704 62.6
2D-3D 74.2 47.3 60.6 – 66.1

NTU
CBR-ZFDR 74.7 74.3 79.7 0.833 81.4
CBR-ZFDR-A 74.7 65.8 74.4 0.809 76.4
ZFDR 74.7 44.9 57.5 0.725 59.4
PANORAMA 79.7 49.0 61.0 0.755 63.0
2D-3D 76.2 46.6 59.1 – 61.2

ESB
CBR-ZFDR 84.1 84.2 88.4 0.909 87.8
CBR-ZFDR-A 84.1 77.7 85.5 0.895 83.8
ZFDR 84.1 46.8 60.9 0.769 58.0
PANORAMA+LRF 87.0 49.9 65.8 – 61.1
PANORAMA 86.5 49.4 64.1 – 61.0
MFSD+SC 87.5 51.0 71.2 0.793 62.3
MFSD 87.5 49.4 65.8 0.789 60.7
2D-3D 82.9 46.5 60.5 – 57.5

CCCC
CBR-ZFDR 84.7 83.8 88.6 0.898 90.2
CBR-ZFDR-A 84.7 78.0 85.9 0.884 87.7
ZFDR 84.7 58.8 72.6 0.814 74.7
PANORAMA+LRF 87.4 70.3 86.6 – 84.1
PANORAMA 87.9 66.3 81.2 – 81.2
2D-3D 87.4 60.2 75.8 – 76.7

MSB
CBR-ZFDR 92.1 90.2 94.7 0.954 93.0
CBR-ZFDR-A 92.1 82.7 90.3 0.935 88.1
ZFDR 92.1 58.1 70.3 0.852 69.0
PANORAMA 94.5 62.6 75.4 0.880 74.6
MFSD+SC 90.3 65.7 76.7 0.868 74.8
MFSD 92.6 53.2 65.4 0.828 64.2

NIST
CBR-ZFDR 87.8 85.7 92.9 0.930 89.8
CBR-ZFDR-A 87.8 76.6 87.4 0.907 84.3
ZFDR 87.8 55.0 68.1 0.821 66.2
PANORAMA+LRF 90.4 71.5 84.1 – 81.8
PANORAMA 90.8 63.4 77.6 0.869 74.6
2D-3D 88.1 55.6 72.1 – 68.6

proposed in our integrated distance rather than the addition approach used in MFSD
to fuse the class and model distances, we can achieve apparently better performance.
For example, for PSB our integrated distance outperforms the additive one by 14.3%,
8.0%, 3.6% and 6.3% in FT, ST, DCG and AP respectively and for NIST the
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corresponding increments are 11.9%, 6.3%, 2.5% and 6.5%. Secondly, our hybrid
descriptor ZFDR itself is comparable to the 2D-3D shape descriptor and it is close
to PANORAMA on several datasets, especially on PSB, NTU and ESB. However,
after applying our CBR algorithm, CBR-ZFDR achieves better performances than
PANORAMA as well as PANORAMA+LRF and its performance is also better
than the cluster-based method MFSD+SC. This indicates that after applying our
CBR approach, we achive more improvement compared to the LRF and SC tech-
niques. There are apparent improvements in either Precision-Recall plots or other
performance metrics including FT, ST, DCG and AP. We also find that usually
NN remains unchanged and this is because using the minimum distance as class
distance will typically have no impact on NN. Therefore, our integrated distance
keeps the nearest model in the beginning of the retrieval list while pushing the
relevant models to the front of retrieval lists (FT, ST, DCG and AP are thus higher).
One example to demonstrate this is shown in Fig. 7. We can see that the distance
gap between the relevant class (horse) and other irrelevant classes (e.g. dog) also
becomes bigger after adopting the CBR approach. This indicates that CBR pushes
the irrelevant models to the rear part of the retrieval list. Thus, the retrieval errors
(e.g. the two dog models m86 and m88) happened when only using the hybrid shape
descriptor ZFDR itself are rectified. This is contributed to the utilization of the class
information/distance.

(a) ZFDR

(b) CBR-ZFDR

Fig. 7 A retrieval example in the PSB database using ZFDR and CBR-ZFDR. Green Query models;
Blue Correct class; Red Wrong class. The distances are shown above the images. In total, there are
six models in the horse class that the query model belongs to
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Assume C as the cardinality of the relevant class, our retrieval algorithm CBR-
ZFDR has the ability to find most relevant models belonging to the same class as the
query model in the front part (e.g., the top (C − 1) or at least 2(C − 1) models) of the
retrieval list, thus FT and ST are higher. Usually there are very few relevant models
in the rest of the list, hence the recall remains almost unchanged in the rear parts of
the Precision-Recall plots.

Our retrieval algorithm mainly comprises two processes: ZFDR feature extraction
for a query model and feature matching with all the models in the database.
ZFDR feature extraction requires rendering to compute the features Z, F, D and
line-triangle intersection computation for the feature R, both of which depend
on the number of triangles of the query model. Feature matching is a simple
computation based on (1)–(7) and the matching time is proportional to the number
of models.

Table 4 lists the timings of CBR-ZFDR on different databases based on a
computer with an Intel Xeon CPU E5520 @2.27 GHz and 12.0 GB of RAM. We
want to mention that the implementation is not optimized in terms of computational
time. Nevertheless, our CBR-ZFDR algorithm already meet the requirements for
interactive retrieval applications. Typically, the response time is less than 2 sec.
Basically, only some small deviations in the rendering time happen due to different
number of triangles in each model. Other processes mainly remain constant or are
proportional to the number of models.

5.2.2 SHREC 2009 and PSB test vs train

In these two experiments, the query models are not selected from the target database,
that is, the query set and the target set are two completely different datasets. For this
purpose, we utilize the following two datasets:

– SHREC 2009 NIST dataset [14]: the dataset used in the Shape Retrieval Contest
(SHREC) 2009 (generic track). It was constructed based on the NIST Generic
Shape Benchmark (described in the beginning of Section 5), from which two
models in each class were selected as query models and the rest as the target
models. Therefore, there are 80 query models and 720 target models in the
dataset.

– PSB test and train datasets. We use the test dataset as query dataset and the train
dataset as the target dataset. Since the classes in the train and test datasets are
not completely the same, we only consider the classes that exist in both datasets
when measuring the retrieval performance.

Table 4 Timings information of CBR-ZFDR on different databases

Time PSB NTU ESB CCCC MSB NIST

t f (s) 1.12 2.07 1.28 1.41 1.53 1.97
tm (s) 0.11 0.04 0.09 0.05 0.05 0.09
t (s) 1.23 2.11 1.37 1.46 1.58 2.06

t f , tm, t denote the feature extraction time for a query model, feature matching time between the
query model and all the models in the database, and response time for one query model, respectively
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For the SHREC 2009, we compare with the top two methods in SHREC 2009 [14],
which are the composite descriptor proposed by Lian et al. [27] (“Composite”) and
the multi-view depth line approach (“MDLA”) proposed by Chaouch and Verroust-
Blondet [8]. For PSB, we apply our CBR algorithm to both ZFDR and DESIRE
shape descriptors for a comparative evaluation. We denote the CBR algorithm using
the DESIRE shape descriptor as CBR-DESIRE. Figure 8 and Table 5 give their
performance comparison. Obviously, our CBR-ZFDR approach has a better overall
performance. Since the query models is not included in the target datasets, these
experiments demonstrate the robustness of our retrieval algorithm. The experiments
with DESIRE also demonstrate that our CBR algorithm is general and can be
applied to any shape descriptors to evidently elevate their retrieval performance.

Fig. 8 Performance
comparison: Precision-Recall
plots of our retrieval algorithm
CBR-ZFDR and other
methods on SHREC 2009
NIST and PSB databases
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Table 5 Performance metrics
for the performance
comparison on SHREC 2009
NIST and PSB databases

Methods NN FT ST DCG AP

NIST
CBR-ZFDR 88.7 87.3 94.0 0.937 81.2
ZFDR 88.7 58.1 70.6 0.844 60.2
MDLA 96.3 73.0 84.8 0.917 73.8
Composite 92.5 72.4 84.4 0.904 72.9

PSB
CBR-ZFDR 81.8 81.6 89.0 0.899 85.6
ZFDR 81.8 50.6 64.6 0.780 58.3
CBR-DESIRE 77.5 78.6 86.4 0.879 82.4
DESIRE 77.5 47.8 60.9 0.757 55.2

5.3 Partial 3D model retrieval

To demonstrate the versatility of our retrieval algorithm CBR-ZFDR, we also test
and compare the performance of our algorithm in a partial matching scenario using
the previously described WMB benchmark [42].

The goal is to retrieve similar subparts. To evaluate the partial similarity re-
trieval performance, we adopt the average Normalized Discounted Cumulative Gain
(NDCG) [20] over all the query models. NDCG is defined by dividing the DCG of a
partial retrieval algorithm by the ideal DCG related to the database. Thus, the range
of NDCG will be [0, 1].

Because a query model (e.g. the query models in Figs. 10 and 11) is composed
of several parts cut from models of different classes, the ground truth [42] classifies
the target models into “relevant”, “marginally-relevant” and “non-relevant” classes
for every query model and assign relevance scores of 2, 1 and 0 for these three
classes respectively. These scores are used to compute NDCG. To determine NDCG,
we first compute the gain vector G. For example, the Centaur model in Fig. 10 is
relevant to “four legs” and “human” classes and marginally relevant to “armadillo”

Fig. 9 Performance
comparison: NDCG plots of
our retrieval algorithm and
other methods on SHREC
2007 Watertight database

50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Items retrieved

N
D

C
G

WMB database

 

 

CBR−ZFDR
ZFDR
RPU
BoF
ERG
CORNEA



Multimed Tools Appl (2013) 62:821–846 841

Fig. 10 A partial matching example showing the top-7 retrieval results using RPU (1st row), ZFDR
(2nd row) and CBR-ZFDR (3rd row) methods. The first model in each row is the query model

and “teddy” classes. Then, the models in its retrieval list will be replaced by the cor-
responding scores to compute the gain vector G: (2, 2, 2, 2, 2, 0, 2), (2, 2, 2, 2, 2, 1, 1),
(2, 2, 2, 2, 2, 2, 2) for the three rows respectively. The remaining steps of computing
NDCG can be referred to WMB [42] and [20].

We compare with four previous partial retrieval algorithms: RPU, BoF, ERG
and CORNEA. ERG and CORNEA are the only two participants in SHREC 2007
partial retrieval track [42] while the latest RPU and BoF algorithms outperform ERG
and CORNEA. Figure 9 gives the NDCG performance comparison results. As can be
seen, using only our ZFDR shape descriptor, we already can achieve an apparently
better NDCG performance than RPU, ERG and CORNEA and an overall better
performance than BoF. After adopting our CBR algorithm, we achieve an even
better performance than any of the five methods.

Figures 10 and 11 show two retrieval examples using our CBR-ZFDR and ZFDR
methods as well as the RPU method. Similarly, we can also see that CBR-ZFDR
approach pushes the relevant models to the front of the retrieval lists. Additionally,
we can also find that better than RPU, our methods can find the geometrically more
relevant models first, which is more reasonable and easier for our understanding. The

Fig. 11 Another partial matching example showing the top-7 retrieval results using RPU (1st row)
method and the top-9 retrieval results using ZFDR (2nd row) and CBR-ZFDR (3rd row) methods.
The first model in each row is the query model
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Fig. 12 CBR generality:
Precision-Recall plots of our
CBR algorithm with different
shape descriptors on NIST,
NTU, ESB and MSB
databases
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average time to process a query model using our CBR-ZFDR and ZFDR methods
is about 2.8 sec (2.79 sec for feature extraction, 0.04 sec for feature matching). To
some degree, this experiment demonstrates the superior performance of our retrieval
algorithm CBR-ZFDR in terms of partial retrieval.

5.4 Generality of our CBR approach

Our CBR approach is general and can be used with any shape descriptors. By
combining it with a better shape descriptor, we can achieve even better perfor-
mances. To verify this, we replace the ZFDR shape descriptor with PANORAMA,
which has better performances than ZFDR and perform experiments using the
provided executable files [33] on four representative benchmarks: NIST, NTU,
ESB and MSB. Figure 12 shows the performance comparison with CBR-ZFDR, as
well as PANORAMA together with the local relevance feedback (LRF) technique,
that is PANORAMA+LRF. The results show that CBR-PANORAMA apparently
outperforms PANORAMA and it is also superior to PANORAMA+LRF. Thus, the
performance improvement of our CBR approach is general and it is not dependent
on the shape descriptors themselves. In addition, we can find that CBR achieves
more apparent improvements compared to the LRF technique when both applied to
PANORAMA, which also demonstrates the advantage of our CBR approach.

5.5 Limitations

Our CBR-ZFDR algorithm has achieved good performance on both generic and
partial 3D model retrieval. However, it has some limitations. Firstly, ZFDR is
not the best shape descriptor if we compare it with PANORAMA. Nevertheless,
by incorporating the CBR algorithm, we can achieve a better performance than
PANORAMA. Secondly, we only can directly apply our CBR-ZFDR algorithm to
the already classified 3D model databases. If the 3D model database is unclassified,
we can still apply our algorithm by first clustering the models in the database.

6 Conclusions and future work

In this paper, to improve the retrieval performance on a classified 3D model
database, we have proposed a 3D model retrieval algorithm named CBR-ZFDR
which is based on the proposed hybrid shape descriptor ZFDR and class-based
retrieval (CBR) algorithm which makes use of the already available class informa-
tion. ZFDR integrates a 3D model’s both visual and geometric information from
different aspects. By optimizing the choices of the four component features and
carefully choosing the Scaled-L1 and Canberra distance metrics, we achieve better
performances than the most related view-based shape descriptor Light Field and
hybrid-based shape descriptor DESIRE. In addition, its performance is also close
to the state-of-the-art shape descriptors on several databases. To further improve the
retrieval performance, we define a new integrated distance to fuse the model distance
and class distance in the CBR algorithm. We compute the integrated distance, which
incorporates the class information of the database, by scaling the model distance
using the class distance. Our CBR scheme is general, it can be applied to any shape
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descriptors to evidently improve their retrieval performance. Extensive experiments
demonstrated that: (1) with respect to generic retrieval, for most of the performance
metrics, our results are better than the state-of-the-art methods on each of the six
databases used in the experiments; (2) with respect to partial retrieval, it also shows
an appealing performance both in terms of accuracy and speed: not only better than
the two participants in SHREC 2007 partial retrieval track [42], but also outperforms
the two latest shape descriptors RPU [40] and BoF [41].

Through experiments, we have shown that our retrieval algorithm is promising for
retrieving models in a classified database. In order to enable us to apply our retrieval
algorithm to unclassified databases, as future work, we would like to develop a
method to group the models of unclassified 3D model databases and integrate it into
our retrieval algorithm.
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