
High-capacity reversible data hiding based
on multi-histogram modification

Cheng-Tzu Wang & Hsiang-Fu Yu

Published online: 5 July 2011
Springer Science+Business Media, LLC 2011

Abstract Reversible data hiding is a technique that embeds a message into a host image
with acceptable visual distortion and then recovers the image without any data loss while
extracting the embedded message. The previous schemes mainly suffer from an unresolved
problem that the imperceptibility of a marked image decreases severely as the embedding
capacity increases. Extending the histogram modification technique, this study proposes a
novel scheme that utilizes multiple histograms to increase embedding capacity while
keeping marked-image quality. Unlike most histogram modification schemes, the multi-
histogram scheme does not suffer from overflow and underflow during histogram shift.
This scheme can yield the embedding capacity of 1 bit per pixel (bpp) at the PSNR of 48.13
db for a 512×512 grayscale image. To reduce the overhead during message embedding, the
work further proposes an iterative multi-histogram scheme. Comprehensive experimental
results show that both the schemes can achieve high embedding capacity and image quality.

Keywords Reversible data hiding .Watermarking . Lossless

1 Introduction

Data hiding [25, 26] is a technique to embed a message into a host image with acceptable
visual distortion and to extract the message from the marked host image. In most
applications of data hiding, such as copy control and content authentication, some
permanent distortion may have happened to the host image after the message extraction.
However, some data-hiding applications, especially in medical, military, and legal domains,
are required to extract the message without any distortion of the host image. This
requirement leads to an interesting hiding technique – reversible, lossless, distortion-free, or
invertible data hiding, in which a host image must be recovered completely as an embedded
message has been extracted out.

Multimed Tools Appl (2012) 61:299–319
DOI 10.1007/s11042-011-0838-6

C.-T. Wang : H.-F. Yu (*)
Department of Computer Science, National Taipei University of Education, Taipei, Taiwan
e-mail:yu@dslab.csie.ncu.edu.tw
e-mail: yu@tea.ntue.edu.tw

Many reversible schemes were proposed to enhance data-hiding capacity and image-
embedding quality. Fridrich et al. [5] devised a least significant bit (LSB)-based
reversible algorithm that could hide a message into the quantized DCT coefficients. Celik
et al. [2] proposed a generalized-LSB (G-LSB) scheme compressing the quantization
residuals of pixels to improve hiding payloads. The study in [6] presented a lossless data-
hiding technique with high capacity by embedding data bits into the state of each group of
pixels. Tian [18] designed a high-capacity reversible scheme based on the difference
expansion transform of a pair of pixels. Extending Tian’s method, Alattar’s work [1]
embedded data using the difference expansion transform of vectors, and reduced the
difference values using a generalized integer transform of vectors. Thodi et al. [17]
devised an effective method for data embedding by combining prediction-error expansion
and histogram shifting. Wang et al. [23] presented two difference-expansion data-hiding
schemes for 2-D vector maps. Based on the integer Haar wavelet transform, Hu et al. [9]
proposed a new difference-expansion embedding algorithm, which utilized the horizontal
as well as vertical difference images for data hiding. The study in [10] increased
embedding capacity by improving the compressibility of the overflow location map.
Weng et al. [24] utilized the invariability of the sum of pixel pairs and the pairwise
difference adjustment (PDA) to achieve large hiding capacity with small distortion. Lin et
al. devised a lossless scheme based on three-pixel block differences [12]. Chang et al.
proposed an embedding scheme based on the side match vector quantization (SMVQ) [3].
The scheme in [22] embedded the secret bits into the VQ index table by modifying the
index value according to the difference of neighboring indices. Lee et al. [11] divided an
image into blocks and embedded watermark data into the high-frequency wavelet
coefficients of each block.

Ni et al. [14] proposed a simple reversible algorithm based on histogram modification
that used peak-zero points to embed data into an image. Fallahpour et al. [4] divided an
image into multiple blocks, and found a peak-zero point for each block to embed data. Lin
et al. [13] presented a multilevel histogram-modification hiding strategy to yield high
embedding capacity as well as low distortion. This strategy embedded data bits into the
pixels associated with the peak points in the difference image histogram. Tsai’s study [19]
presented a histogram-modification algorithm that worked on VQ indices. Tsai et al. [20]
examined the similarity of neighboring pixels in an image, and embedded data into the
residual histogram of the predicted errors of the host image. Tai et al. [16] devised an
embedding scheme based on the histogram modification and the pixel difference, and used
a binary tree structure to save the pairs of peak-zero points.

The above schemes all suffer from an unresolved problem that the imperceptibility of a
marked image decreases severely when the embedding capacity increases. Extending the
histogram modification technique, this study proposes a multi-histogram modification
scheme, which utilizes multiple histograms to increase hiding capacity while keeping high
image quality. Unlike most exiting histogram modification schemes, the multi-histogram
scheme does not suffer from overflow and underflow during histogram shift. This scheme
can yield the embedding capacity of 1 bit per pixel (bpp) at the PSNR of 48.13 db for a
512×512 grayscale image. However, the scheme may require numerous peak-zero pairs. To
reduce the required pairs, the work further proposes an iterative multi-histogram scheme.
Comprehensive experimental results show that both the schemes can achieve high
embedding capacity and image quality.

The rest of this paper is organized as follows. Next section presents the proposed
reversible data-hiding scheme. Section 3 includes the experimental results and performance
comparisons. Conclusions are drawn in Section 4.

300 Multimed Tools Appl (2012) 61:299–319

2 The multi-histogram scheme

The histogram-based schemes generally share similar steps to embed data into a host
image. The schemes first adopt different approaches, such as pixel grayscale [14] or
difference [13, 20], to generate a histogram. The histogram is then scanned to obtain the
pairs of peak and zero points, in which each pair can be utilized to hide data by shifting
histogram. Clearly, the larger the difference between the peak and zero points is, the higher the
data-hiding capacity is. Thus, the previous researches mainly investigate how to generate a
histogram that has the peak-zero pairs with large differences. In a different manner, this work
proposes an approach that generates multiple histograms for a host image, in which each
histogram has several peak-zero pairs to hide data. Figure 1 shows that the proposed scheme
includes three stages – multiple-histogram generation, data embedding, and extraction. The
first stage generates several histograms for a host image H. By using the histograms, the data
embedding process encodes the messageM into the image H, and yields a secret key. With the
secret key and the marked image H’, the final stage restores the image H and the message M.
We next present the details of the proposed data-hiding algorithm.

2.1 Multiple-histogram generation

This paper first defines a pixel set A ¼ 0; 1; 2; . . . ; 255f g, where each element represents a
possible value of a pixel in an 8-bit grayscale image. An m-pixel grayscale image H is
scanned in a sequential order, say, row-by-row, or column-by-column, from left to right to
generate a pixel sequence S ¼ x1 � x2 � � � � � xi � � � � � xm�1 � xm,1 where xi ∊ A, 1 � i � m.
Let s ¼ a1 � a2 . . . an�1 � an be an n-pixel subsequence of the sequence S, where s ⊂ S. For
instance, given S ¼ 1 � 2 � 3 � 5 � 9 and n=2, the subsequence s could be 1•2, 5•9, and
so on. Generally, let P be a set containing all the possible patterns (or combinations) of an
n-pixel subsequence. Because the set A contains 256 elements, the maximum number of the
elements in P equals 256n. For example, for n=2, there exist 2562 possible patterns for a 2-
pixel subsequence. The basic concept behind our scheme is to generate a histogram for each
pattern. The steps to generate histograms for n-pixel patterns are as the following.

1. Define a dummy pixel sequence V ¼ v1 � v2 � � � � � vi � � � � � vn�1 � vn, where vi ∊ A,
1 � i � n. Here, the pixels of the sequence V can be chosen arbitrarily. We then join the
sequence V into the front of the sequence S, and obtain a new sequence V • S.

2. Create a histogram table, as illustrated in Table 1. Each cell indicates the times that a
pixel q (q ∊ A) follows a pattern p (p ∊ P) when the sequence V • S is scanned. The
value of a cell is denoted by r(q|p). At the start, all the values are initialized to zero.
This paper later shows that each row can generate a histogram for hiding data.

3. Scan the sequence V • S one pixel by one pixel to find each pattern p and its following
pixel q, and to increase the corresponding count r(q|p) in Table 1 by one. We use a
virtual sliding window W to implement the scanning, as illustrated in Fig. 2. Figure 2-
(a) shows that the window W constantly contains n+1 pixels in order, where the first n
pixels constitute a found pattern p, and the following pixel q is the n+1th pixel.
Initially, the window is put in the beginning of the sequence V • S, and thus the first
found pattern p is exactly the sequence V and the following pixel q is the pixel x1, as
shown in Fig. 2-(b). The count r(x1|V) increases by one. We then slide the window W
forward by one pixel, as illustrated in Fig. 2-(c). The pattern p and the following pixel

1 The character “•” just stands for the concatenation of the pixels, not really existing in the sequence.

Multimed Tools Appl (2012) 61:299–319 301

q become v2 � v3 � � � � � vn�1 � vn � x1 and x2, respectively. The count rðx2 v2j � v3 �
� � � � vn�1 � vn � x1Þ increases by one. Repeat the process until the last pattern p ¼
xm�n � xm�nþ1 � � � � � xm�2 � xm�1 and the pixel q = xm are found, and the
corresponding count rðxm xm�nj � xm�nþ1 � � � � � xm�2 � xm�1Þ is updated. We can totally
obtain m patterns, and Table 1 records the distribution of pixels on each pattern. With
this table, the proposed approach further generates a histogram for each pattern in
which the horizontal values are the pixels in the set A, and the vertical values are the
times that the pixels are found immediately after the pattern.

An example is next used to illustrate the multiple-histogram generation, and this
example is also used to explain the data embedding and extracting processes later.
Suppose S ¼ 0 � 1 � 2 � 0 � 2 � 1 � 0 � 1 � 2, and n=1. There exist 256 patterns in set P,
such as 0, 1, 2, 3, and so on. Here, we s imply assume V = 0, and
V � S ¼ 0 � 0 � 1 � 2 � 0 � 2 � 1 � 0 � 1 � 2. Figure 3 illustrates the entire histogram
generation. Step 0 initially sets all the cells in the histogram table to zero. We then scan the
sequence V • S from the beginning via the window W. The first step finds p=0 and q=0, and
updates the corresponding cell colored gray in the histogram table. By moving the windowW
along the sequence V • S by one pixel, each step can find a new pattern p and its following

Multiple-
histogram
generation

Data
embedding

Data extraction

Image H

Image H'Secret key

Histograms

Message M

Fig. 1 The concept of the pro-
posed scheme

Table 1 The histogram table for n-pixel patterns

Pixel q 0 1 ⋯ 255

Pattern p

0 • 0 • ⋯ • 0 rð0j0 � 0 � � � � � 0Þ rð1j0 � 0 � � � � � 0Þ … rð255j0 � 0 � � � � � 0Þ
0 • 0 • ⋯ • 1 rð0j0 � 0 � � � � � 1Þ rð1j0 � 0 � � � � � 1Þ … rð255j0 � 0 � � � � � 1Þ
… … … … …

0 • 0 • ⋯ • 255 r(0|0 • 0 • ⋯ • 255) rð1j0 � 0 � � � � � 255Þ … rð255j0 � 0 � � � � � 255Þ
1 • 0 • ⋯ • 0 r(0|1 • 0 • ⋯ • 0) rð1j1 � 0 � � � � � 0Þ … rð255j1 � 0 � � � � � 0Þ
1 • 0 • ⋯ • 1 r(0|1 • 0 • ⋯ • 1) rð1j1 � 0 � � � � � 1Þ … rð255j1 � 0 � � � � � 1Þ
… … … … …

1 • 0 • ⋯ • 255 r(0|1 • 0 • ⋯ • 255) rð1j1 � 0 � � � � � 255Þ … rð255j1 � 0 � � � � � 255Þ
… … … … …

255 • 0 • ⋯ • 0 r(0|255 • 0 • ⋯ • 0) rð1j255 � 0 � � � � � 0Þ … rð255j255 � 0 � � � � � 0Þ
… … … … …

255 • 255 • ⋯ • 255 r(0|255 • 255 • ⋯ • 255) rð1j255 � 255 � � � � � 255Þ … rð255j255 � 255 � � � � � 255Þ

302 Multimed Tools Appl (2012) 61:299–319

pixel q. Step 9 finally obtains p=1 and q=2, and completes the entire histogram table, which
includes the distribution of each pixel on each pattern. For instance, the first row of the
histogram table indicates that for the pattern p=0, the pixel “0” was found once, the pixel “1”
twice, the pixel “2” once, and other pixels zero times. Due to n=1, the generated table has
256 rows, and each row can be considered as a histogram for a pattern. The next subsection
will explain how to apply the histogram table to hide data.

2.2 Data embedding algorithm

Assume that M ¼ m1 � m2 � � � � � mi � � � � � mk�1 � mk is a k-bit to-be-embedded sequence,
where mi ∊ {0, 1}, 1 � i � k. The following process embeds the sequence M into the
sequence S, and obtains a marked sequence S’.

v1 v2 ... vn-1 vn x1 x2 ...x3 xm-2xm-1 xm

SV

(b)

v1 v2 ... vn-1 vn x1 x2 ...x3 xm-2xm-1 xm

SV

(c)

v1 v2 ... vn-1 vn x1 x2 ...x3 xm-2xm-1 xm

SV

(d)

(a)

n+1 pixels

p qW

n pixels

1 pixel

...xm-nx
m-n+1

p q

p q

qp

Fig. 2 Multiple-histogram generation

Multimed Tools Appl (2012) 61:299–319 303

1. Scan the generated histogram table row by row to find peak-zero pairs of each pattern p
based on the count values r(q|p). Figure 4 illustrates the peak-zero pairs of a pattern p.
The height of a rectangle represents the count values r(q|p) at a pixel q. In the figure,
the peak points A, B, and C are the local maximum count values in the histogram of the
pattern p, while each peak must correspond to a zero point (i.e., A’, B’ and C’) whose
count value is zero. The steps to find peak-zero pairs for a pattern are as below.

& Scan the row corresponding the pattern on the Table 1 from left to right. Once
finding a non-zero count value, set a peak to this pixel.

& Scan the row continuously. If a larger or equal count value of a pixel is found,
update the peak to the new pixel.

& Repeat the above step until finding a count value of a pixel zero, and set a zero
point to the pixel. A peak-zero pair is thus found.

0 0 1 21020 12
V

S

0 0 1 21020 12
V

S

p

Step 0

0
0 1 2 ... 255p q

1
2
...

255

0
0
0

0 0

0
0
0 0

0
0

0

0
0
0

0...
...
...
...
...

0
0p q

1
2
...

255

1
0
0

0

Step 1

0 0 1 21020 12
V

S
0

0 1p q

1
2
...

255

1
0
0

0 0

0
0
1

Step 2

0 0 1 21020 12
V

S
0

0 1 2p q

1
2
...

255

1
0
0

0 0

0
0
1 0

1
0

0

Step 3

0 0 1 21020 12
V

S
0

0 1 2p q

1
2
...

255

1
0
1

0 0

0
0
1 0

1
0

0

Step 4

0 0 1 21020 12
V

S
0

0 1 2p q

1
2
...

255

1
0
1

0 0

0
0
1 1

1
0

0

Step 5

0 0 1 21020 12
V

S
0

0 1 2p q

1
2
...

255

1

0 0

0
1

1
0

0

Step 6

0 0 1 21020 12
V

S
0

0 1 2p q

1
2
...

255

1

0 0

1
0
1 1

1
0

0

Step 7

0 0 1 21020 12
V

S
0

0 1 2p q

1
2
...

255

1
1
1

0 0

1
0
2 1

1
0

0

Step 8

0 0 1 21020 12
V

S
0

0 1 2p q

1
2
...

255

1
1
1

0 0

1
0
2 1

2
0

0

Step 9

3
0
0
0

0

1 2 ... 255

0

0
0
0 0

0
0

0

0
0
0

0...
...
...
...
...

3
0
0
0

0

2 ... 255
0
0
0

0

0
0
0

0...
...
...
...
...

3
0
0
0

0

... 255
0
0
0

0...
...
...
...
...

3
0
0
0

0

... 255
0
0
0

0...
...
...
...
...

3
0
0
0

0

... 255
0
0
0

0...
...
...
...
...

3
0
0
0

0

... 255
0
0
0

0...
...
...
...
...

3
0
0
0

0

... 255
0
0
0

0...
...
...
...
...

3
0
0
0

0

... 255
0
0
0

0...
...
...
...
...

3
0
0
0

0

... 255
0
0
0

0...
...
...
...
...

3
0
0
0

0

...

...............

...............

...............

...............

...............

...............

...............

...............

...............

1

1
0

1

1
1

q

p q

p q

p q

p q

p

p

p

p

q

q

q

q

W

Fig. 3 Illustration of multiple-histogram generation

... ...

Peak A Peak B

Pixel q

r(
q|

p
)

Zero A' Zero B'

Peak C

Zero C'

Fig. 4 Illustration of the peak-zero pairs

304 Multimed Tools Appl (2012) 61:299–319

& Repeat the above three steps until finishing scanning the row. Any peak point
without corresponding a zero point is abandoned.

The found peak-zero pairs are utilized to embed and extract data. The pairs and the
dummy sequence V constitute the secret key mentioned in Fig. 1. The current histogram-
based schemes generate secret keys based on the characteristics of a host image. The secret
keys can be detective once the host image is revealed [15]. To avoid this problem, the
proposed scheme additionally requires the dummy sequence V to restore a marked image.
The length and the contents of the sequence are given randomly, and are hard to detect. The
scheme thus exhibits higher security. Furthermore, the multi-histogram scheme, unlike most
histogram-based schemes, does not suffer from the problem of overflow. From the steps to
determine peak-zero pairs, we can find that the maximum pixel 255 does not become a
peak point because the corresponding zero point does not exist. Thus, the overflow caused
by adding one to the pixel value 255 does not happen. In addition, most previous schemes,
such as [4, 13, 14, 16, 19, 20], may generate no peak-zero pair for particular man-made
images, and cannot hide data into the images. In contrast, the proposed scheme can adjust
the value and the length of the dummy sequence V to yield peak-zero pairs for multiple
histograms, and thus gains the minimum capacity larger than zero.
2. Scan the sequence V • S by moving the sliding window W one pixel by one pixel. For

each found pattern p and the following pixel q, we compare the pixel q with the peak-
zero pairs of the pattern p.

& If the pixel q is not located between a peak point and an associated zero point, add
the pixel q into the end of the marked sequence S’.

& If the pixel q is a peak point, and add the pixel q + mi into the end of the sequence
S’. In this case, the scheme embeds a bit mi of the sequence M into the sequence S.

& If the pixel q is not a peak point but a point between a peak point and an associated
zero point, add the pixel q+1 into the end of the sequence S’.

This paper next demonstrates the embedding process by using the previous example in
Fig. 3. Assume M ¼ 1 � 0 � 1 � 0 � 1 � 0. We first scan each row of the table generated by
step 9 in Fig. 3 to find peak-zero pairs for each pattern. The results are listed in Table 2,
where the found peak count values are bold, and the zero values are colored gray. For
example, there exists one peak-zero pair, (1,3), for pattern “0” in the first row. The second
row contains two pairs, (0,1) and (2,3) for pattern “1”.

Our scheme then scans the sequence V • S to hide the sequence M. Figure 5
demonstrates the entire process. When Step 1 starts scanning the sequence V • S, the step
finds p=0 and q=0. According to the first row of Table 2, the pixel q is not located in the

Table 2 The histogram table for the example in Fig. 3

Pixel q 0 1 2 3 … 255

Pattern p

0 1 2 1 0 … 0

1 1 0 2 0 … 0

2 1 1 0 0 … 0

… … … … … … …

255 0 0 0 0 … 0

Multimed Tools Appl (2012) 61:299–319 305

peak-zero pair (1,3). Thus, the value of the pixel q is not modified, and directly becomes
the first pixel of the sequence S’, colored gray. Step 2 continuously scans the sequence V • S,
and finds p=0 and q=1. Since the pixel q is a peak point for the pattern p on Table 2, the
scheme adds the pixel qþ m1¼ 1þ 1 ¼2 into the end of the sequence S’. The third pattern
found in the sequence V • S is “1”, and the following pixel q=2 is also a peak point. The pixel
qþ m2¼ 2þ0 ¼ 2 thus becomes the third pixel of the sequence S’. The fourth pattern is “2”,
and the following pixel “0” is outside the peak-zero pair (1,2) on the third row of Table 2.
This pixel is thus directly added into the end of the sequence S’. Step 5 shows that the found
pattern is “0”, and its following pixel q=2 is not a peak but a point located between the peak-
zero pair (1,3). We thus insert the pixel qþ 1 ¼ 3 into the end of the sequence S’. The
remaining embedding steps are similar, and please refer to Fig. 5 for the details.

2.3 Data extracting algorithm

To extract the sequences S and M from the marked sequence S’, our scheme finds each
pattern p from the sequence V • S, and finds the following pixel q from the sequence S’ by
simultaneously scanning both the sequences. Here, two sliding windows are utilized to
obtain patterns from the sequence V • S, and to obtain following pixels from the sequence

0 0 1 21020 12
V

S

Step 1

0 0 1 21020 12
V

S

p

Step 2

0 0 1 21020 12
V

S

Step 3

0 0 1 21020 12
V

S

Step 4

0 0 1 21020 12
V

S

Step 5

0 0 1 21020 12
V

S

Step 6

0 0 1 21020 12
V

S

Step 7

0 0 1 21020 12
V

S

Step 8

0 0 1 21020 12
V

S

Step 9

S'

1 0 1 0 1 0

M

0

1 0 1 0 1 0

M

S'

0 2

1 0 1 0 1 0

M

S'

0 2 2

S'

0 2 2 0

1 0 1 0 1 0

M

1 0 1 0 1 0

M

S'

0 2 2 0 3

1 0 1 0 1 0

M

S'

0 2 2 0 3 2

1 0 1 0

M

1 0

S'

0 2 2 0 3 2 0

1 0 1 0

M

1

S'

0 2 2 0 3 2 0

0

2

1 0

M

1 0 1 0

S'

0 2 2 0 3 2 0 22

0 0 1 21020 12
V

S S'

1 0 1 0 1 0

M

Step 0

q

p

p

p

p

p

pp

p q

qq

q

q

qq

q

W

Fig. 5 Illustration of data embedding

306 Multimed Tools Appl (2012) 61:299–319

S’. The peak-zero pairs yielded by the embedding algorithm are also used to complete the
extraction process. The extraction steps are as the following.

Initially, the sequences S and M are empty, and thus V • S = V. When the sequence V • S is
scanned, the pattern p found first is V. The following pixel q comes from the first element of
the sequence S’, rather than the sequence S. We then compare the pixel q with the peak-zero
pairs of the pattern p.

& If the pixel q is not located between a peak point and an associated zero point, add the
pixel q into the end of the sequence S.

& If the pixel q is a peak point, add the pixel q into the end of the sequence S, and a bit
“0” into the end of the sequence M, respectively. This means that the pixel q hides a bit
“0” of the sequence M.

& If the pixel q is immediately after a peak point, add the pixel q−1 into the end of the
sequence S, and a bit “1” into the end of the sequence M. This means that the pixel q
hides a bit “1” of the sequence M.

& If the pixel q is inside the value range of a peak-zero pair but neither a peak nor a point
immediately following the peak, add the pixel q−1 into the end of the sequence S.

The sliding windows are then moved forward by one pixel to find the next pattern
and the following pixel. We repeat the above process until the last element of the
sequence S’ is scanned, and the sequences S and M are restored completely. Note that the
extraction process does not meet the problem of underflow caused by subtracting one
from the pixel value zero. This is because the embedding process does not set a zero point
to the pixel zero.

Figure 6 demonstrates the entire process of extracting the sequences S and M from the
sequence S’ in Fig. 5. Step 1 scans the sequences V • S and S’, and obtains p=0 and q=0.
According to the first row of Table 2, the pixel q is not located in the peak-zero pair (1,3).
Thus, the pixel q is not modified, and directly becomes the first element of the sequence S,
colored gray in Fig. 6. Step 2 continuously finds the next pattern p=0 from the sequence V •
S, and the following pixel q=2 from the sequence S’. Since the pixel q immediately follows
a peak point, we add the pixel q−1 to the sequence S according to the above extracting
rules, and a bit “1” becomes the first element of the sequence M. Figure 6 shows that the
third pattern p is “1” and the following pixel q is “2”. Because the pixel q is a peak point,
the pixel directly becomes the third element of the sequence S without changing its value,
and the second bit of the sequence M is “0”. In Step 4, p=2, and q=0. The pixel q is
directly appended into the sequence S since the pixel is outside the range of the peak-zero
pair (1,2) on the third row of Table 2. The fifth pattern is “0”, and the following pixel q=3
is inside the range of the peak-zero pair (1,3) but neither a peak nor a point immediately
after the peak. We thus insert the pixel q−1 into the end of the sequence S. Step 6
continuously finds the pattern p=2 from the sequence V • S, and the following pixel q=2
from the sequence S’. Since the pixel q immediately follows a peak point, we append the
pixel q−1 to the sequence S, and a bit “1” to the sequence M. The seventh pattern is “1”,
and the following pixel q=0 is a peak point. The pixel q directly becomes the new element
of the sequence S, and the new bit of the sequence M is “0”. Step 8 finds the pattern p=0
from the sequence V • S, and the following pixel q=2 from the sequence S’. The pixel q
immediately follows a peak point, and we thus append the pixel q−1 to the sequence S, and
a bit “1” to the sequence M. The last pattern is “1”, and the following pixel q=2 is a peak
point. The pixel q thus becomes the last element of the sequence S, and the last bit of the
sequence M is “0”. Accordingly, the sequences S and M are restored completely.

Multimed Tools Appl (2012) 61:299–319 307

Table 3 Variable definitions in the pseudocode

Name Definition

VS_seq[] An array to save pixels of the sequence V • S

M_seq[] An array to save data bits of the sequence M

SPrime_seq[] An array to save pixels of the sequence S’

pattern[] An array to save all the found patterns

p A pointer to a pattern

q A pointer to the following pixel

m A variable to save the length of the sequence S

n A variable to save the pattern length

k A variable to save the length of the sequence M

21

10

01

10 2

2

02

0 0

V S

p

Step 1

Step 2

121 0

0

V S

S'

Step 0

0 2 2 0 3 2 0 22

M

q

S' 0 2 2 0 3 2 0 22

M

0

V S

p

q

S' 0 2 2 0 3 2 0 22

0 1 1

Step 3

M

0

V S

p

q

S' 0 2 2 0 3 2 0 22

0

11

Step 4

M

0

V S

p

q

S' 0 2 2 0 3 2 0 22

0 0

2 11

Step 5

M

0

V S

p

q

S' 0 2 2 0 3 2 0 22

0 00

2 11

Step 6

M

0

V S

p

q

S' 0 2 2 0 3 2 0 22

0 0 1

0 22 11

Step 7

M

0

V S

p

q

S' 0 2 2 0 3 2 0 22

0 0 1 0

10 22 11

Step 8

0

V S

p

q

S' 0 2 2 0 3 2 0 22

0 0 1 0 1

010 22 11

Step 9

M

0

V S

p

q

S' 0 2 2 0 3 2 0 22

0 0 1 0 1 0

M

M

Fig. 6 Illustration of data extraction

308 Multimed Tools Appl (2012) 61:299–319

2.4 Pseudocode of algorithms

This subsection presents C-like pseudocode for the data embedding and extracting
algorithms, and discusses the applicable implementation. Table 3 lists the definitions of
the variables in the pseudocode. Figure 7 depicts the pseudocode for generating multiple

load_VS_seq(); load_M_seq(); initialize_SPrime_seq();
//// The part to generate multiple histograms
p = VS_seq; q = VS_seq + n;
for(i = 0; i < m; ++i){
 if(is_in_histogram_table(p, q))
 add_count_by_one(p, q);
 else
 insert_new_entry_to_histogram_table(p, q);

 p = p + 1; q = q + 1;
}
//// The part to determine peak-zero pairs for each pattern
pattern_number = get_all_patterns_in_histogram_table(pattern);
for(i = 0; i < pattern_number; ++i){
 p = pattern + i; peak = 0;
 in = 0; // a flag to decide whether entering a peak-zero pair
 for(j = 0; j < 256; ++j)
 if(is_in_histogram_table(p, &j)){
 count_value = count_value_in_histogram_table(p, j);
 if(peak <= count_value){ // find a possible peak point
 ppoint = j;
 peak = count_value;
 in = 1;
 }
 }
 else{
 if(in == 1){ // a peak has existed so find a zero point
 zpoint = j; // find a zero point
 insert_new_peak_zero_pair(p, ppoint, zpoint);
 peak = 0;
 }
 in = 0;
 }
}
//// The part to embed the message to the image
p = VS_seq; q = VS_seq + n;
j = 0; // current index of the message sequence
for(i = 0; i < m; ++i){
 if(j >= k) // embed the entire message?
 SPrime_seq[i] = *q;
 else{
 result = point_type(p, q); // which point type is q?
 if(result == 0){ // q is a peak?
 if(M_seq[j] == 1)
 SPrime_seq[i] = *q + 1;
 else
 SPrime_seq[i] = *q;

 save_secret_keys(p, q); // save the peak-zero pair as a secret key
 j = j + 1;
 }
 else if(result == 1) // q is not a peak, but a point in a peak-zero pair?
 SPrime_seq[i] = *q + 1;
 else if(result == 2) // q is not in any peak-zero pair
 SPrime_seq[i] = *q;
 }
 p = p + 1; q = q + 1;
}

Fig. 7 Pseudocode of multiple-
histogram generation and data
hiding

Multimed Tools Appl (2012) 61:299–319 309

histograms and embedding data. The pseudocode mainly consists of three parts. The first
part uses two-tier AVL trees [7] to implement the histogram table (i.e., Table 1). The first
level only contains an AVL tree, which includes all found patterns in the sequence V • S.
Each found pattern has an AVL tree in the second level to save its count values (i.e., r(q|p)).
For the two-tier AVL trees, each node consists of a key and a value. We use a pattern p as a
key to search the first-tier AVL tree for the pointer to its second-tier AVL tree. A following
pixel q is then taken as a key to search the second-tier AVL tree for the counts.

The second part of the pseudocode then determines peak-zero pairs for each found
pattern. Another two-tier AVL trees are created to save peak-zero pairs. The first-tier AVL
tree includes all found patterns in the sequence V • S. Each found pattern has a second-tier
AVL tree to save its peak-zero pairs. We use a pattern p as a key to search the first-tier AVL
tree for the pointer to its second-tier AVL tree, in which the key of each node is a peak
point, and the node value is the associated zero point. The last part of the pseudocode
demonstrates how to embed the sequence M into the sequence S and to generate the
sequence S’. We design a function point_type() with two parameters – a pattern p and its
following pixel q. The function traverses the two-tier AVL trees of peak-zero pairs, and
checks whether the pixel q is a peak, a point in a peak-zero pair but not a peak, or a point

Fig. 9 Five test images: (a) Lena; (b) Baboon; (c) Barbara; (d) Pepper; (e) F-16

load_peak_zero_pairs_and_construct_trees();
load_SPrime_seq();
initialize_VS_seq(); initialize_M_seq();
p = VS_seq; q = SPrime_seq;
j = 0; // current index of the message sequence
for(i = 0; i < m; ++i){
 if(j >= k) // extract the entire message?

VS_seq[i + n] = *q;
 else{
 result = point_type(p, q);
 if(result == 0){ // q is a peak?

VS_seq[i + n] = *q;
 M_seq[j] = 0;
 j = j + 1;
 }
 else if(result == 1){ // q is a point following a peak?

VS_seq[i + n] = *q - 1;
 M_seq[j] = 1;
 j = j + 1;
 }
 else if(result == 2) // q is a point in a peak-zero pair but neither a peak nor a point following a peak

VS_seq[i + n] = *q - 1;
 else if(result == 3) // q is not in any peak-zero pair

VS_seq[i + n] = *q;
 }
 p = p + 1; q = q + 1;
}

Fig. 8 Pseudocode of data extraction

310 Multimed Tools Appl (2012) 61:299–319

T
ab

le
4

H
id
in
g
ca
pa
ci
tie
s
fo
r
te
st
im

ag
es

at
di
ff
er
en
t
pa
tte
rn

le
ng
th

n

Te
st
im

ag
e

C
ap
ac
iti
es

(b
its
)
at

di
ff
er
en
t
n
w
ith

ou
t
co
ns
id
er
in
g
th
e
si
ze

of
th
e
se
cr
et

ke
y

1
2

3
4

5
6

7
8

9
10

L
en
a

28
43
3

98
71
9

20
65

46
25

27
18

26
09

45
26

19
99

26
21
19

26
21
43

26
21
44

26
21

44

B
ab
oo
n

14
25
5

15
48
69

25
08

34
26

14
06

26
20

83
26

21
31

26
21
41

26
21
42

26
21
42

26
21

42

B
ar
ba
ra

26
50
3

14
79
87

23
00

97
25

66
57

26
14

32
26

20
43

26
21
31

26
21
41

26
21
44

26
21

44

P
ep
pe
rs

26
66
3

85
09
0

20
22

50
25

26
97

26
09

97
26

20
04

26
21
30

26
21
42

26
21
44

26
21

44

F
-1
6

50
45
5

99
73
5

15
10

72
19

01
40

22
35

27
24

40
94

25
40
70

25
83
23

26
02
53

26
11
41

A
ve
ra
ge

P
S
N
R
(d
b)

50
.7
5

49
.8
1

48
.7
8

48
.3
6

48
.2
3

48
.1
8

48
.1
5

48
.1
4

48
.1
4

48
.1
3

Multimed Tools Appl (2012) 61:299–319 311

not in any peak-zero pair. According to the return result, the pseudocode generates a
corresponding pixel for the sequence S’.

To extract data, the pseudocode in Fig. 8 initially loads the secret key (i.e., the peak-zero
pairs generated in Fig. 7) into the two-tier AVL trees as mentioned above. The first-tier AVL
tree includes the found patterns in the sequence V • S. Each found pattern has a second-tier
AVL tree to save its peak-zero pairs. We also design a function point_type() to traverse the
two-tier AVL trees, and to determine whether a pixel q is a peak, a point following a peak, a
point in a peak-zero pair but neither a peak nor a point immediately after a peak, or a point
not in any peak-zero pair. According to the return result, the pseudocode restores the
sequences S and M.

2.5 Complexity analysis

The proposed algorithm does not apply any transform such as discrete cosine transform
(DCT), discrete wavelet transform (DWT), and so on. The required processing mainly lies
on generating multiple histograms for a host image, determining peak-zero pairs for each
pattern, hiding messages, and doing the inverse transformation in the spatial domain.
Accordingly, the execution time of the algorithm is small. To generate multiple histograms,
we need to scan the image sequence S once, and to create the two-tier AVL trees. The
complexity for scanning the sequence S depends on the sequence length m, and is O(m).
Before deriving the entire complexity for creating the two-tier AVL trees, we first analyze
the complexity of an access to the trees. Since the length of the sequence S equals m, the
maximum number of the found patterns is m, and so is the maximum number of the nodes
in the first-tier AVL tree. According to the study in [7], the complexity of an access to the
first-tier tree is O(log m). A second-tier AVL tree stores the following pixels of a found
pattern and the corresponding count values. The maximum number of the nodes in the
second-tier AVL tree thus equals the number of the following pixels. The maximum number
of the pixels is the element number of the set A, a constant value 256. The complexity of an
access to the second-tier AVL tree is thus O(log 256). Accordingly, the complexity of an
access to the two-tier AVL trees is O(log 256 log m). Because the pseudocode only uses a
for-loop of m iterations to access the two-tier trees, the entire complexity for generating
multiple histograms is O(m log 256 log m).

The pseudocode to determine peak-zero pairs for each found pattern contains a
nested for-loop to access another two-tier AVL trees, where the outer and the inner

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

Value of n

H
id

in
g

ca
pa

ci
ty

 (
bp

p)

Lena

Baboon

Barbara

Peppers

F-16

Fig. 10 Hiding capacities in bpp at different pattern length n

312 Multimed Tools Appl (2012) 61:299–319

loops have m and 256 iterations, respectively. Thus, the complexity of this step is O(256
m log 256 log m), too. Similarly, the pseudocode to embed the message sequence M to
the sequence S also includes a for-loop of m iterations to access the two-tier trees, and its
complexity is thus O(m log 256 log m). According to the previous analysis, the
complexity of the data-hiding algorithm is O(256m log 256 log m). Finally, the data-
extraction pseudocode contains a for-loop of m iterations to access the two-tier trees;
therefore, the complexity is the same as that of the data-hiding algorithm, O(m log 256
log m).

2.6 Lower bound of the PSNR for a marked image

The lower bound of the peak signal-to-noise ratio (PSNR) of a marked image
generated by the proposed algorithm versus the original image can be proved larger
than 48 dB as follows. It is clearly observed from the embedding algorithm that the
pixels whose values are between a peak point and a zero point are either added by
one or unchanged. Therefore, in the worst case, the values of all the pixels are
increased by one, implying that the resultant mean square error (MSE) at most equals

30

35

40

45

50

55

1 2 3 4 5 6 7 8 9 10

Value of n

PS
N

R
 (

db
)

Lena

Baboon

Barbara

Peppers

F-16

Fig. 11 PSNR for the test images at different pattern length n

47.5

48

48.5

49

49.5

50

50.5

51

51.5

0 0.2 0.4 0.6 0.8 1

Hiding capacity (bpp)

PS
N

R
 (

db
)

Lena

Baboon

Barbara

Peppers

F-16

Fig. 12 Hiding capacity versus image quality for different test images

Multimed Tools Appl (2012) 61:299–319 313

one, i.e., MSE=1. This leads to the PSNR of the marked image versus the original image
being

PSNR ¼ 10� log10
255� 255

MSE

� �
� 48:13 ð1Þ

In short, the lower bound of the PSNR of a marked image generated by the proposed
algorithm is 48.13 dB, which is also supported by the following experiments.

3 Experimental results and comparison

This work conducted several experiments to evaluate the performance of the proposed
scheme on hiding capacity and quality of a watermarked image. The test data were
commonly used grayscale images sized 512×512 [21], including Lena, Baboon, Barbara,
Peppers, and F-16, as shown in Fig. 9. We used the Perl language to implement the data
hiding and extraction algorithms. The test bed was a personal computer, equipped with an

0

50

100

150

200

250

300

350

1 10 100 1000 10000 100000 1000000

Peak-zero pair number

C
ap

ac
ity

 b
y

ea
ch

 p
ea

k-
ze

ro
 p

ai
r

(b
its

) n=1

n=2

n=3

n=4

n=5

n=6

n=7

n=8

n=9

n=10

Fig. 13 The hiding capacity contributed by each peak-zero pair for the image Lena

1

10

100

1000

10000

100000

1000000

1 10 100 1000 10000 100000 1000000

Peak-zero pair number

A
cc

um
ul

at
ed

 h
id

in
g

ca
pa

ci
ty

 (
bi

ts
)

n=1
n=2
n=3
n=4
n=5
n=6
n=7
n=8
n=9
n=10

Fig. 14 The accumulated hiding capacity contributed by peak-zero pairs for the image Lena

314 Multimed Tools Appl (2012) 61:299–319

Intel Q8400 CPU and 4 GB DRAM. The execution time of the embedding algorithm varied
from 3 to 40 s, and depended on the value of the number n. The bigger the value was, the
longer the execution time was. With the increasing of the value, the program would
consume much time to determine peak-zero pairs, and thus the entire execution time
became long. In comparison with the embedding algorithm, the extraction algorithm
yielded relatively smaller execution time, ranging from 2 to 6 s, because the extraction
process did not require generating the peak-zero pairs.

3.1 Performance comparison at different pattern length n

Table 4 lists the hiding capacity and the PSNR at various pattern length n, where the size of the
secret key is not taken into account. It is clear that the payload increases with larger pattern
length n. For Lena, Baboon, Barbara, and Peppers, their payloads almost equal the image
pixel size (i.e., 512×512) when n≥4. We also note that the average PSNR for all the test
images is above the theoretical lower bound 48.13 db. Figure 10 shows the hiding capacity in
terms of bpp. For all the test images, their payload size is larger than 0.9 bpp when n≥6. For
Lena, Barbara, and Peppers, their payloads even equal 1 bpp when n≥9. The PSNR of the
watermarked images is plotted against the pattern length n for the test images in Fig. 11. The
PSNR is always larger than 48.13 db at different pattern length n. Figure 12 further depicts
the relationship between hiding capacity and image quality in terms of bpp and PSNR. With
the increasing of the capacity, all the PSNRs are close to the lower bound of 48.13 db.

This work next investigates the size of the secret key during embedding an image. As
mentioned previously, the secret key is composed of the dummy sequence and the peak-
zero pairs. The dummy sequence is far smaller than the whole peak-zero pairs, and we thus
only consider the required peak-zero pairs. Figure 13 shows the hiding capacity contributed
by each peak-zero pair for the image Lena at various pattern length n. For n=1, the number
of the peak-zero pair is 3359. The first pair can contribute 308 embedding bits (i.e., peak
value). With the increasing of the pair number,2 the contribution declines significantly.
There are 2102 (i.e., two-of-third) pairs hiding only one data bit. Additionally, with the
growing of the pattern length n, the embedding bits contributed by the beginning peak-zero
pairs go down quickly. For example, the first pairs respectively contribute 54, 19, 10, 6, 5,
5, 5, 5, and 5 embedding bits for n=2 to 10. The figure further indicates that the larger the
pattern length n is, the less efficient the data embedding by a peak-zero pair is. The result is
also supported by Fig. 14, which depicts the accumulated embedding capacity versus the
peak-zero number at different pattern length n. Given the fixed number of peak-zero pairs,

2 We assign each peak-zero pair a sequential number according to its peak value. The bigger the value is, the
smaller the number is. The number is only for the explanation about the characteristics of the pairs, not for
embedding data.

Table 5 Hiding capacity and distortion for the iterative multi-histogram scheme

Test image Payload (bits) Pure payload (bits) Overhead (bits) PSNR (db) Bit rate (bpp)

Lena 23844 19244 4600 50.89 0.073

Baboon 11745 6441 5304 51.12 0.024

Barbara 18160 13232 4928 51.13 0.05

Peppers 22329 17865 4464 50.96 0.068

F-16 46916 41892 5024 50.61 0.16

Multimed Tools Appl (2012) 61:299–319 315

the scheme at n=1 yields far larger hiding capacity than the scheme at other cases. This
figure also shows that the scheme can increase the embedding capacity by enlarging the
value of n at the cost of numerous peak-zero pairs. For instance, for n=9, the scheme yields
the capacity of 1 bpp; however, the pair number, 259616, nearly equals the pixel size of the
image Lena, 262144.

To reduce the number of peak-zero pairs, this work proposes the iterative multi-
histogram scheme. The concept is as the following. For n=1, the beginning peak-zero pairs
perform embedding efficiently, as indicated in Figs. 13 and 14. Thus, we can only choose
the beginning pairs to hide data during an embedding process, and repeat the embedding
process several times to increase capacity. Let pair_no and iterative_no be the number of
the selected pairs and the repeating times, respectively. Table 5 lists the hiding capacity and
the PSNR for the iterative scheme, where n=1, pair_no=250, and iterative_no=1. The
overhead comes from a 256×256 bitmap, which saves the location of peak-zero pairs and is
compressed by bzip2 [8]. Figures 15 and 16 further show the pure payload and the marked-
image quality for the test images at various iterative times. With the increasing of the
iterative times, the pure payload grows but the PSNR declines. For example, for the image
Lena, the capacity and the PSNR are 0.16 bpp and 45.05 db at iterative_no=2, and become
0.83 bpp and 31.59 db at iterative_no=10. Figure 17 shows the visual impacts of the
watermarked images at various iterative times for Lena and Barbara, where n=1 and
pair_no=250. For iterative_no=10, the visual distortion is still small and the PSNR is
higher than 31 dB. In general, the watermarked images are hardly distinguished from the
original images.

20

25

30

35

40

45

50

55

1 2 3 4 5 6 7 8 9 10

Iterative times

PS
N

R
 (

db
)

Lena
Baboon
Barbara
Peppers
F-16

Fig. 16 The image quality of the iterative scheme for the test images

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

1 2 3 4 5 6 7 8 9 10

Iterative times

H
id

in
g

ca
pa

ci
ty

 (
bp

p)

Lena

Baboon

Barbara

Peppers

F-16

Fig. 15 The pure payload of the iterative scheme for the test images

316 Multimed Tools Appl (2012) 61:299–319

3.2 Performance comparison with other recent schemes

Recently, many reversible data-hiding schemes have been proposed to increase hiding
capacity at low image distortion. Figure 18 compares the hiding capacity of the Lena image
in bpp versus the image quality in PSNR yielded by the proposed schemes and other
existing reversible schemes [1, 2, 4, 13, 14, 16, 18, 19]. Note that the proposed schemes
and the studies in [4, 13, 14, 16, 19] are based on histogram modification, whereas the
schemes [1, 18] are performed on the foundation of difference expansion. The particular
parameter settings of these schemes are as the following. The proposed iterative scheme
selects the first 250 peak-zero pairs during each embedding process at n=1. Alattar’s
scheme [1] is spatial and triplet-based. The algorithm of Ni et al. [14] only uses two peak-
zero pairs, while Tsai’s scheme [19] utilizes three. Fallahpour et al. [4], Lin et al. [13], and
the proposed scheme do not include the overhead information of histogram modification in
the image itself with the payload, while other schemes (including the proposed iterative
scheme) take the overhead into account for the hiding capacity. The evaluation results show
that the proposed scheme achieves relatively higher embedding capacity and image quality
than the existing schemes under the condition without including the overhead information
of histogram modification. The proposed scheme can even yield the hiding capacity of 1
bpp at the PSNR of 48.13 db. When the overhead is further taken into account for the
capacity, the pure payload yielded by the proposed iterative scheme is still close to those by

Fig. 17 Watermarked images Lena and Barbara. (a) 50.89 db embedded with 0.07 bpp at iterative_no=1; (b)
31.59 db embedded with 0.83 bpp at iterative_no=10; (c) 51.14 db embedded with 0.05 bpp at iterative_no=1;
(d) 31.91 db embedded with 0.61 bpp at iterative_no=10

10

15

20

25

30

35

40

45

50

55

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

Hiding capacity (bpp)

PS
N

R
 (

db
)

Proposed

Proposed-Iterative-250

Tai

Tian

Alattar

Celik

Fallahpour

Ni

Lin

Tsai

Fig. 18 Performance comparison with existing schemes on image Lena

Multimed Tools Appl (2012) 61:299–319 317

Tai et al. [16] and Tian [18]. Accordingly, the proposed schemes achieve high capacity with
low distortion under various conditions.

4 Conclusions

This paper presents an efficient extension of the histogram modification technique by
considering multiple histograms rather than a single one. The previous histogram modification
schemes mainly generate a histogram to collect pairs of peak and zero points. The approach of a
single histogram may limit the number of peak-zero pairs, and thus restricts the maximum
hiding capacity. To alleviate this limitation, we propose the multi-histogram scheme, which can
obtain more peak-zero pairs to achieve higher embedding capacity at lower image distortion. To
reduce the overhead during data embedding, the work further proposes the iterative multi-
histogram scheme. Comprehensive experimental results show that both the schemes well
improve the embedding capacity and the image quality. Therefore, they are very appropriate for
data-hiding applications that require high capacity and low distortion.

References

1. Alattar AM (2004) Reversible watermark using the difference expansion of a generalized integer
transform. IEEE Trans Image Process 13(8):1147–1156

2. Celik MU, Sharma G, Tekalp AM, Saber E (2005) Lossless generalized-LSB data embedding. IEEE
Trans Image Process 4(2):253–266

3. Chang C-C, Tai W-L, Lin C-C (2006) A reversible data hiding scheme based on side match vector
quantization. IEEE Trans Circuits Syst Video Technol 16(10):1301–1308

4. Fallahpour M, Sedaaghi MH (2007) High capacity lossless data hiding based on histogram modification.
IEICE Electron Expr 4(7):205–210

5. Fridrich J, Goljan M, Du R (2001) Distortion-free data embedding. in Proceedings of the 4th Information
Hiding Workshop, Lecture Notes in Computer Science, vol. 2137, pp. 27–41, New York

6. Fridrich J, Goljan M, Du R (2002) Lossless data embedding––new paradigm in digital watermarking.
EURASIP J Appl Sig P 2:185–196

7. Horowitz E, Sahni S, Mehta DP (2007) Fundamentals of data structures in C++, 2ed, Silicon Press
8. http://bzip.org/
9. Hu Y, Lee H-K, Chen K, Li J (2008) Difference expansion based reversible data hiding using two

embedding directions. IEEE Trans Multimedia 10(8):1500–1512
10. Hu Y, Lee H-K, Li J (2009) DE-based reversible data hiding with improved overflow location map. IEEE

Trans Circuits Syst Video Technol 19(2):250–260
11. Lee S, Yoo CD, Kalker T (2007) Reversible image watermarking based on integer-to-integer wavelet

transform. IEEE Trans Inf Forensics Security 2(3):321–330
12. Lin C-C, Hsueh N-L (2008) A lossless data hiding scheme based on three-pixel block differences.

Pattern Recogn 41:1415–1425
13. Lin C-C, Tai W-L, Chang C-C (2008) Multilevel reversible data hiding based on histogram modification

of difference images. Pattern Recogn 41:3582–3591
14. Ni Z, Shi YQ, Ansari N, Su W (2006) Reversible data hiding. IEEE Trans Circuits Syst Video Technol

16(3):354–362
15. Niels P, Honeyman P (2003) Hide and Seek: An Introduction to Steganography. IEEE Security and

Privacy 1(3):32–44
16. Tai W-L, Yeh C-M, Chang C-C (2009) Reversible Data Hiding Based on Histogram Modification of

Pixel Differences. IEEE Trans Circuits Syst Video Technol 19(6):906–910
17. Thodi DM, Rodriguez JJ (2007) Expansion embedding techniques for reversible watermarking. IEEE

Trans Image Process 16(3):721–730
18. Tian J (2003) Reversible watermarking using a difference expansion. IEEE Trans Circuits Syst Video

Technol 13(8):890–896

318 Multimed Tools Appl (2012) 61:299–319

http://bzip.org/

19. Tsai P (2009) Histogram-based reversible data hiding for vector quantisation-compressed images. IET
Image Process 3(2):100–114

20. Tsai P, Hu Y-C, Yeh H-L (2009) Reversible image hiding scheme using predictive coding and histogram
shifting. Signal Processing 89:1129–1143

21. USC-SIPI image database/miscellaneous, http://sipi.usc.edu/database/database.cgi?volume=misc
22. Wang Z-H, Chang C-C, Chen K-N, Li M-C (2010) An encoding method for both image compression and

data lossless information hiding. J Syst Software 83(11):2073–2082
23. Wang XT, Shao CY, Xu XG, Niu XM (2007) Reversible data-hiding scheme for 2-D vector maps based

on difference expansion. IEEE Trans Inf Forensics Security 2(3):311–320
24. Weng S, Zhao Y, Pan J-S, Ni R (2008) Reversible watermarking based on invariability and adjustment on

pixel pairs. IEEE Signal Process Lett 15:721–724
25. Wu M, Lin B (2003) Data hiding in image and video: part I – fundamental issues and solutions. IEEE

Trans Image Process 12(6):685–695
26. Wu M, Yu H, Liu B (2003) Data hiding in image and video: part II – designs and applications. IEEE

Trans Image Process 12(6):696–705

Cheng-Tzu Wang is currently an associate professor in the Department of Computer Science at National
Taipei University of Education, Taiwan. He received his M.S. and Ph.D. degrees in the Center for Advanced
Computer Studies from the University of Louisiana in 1991 and 1994, respectively. His current interests
include image processing, hybrid soft computing models, and software engineering.

Hsiang-Fu Yu received his B.S. degree in electrical engineering, and his MS and Ph.D. degrees in computer
science fromNational Central University, Taiwan in 1993, 1995, and 2004, respectively. He joined the Department
of Computer Science in National Taipei University of Education, Taipei, Taiwan, in 2006. His research interests
include computer networks, information retrieval, multimedia streaming, and image processing.

Multimed Tools Appl (2012) 61:299–319 319

http://sipi.usc.edu/database/database.cgi?volume=misc

	High-capacity reversible data hiding based on multi-histogram modification
	Abstract
	Introduction
	The multi-histogram scheme
	Multiple-histogram generation
	Data embedding algorithm
	Data extracting algorithm
	Pseudocode of algorithms
	Complexity analysis
	Lower bound of the PSNR for a marked image

	Experimental results and comparison
	Performance comparison at different pattern length n
	Performance comparison with other recent schemes

	Conclusions
	References

